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largest value such that f vanishes identically on [0, 7;]. Then g must vanish
on [0, T—T{].

Theorem I” also follows from Mikusifski’s Theorem. Indeed, taking
partial Laplace transforms we have that, for each ze C¥™!, the functions
@,(t;) and 9, (t,) satisfy the assumption (¢, *8,)(t;) =0 for 0 < t; < T Thus
for each ze C¥~!, by Mikusinski’s Theorem,

¢,(0)0,(t)=0 .for all 620,720, o+7<T.

Let T; be the largest value such that ¢, (o) is zero for all ¢ < T; and all
zeC¥ L If T, < T there is a oy larger than T, and arbitrarily close to- T,
and a z’e CV~! such that ¢, (0;) # 0. For all 1, < T—0,; we have

@, (0)0,(t;) =0 for all z.

Since the product of two entire functions of z is zero only if one of them is
zero, it follows that 6_(r;)=0 for all z. Since o, > T, can be taken
arbitrarily close to T, = T—T,, ’

¢.(t) =0, 0<t<T, zeCV Y,
6,(t)=0, 0<t T, zeC* Y,

and T;+ T, = T. By the uniqueness of the Laplace transform we have the
result of Theorem I”. ’
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For a Banach space isomorphic to its square the Radon-Nikodjm
property and the Krein-Milman property are equivalent

by
WALTER SCHACHERMAYER (Linz)

Abstract, We prove the result announced in the title.

0. Introduction. For the definition of the Radon-Nikodym property and
the Krein-Milman property (abbreviated RNP and KMP) we refer to [5]. In
the past ten years some effort has been made to prove or disprove the
conjecture that these two notions are equivalent. For some classes of Banach
spaces it has been shown that they are equivalent (see [7] and [3]).

There is an intermediate notion between RNP and KMP. namely the

H

“Integral Representation Property” (abbr. IRP) [13]: A Banach space X

(which we suppose to be separable to avoid measure-theoretic complications,
in which we are not interested here) has IRP if for every bounded, closed,
convex set C & X and every xeC there is a probability measure u on the
extreme points of C such that x is the barycenter of .

A theorem due to Edgar shows that RNP = IRP ([5], p. 145) and it is
easy to see that IRP = KMP. The converse implications are open.

E. Thomas [13] has shown that a Fréchet space X has RNP iff X" has
IRP. In the context of Banach spaces this may be formulated as follows:
A Banach space X has RNP iff I(X) (or any other appropriate space of
sequences in X) has IRP. ;

It was observed in [11] that if X is isomorphic to its square then 1*(X) -
bas IRP iff X has IRP, ie. in this case IRP and RNP are equivalent,

In the present paper we obtain — inspired by the argument of
E. Thomas but using quite a different reasoning and an observation due
to H. P. Rosenthal — analogous results for KMP in place of IRP.

The aim of the introductory Section 1 is to establish Corollary 1.3; this
result — or at least some variant of it — seems to be known to people
working in the field and its content can be derived from a construction of
J. Bourgain [1]. However, we have preferred to use an approach due to
C. Stegall [12]. This approach seems at the same time elementary and
powerful; it also shows that the pathologies arising in the absence of RNP
need not to be “constructed” but are already contained in any
nonrepresentable operator from L![0, 1] to X. :
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In Section 2 we establish that X has RNP iff /*(X) has KMP.

In Section 3 we introduce the notion of 3/4-embedding (which has
nothing to do with Vienna waltz). It is weaker than the notion of embedding
but stronger than the notion of semi-embedding, introduced by Lotz, Peck
and Porta ([9], [2]). This somewhat strange notion furnishes a convenient
framework for constructing the necessary maps from 12(X) into X — using
the ideas of [11] — to prove: If X x X 3/4-embeds into X, then X has RNP
if it has KMP (Corollary 3.7). This contains the result announced in the title.

In the final Section 4 we state some open questions.

After writing up the paper, we learned that Proposition 2.1 has already
beeen explicitly formulated and published by A. Ho [6]. We learned this
from the comprehensive monograph of R. Bourgin ([4], p. 418), where one
may also find a variant of Corollary 1.3, which is due to James [8], and the
results about IRP established in [11] and [13]. Still we believe that our
presentation of these results, which are needed to establish the theorem
announced in the title, is interesting in its own right.

Finally we also learned that in [10] the notion of 3/4-embeddings is

investigated and they are characterised (among other results) as the injective -

Tauberian operators.

My thanks go to H. P. Rosenthal, R. C. James, E. Thomas,
P. Mankiewicz and C. P. Stegall for some very stimulating discussions on the
subject of this article.

1. Let (2,Z, P) be a probability space. A bounded linear operator
T from L' (%, Z, P) into a Banach space X is called representable if there is a
function Fe L*(Q. %, P: X) such that for every fel'(Q, X, P)
Tf = [ f () F(w)dP(w).

For AeX we say that T is representable on A if ToR, is representable,
where R,: L' L' is the operator of multiplication by the characteristic
function y,. It is clear that there is a set £, such that
P(Qq) =sup{P(4): Tis representable on A4},
and that T is representable iff P(Q) = 1.
Hereafter, if EeX with P(E) > 0 we put

Lt ={Tf f =frzg =0 and {fdP=1}.
Also we set B(0, &) = {x: ||x]| <ef and if (x})i%, is a normalized norming
sequence in X*,

Bn(0,8) = {x: (x, x¥><e,j=1,..., m},
The following theorem, on which our approach is based, is due to C. Stegall

({121, p. 21) and it is remarkable how easily it may be proved, “starting from
nothing”. We shall denote by co the convex (not closed convex!) hull of a set.
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TueoreM 1.1. Suppose T L (Q, Z, P)— X is not representable. Then for
any & > 0 there is Ege X disjoint from Qg with P(Eo)+P(Q,) > 1—8 and an
e >0 such that for every weakly compact set WS X and any E S E,

ZE = co[LT\(W+B(0, 8))].

Moreover, if X is separable and (x}){2, is a norming sequence of norm one
elements in X*, we may find not only the above but, for every weakly compact
W and for every 0 < &' < ¢, an arbitrarily large set F < Ey and me N such that

for any ESF

LT = co[LE\(W+B,0, )] »

We shall not use the full strength of the theorem; in the subsequent
corollary we apply it to a one-point set instead of a general weakly compact
set. In the rest of the section we assume X to be separable.

CoroLLary 1.2. In the setting of Theorem 1.1, let xqe X and W = !x,].
Then we may find a partition IT = (D,, ..., D,) of F such that for every atom
DIEH

Z5,S (xe Xt (x=xo, xFy=¢), j=1,..,m,

&5, denoting the closure of y’gi.
Proof (Stegall. We may assume that x, is the origin. Let h; = T* x},
C;={weF: h(w) > ¢} and

C=F\{ G
j=1

We shall show that P(C) = 0. Indeed, if this is not the case, fix any function
[ =frc =0 with .[fdP =1 and note that for every j=1,..., m

¢ 2 [ f(@)h(@)dP(w) = {f, T*x}) = <Tf, x{>.
ol

Hence %7 < {0}+B,,(0, &), a contradiction to Theorem 1.1.

Defining D, = C,, D, = C;\Cy, Dy = C3\(C, U C,), etc. we. obtain a,
partition of F and for any j=1,...,mand f =fx,,j >0 with {fdP =1 we
have

¢ < [f(@)hy(@)dP() = <Tf, x>,
Q

thus proving the corollary. w

CoROLLARY 13. Suppose again T2 L'(Q, £, P)— X is not representable.
Then for any & > 0 there is Ae L with P(4)+P(Q,) > 1—08 and an increasing
sequence (Z,)5% o of finite partitions of A such that for any decreasing sequence
(A", of atoms in X, we have

A #0-0.
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Proof. Let (x,);2, be dense in X. Apply Corollary 1.2 to find F,ex
such that P(F,)+ P(€,) > 1~6/2" and partitions I, IT, = {Dy, ..., Drm) of
F, such that .

g;},g{XEX: {x— %, x;‘>>81}7 j=1,.., m(n).

Let A= () F,, Zog={A} and let Z, be the partition of 4 generated by the
n=1

traces of II,, ..., II, on A.

Given a decreasing sequence (4", of atoms of Z, and an arbitrary
Xe X find no such that ||%—x,|| <&/2. As 4™ is contained in D° for some
1 S] < m(”o)’

—r K
Lo < {xeX: X=Xy X} 2 6},
o
hence X¢ (| Z7,. u
n=1

Remark. If * ZF denotes the weak star closure of LE in X** then it is

easily seen that under the assumption of the above corollary

o0

ngl *g:”
has distance from X greater than or equal to ¢’ It follows — using the
argument in the proof of Proposition 2.1 below and the fact that the convex
hull of finitely many o*-compact sets is o*-compact — that the extreme
points of *27 have also distance from X greater than or equal to &'; in
particular, the extreme points of * 21 are contained in X **\ X, Hence’we
have reproved a theorem, due to J. Bourgain, that this extreme point
phenomenon arises in every Banach space failing RNP (see also [12]).

2. A necessary and sufficient condition for RNP., In this section we show
that X has RNP iff 12(X) has KMP. The proof is based on the following
easy but crucial observation which has been pointed out to me by H. P.
Rosenthal (oral communication) and which was noted by A. Ho [6].

In the situation of Corollary 1.3 fix an atom A} in Z,. We call the atoms

nt+1 nt+1 . N N
Ajly. o, Afs' in Z,., which are contained in A} the successors of A’
Clearly 1

4 q
A= U A5, #Tu=co 7
Qs eyl ) e
and
v -
gA;’;CO[U .?A,,+1]

p=1 J(p)

where co denotes the closed convex hull,
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Prorosimion 2.1. In the setting of Corollary 1.3, assume in addition that

for every n=0,1,2,... and every atom A} in X, and its successors
+1 +1
Afiy s -oos Afig In Zsy
q
(*) ng=CO U f?Tn-Fl B
) 4j (p=1 Ai(n))

Then the closed, convex, bounded set 2% has no extreme point.
Proof. Assume x is extreme in .#%. Applying (*) to n = 0 we conclude
from the extremality of x that there is an atom A}1 of X, such that
xe FTy .
A}‘
Applying (*) to A}| we may find again — by the extremality of x — a
successor Af,e X, of A}, such that
' e 7T,
X AJ;Z
Continuing in an obvious way we find a decreasing sequence (A})2, of
atoms in X, such that for every neN
xe Ly .
In
This contradicts Corollary 1.3. m
Remark 22. Condition (*) means that the convex hull on the right-
hand side of () is already closed. How can one ensure that the convex hull
of finitely many closed sets is closed? A sufficient conditién is — intuitively
speaking — that these sets lie in different subspaces of X, which are all
separated by a “strictly positive angle”. (This idea may also be found in [6].)
The idea of the present paper is to construct these “strictly positive

angles” by brute force. The price which we pay for this construction is fo go
out of X into a sequence space on X, e.g. 12(X) which is defined by

POO = {0021, 5e X2 I = 3 sl < o0},

Tueorem 2.3. A Banach space X has RNP iff I>(X) has KMP.

Proof. If X has RNP, then *(X) has RNP and therefore KMP.
Conversely, suppose X fails RNP. We may assume X to be separable. There
is an operator :

T L'(Q,Z, P> X

which is not representable. By Corollary 1.3 we may find AeZ, P(4) >0
and an increasing sequence X, of finite partitions of 4 such that for every
decreasing sequence A" of atoms of %, we have

®© oy
)
n=1
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Let d, be the number of atoms of X, and find «, > 0 which tend sufficiently
fast to zero so that

d,a? < oo,
1

ek}

n

Let D be the denumerable set consisting of the pair (0, 1) and the pairs
{nj): n=1,1<j<d,) and index 1*(X) by D, ie.

I D; X) = {(xn,j)(n,j)eD: I’(xn,j)(n.j)eb"2 = Z ”xn.i”z < OO}
D
Define the operator
S: L', £, P)- *(D; X)
coordinatewise by

Sy =T,

> <£j<d,.
S(n,j) =“n'TORAJr;’ n 1, 1 &J dn

Recall tpat for AeX, R, is the restriction to A. It is easily checked that, by
the choice of a,, the operator S is well defined. S has the property that for
every decreasing sequence (4" of atoms of z,

o
NZ5.=0
n=1

because the coordinate (0, 1) of § has this property.
i We sha]] show that S satisfies condition ( *) of Proposition 2.1, Indeed
fix (n,j) in D and let (n+1,j(1)), - (n+1,j(g)) be the indices of the
successors of AF. Let (x))2, be a Cauchy sequence in .Sf’i,,. Find

J

f'=flrar>0, [fidP=1 with  Sff = xi,
For every ie N we may write f* as a convex combination
i g i ri < i
f = 21 )‘pf;’ Z l; =1
where i =
5 =f;XAﬁ,t)1 20, (fydP=1.

By passing to a subsequence we may assume that (4})2, converges to 4,.

Clea”yl YA, =1. Fixing for 1< p<gq our attention on the coordinate
(r+1,7(p).of S we see that

Sont t,n S* = oyt TC £,
From the assumption that (2, is a Cauchy sequence we infer that

(TG fo)2s
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converges in X; we may deduce that
(8@ )2

converges coordinatewise in I*(D; X) and — again by the choice of the a, —
this sequence converges with respect to the norm of I>(D; X). Hence

q q
limx' = 3 4,(lim Sf)eco( U Z5n+1).
=00 p=1 i r=1 J(p)

Hence S fulfills condition (%) of 2.1, which finishes the proof of the
theorem. m

3. 3/4-embeddings and the Krein—Milman property.

DerFiNiTION 3.1 [6]. X semi-embeds into Y if there is an injective
continuous operator j: X — Y such that the image of the unit ball under j is
closed in Y. ;

Bourgain and Rosenthal [2] showed that a separable Banach space X
that semi-embeds into a Banach space ¥ which has RNP, has already RNP
(see also [12]).

For the purpose of KMP we need a stronger notion.

DeriNiTION 3.2. A Banach space X 3/4-embeds into a Banach space Y if
there is an injective operator j: X — ¥ which maps closed, bounded, convex
sets onto closed, bounded, convex sets.

ProrosiTioN 3.3. If Y has KMP and X 3/4-embeds into Y, then X also
has KMP.

Proof (trivial). If X fails KMP then [S] there is a closed bounded
convex set C <X which has no extreme point. If j: X > Y is a 3/4-
embedding then j(C) is closed, bounded and convex and has no extreme
points, which gives a contradiction. m

CoroLLARY 34. If 12(X) 3/4-embeds into X then X has KMP iff X has

‘RNP. u

ProposiTioN 3.5. If X xX 3/4-embeds into X then I>(X) 3/4-embeds
into X,

Remark 3.6. Before proving 3.5 we shall deduce the corollary, which is
the main result of the paper.

CoroLLARY 3.7. If X x X 3/4-embeds into X (in particular, if X is
isomorphic to X x X) then X has KMP iff X has RNP. u

Proof of Proposition 3.5. The idea of the proof is very simple and
consists in “repeatedly splitting X as X x X”. However, it turns out that it is
rather laborious to write up the details.

Let I*(X) this time be indexed by the natural numbers N; for neN let
X" be the subspace of I2(X) such that the coordinates greater than n are zero
and for 1 <k<I<n let Xj, be the subspace of X" such that “all
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coordinates outside the interval [k, I] equal zero. X" (resp. X)) may be
identified in an obvious way with the n-fold (resp. I—k+ 1-fold) product X
X ... x X ; we shall freely use these identifications in the sequel

By hypothesis there is a 3/4-embedding i: X x X — X; we may suppose
[lil < 1/2. Let

E;: X5 X
be simply i and, for n > 2, define
E,: X"l X7

to be the identity on X7y,
with values in X7, ..

(i) For neN, E, is a 3/4-embedding from X"** jnto X". E, is clearly
injective. As regards the second property of 3/4-embeddings, note that a
continuous, injective it ¥ — Z maps closed, convex, bounded sets into closed

with values in X[y ,—; and to be i on Xt o

sets iff for every bounded sequence (y)f2; such that (i (y}))j“.';l converges we

may find convex combinations 7, of (y)2, which converge in Y.

In the special case of E,, if (x){2, is bounded in X"*! and such that
(E.(x))%2 1 converges, it is clear that the first n~1 coordinates of X; converge.
Hence E,, maps closed, bounded, convex sets to closed sets, as i does so by
assumption,

(i) For n>1 the map
E0...0E,; X"\ X

is a 3/4-embedding. Indeed, the composition of 3/4-embeddings is a 3/4-
embedding.

(iii) lEy0...0E,|xn+1 || <277,

nn+1]

This follows from the assumption ||if| < 1/2.

Let P, be the natural projection from I*(X) onto X" and put
Jn=E;0...0E,0P,,,.

(iv) Wt 1 =il 27" for n2 1.

Ju+1 and j, coincide on the space X" and are both equal to zero on the range
of I—P, 5. Using (iii) on the spaces X[, ..y and X73 . 21 We obtain (iv).
Hence the sequence j,» 1*(X)— X converges to an operator j. We shall show
that j is'a 3/4-embedding. :

(v) J s injective. Let x =(x,)2; be an element of 12(X), ||| =1 and
choose k large enough that P,(x) 3 0. Then '

0 =j(Pe(x)+(I = P (x)) = ji (Pe(x)) + lim j, (T — Py ().

n-to

A glance at the definition of j, shows that the sequence {j, (I — P (x)} 2%

icm°
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lies in the closed, convex, bounded set
Jxo(I—Py)(unit ball (*(X))) = E o...0 E (unit ball (X554 4+ 19)-
But —j,(P,(x)) is a nonzero element of
E, o...Ey(unit ball (X{H3)

and hence does not belong to the above set. Thus j(x) # 0.

(vi) j maps closed, bounded, convex sets onto closed sets. Let (x)2; be a
bounded sequence in [?(X) such that (j(x))®2, converges in X. We have to
show that there are convex combinations (%)%, of (x)2, converging in
I2(X). Note that

jx (unit ball ((X))) 2, (unit ball (*(X))) = ... =2, (unit ball (2 ('X))).

Hence for every ne N the sequence ((E, 0...0E,)™ ' 0j(x))2, is bounded and
therefore by (ii) we may find convex combinations converging in X"**. By a
diagonal procedure, we may find convex combinations (¥)2, such that, for
every ne N, we have this convergence. But this means that (%)% converges
coordinatewise in [2(X). Hence — by passing once again to convex
combinations if necessary — ()2, converges in I*(X).

Summing up, we have constructed a 3/4-embedding j: 1*(X) — X, thus
finishing the proof of 3.5. w'

4. Problems and remarks. Theorem 2.3 shows that RNP and KMP are
equivalent if we pass from X to the larger space I>(X). It is natural to ask
whether one can do any better, e.g. by passing to a smaller space. For
example one may ask: R

QuestioN 4.1. If X x X has KMP, does this imply that X has RNP?

In the other direction one may ask:

QuesTioN 4.2. If X has KMP, does this imply that X x X has KMP?

We do not even know the answer to the following question:(*)

QuesTioN 43. If X has KMP, does this imply that X xI* has KMP?

However, we have a very modest positive result in this direction:

ProposiTioN 4.4. If X has KMP then X x R has KMP.

Proof (clementary geometry). Let B < X xR be closed, bounded,
convex and suppose that B has no extreme point. We may assume Oe B.

Let B, = BA(X x{0)) which, by assumption, has an extreme point
xo = {&g, 0). As X, is not extremal in B there is a straight line in B through
Xo; let x, and x, be the endpoints of this line, i.e. we may find 0 <4 <1 and -

Added in proof. It has bcen shown by M. Talagrand (personal communication) that
if X has KMP and X is reflexive, then X xY has KMP, thus solving Question 4.3 in the
positive and making Proposition 44 obsolete, .
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Xy, X, €B such that
Xo = Ax; +(1—=A)x,
and such that for ¢ > 0

x+e(x—x0)¢B, i=1,2.

Clearly x; = (£, t,), X, =(£,, t,) with ¢; # 0 and we may assume t; > 0. As

X, is not extremal in B we may find x;, x,e B such that

X, =3(x3+xg) =%5((&, ta)+ (&, 1)

By choosing x3 and x, close’enough to x, we may assume {3, t4 >0

X,

*s Wxs X

X2

Define
X5 =((—t;)7? +13 ) (85 P xg +(—12y) x,),
and

X6 = (=1 (1 xaH (< 1) ).

Then x5, xse B, and x, is a convex combination of xs and xq, which gives

the contradiction.
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