e ©
ICM stuow marssvamica, 1. ixx, aoss)

On p-absolutely summing operators acting on Banach lattices
by

- J. SZULGA (Wroctaw)

Abstract. Necessary and sufficient conditions are given for certain classes of concave
operators acting on Banach lattices to be contained in the ideal of p-absolutely summing
operators,

Introduction. It is the purpose of this paper to investigate some connec-
tions between the ideal property (in the sense of Pietsch [16], see also
Nielsen [13]) of the class of majorizing operators and several concepts of
summing operators.

Section 1 contains almost all the necessary.definitions and basic facts.
Section 2 is mainly devoted to the motivation of our study.In particular, we
show that the ideal property of majorizing operators is closely related to the
properties of p-regular and p-lattice summing operators (these notions were
introduced by Nielsen and the present author [14]). In Section 3 we give
necessary and sufficient conditions on Banach lattices X and Banach spaces
E for all 1-concave operators from X into E to be p-absolutely summing. We
should mention that in many cases the sufficient conditions are known (cf.
[13]), even in a more general context. By the main result of Section 3 they
become the best possible assumptions in almost all situations except some
extreme cases. There is a still open problem what happens in these cases and
our knowledge is far from being satisfactory,

In Section 4 we deal with spaces on which p-concave and p-absolutely
summing operators coincide. For some p and certain rank spaces we obtain
a new characterization of abstract M-spaces, ie., of Banach lattices isomor-
phic to a sublattice of C(K). The remaining cases are also discussed and we
give a small contribution to the theory of Hilbert-Schmidt spaces introduced
by Jarchow [5].

1. Preliminaries and notation. For the background we refer to [2], [16]
and [17]. Throughout the paper all vector spaces are assumed to be over the
reals. For our convenience the letters E, F will stand for Banach spaces and X, Y
for Banach lattices. E* denotes the topological dual of E with the pairing ¢, - 5;
p' denotes the dual number to p, 1 <p< 0, ie, 1/p+1/p'=1. Given x
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=(Xy,..., X,)€ E™ we put
wy (%) = sup {3 [, x PP x e E*, [Ix| < 1},
L (%) = (X llxI)e.

If x =(xq,...,x,)e X" then, following Krivine [7], we define
T xe =sup (Y a;x: aeR, ¥ laf” <1}

and we put

kp(x) = [|(3 )7

As usual, we mean (3 |x|?)"? = sup|x,| if p = o0,

The expressions introduced above correspond to three types of the
summability of vectors and yield several concepts of summing operators. Let
us denote by B(E, F) the space of all operators (ie, bounded linear
operators) from E into F.

An operator Te B(E, F) is said to be p-absolutely summing if there is a
C >0 such that

L,(Tx) < Cw,(x)

for all neN and all xeE".
An operator Te B(X, F) is called p-concave if there is a C > 0 such that

L,(Tx) < Ck,(x)

for all neN and xeX".
An operator Te B(E, X) is, by definition, p-lattice summing if for some
c>0

ky(Tx) < Cw,(x)

for all ne N and xeE".

We say that an operator Te B(X, Y) is p-regular if there is a C > 0 such
that

k,(Tx) < Ck,(x)

for all neN and xe X"

We denote by I1,(E, F), K, (X, F), 4,(E, X) and P,(X, Y) the Banach
spaces of p-absolutely summing, p-concave, p-lattice summing and p-regular
operators equipped with the norms ,, ,, Aps Qp, TESpECtively, which are, by
definition, the smallest constants C in appropriate inequalities.

The roots of these concepts go back to Grothendieck [4], who studied 1-
absolutely summing operators. p-absolutely summing operators were intro-
duced and investigated by Pietsch [15]. The definition and a study of p-concave
operators is due to Krivine [7]. Yanovskii [217 invented 1-lattice summing
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operators and their extensions to arbitrary p is due to Nielsen and the present
author [14]. The p-regularity of operators appeared in substance in Nielsen
[13], being a generalization of the notion of regular operators, i.e., of operators
possessing the modulus derived from Kantorovich [6]. We should mention that
in some cases the above concepts arise in the works of many authors. For
example, 1-concave and co-lattice summing operators were investigated by
Schlotterbeck (cf. [17]) under the names of cone absolutely summing and
majorizing operators. In the sequel we shall use these notions interchangeably.

We say that X is g-concave, 1 < g < o, if the identity Iy is g-concave
and that X is p-convex if X* is p’-concave or, equivalently, if for some C > 0
ky(x) < Cl,(x) for all n, xeX". We put

p(X) =sup{p: 1 <p< o0, X is p-convex},
g(X) =inf{g: 1<q< o0, X is g-concave}.

E is said to be finitely representable in F (shortly: E fr. F) if there is a
C > 0 such that for any finite-dimensional subspace E, = E one can find a
subspace Fy, = F which is C-isomorphic to E,.

Similarly we define X to be latticially finite-representable in Y (shortly:
X Lfr. Y) by replacing “subspace” by “sublattice” and also by using
“isomorphism” in the semse of lattice structure. We denote by (e{?),
1 < p < oo, the standard basis of I, if p < oo or of ¢,. The cones of positive
elements in X and B(X, Y) will be denoted by X, and B, (X, Y). Finally,
we establish a useful convention: given two classes of operators M and N, we
writt M(E, F) = N(F*, E¥) if, for any TeM(E, F), T*eN(F* E%), and
M(F, G)oN(E, F) for the space [TS: SeN(E, F), Te M (F, G)}.

2. Auxiliary results on p-regular operators and on the ideal property.
Recall that an operator TeB(X, Y) is called regular if it maps order
bounded sets in X into order bounded sets in Y** or, equivalently,
T=T,—T,, where T;, T,eB. (X, Y**) (cf. [17]). p-regular operators extend
this concept.

ProrosiTioN 2.1. Let 1 € p< 0.

() PX,Y)SP(X,Y) and o(D<g(T) ¥ 1<p<q<2 or
2<q<sp< oo,
(2) Pp(X’ Y)‘_‘Pp’(Y*a X*)a
(3) BX,Y)=P,(X,Y) and 0,(T)<Kg||T|| (Kg — the Grothendieck
constant).
(4)  The following properties of Te B(X, Y) are equivalent:
(i) T is l-regular,
(i) T is co-regular,
(iii) T and T* are regular.
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Proof. (2) follows from the identity (cf. [2], p. 47)
5) ky(x) = sup) <xj, % p/k,, (X), X =(Xy,..., %) € X",

where the supremum is taken over all x' = (x{,...,x,)e X*"

(3) is due to Krivine [7] and carries the same information as the
Grothendieck inequality.

By applying the properties of functions with g-stable distribution,

1
(HZ xff];lp)l/p = cp,q(zlxilq)llqs x,,...,x,,eX,
0

where f; are independent copies of a function f with the Fourier transform
exp(—|t%, 1 < g <2 [7], we obtain the first part of (1) since an operator T
is p-regular if

IGIS T < IS A

for all xe X", neN and all f,,..., f,& L,(0, 1). The second part of (1) is then
a consequence of (2).

In view of (2) and the fact that T and T* are or are not regular
simultaneously ([17], p. 23) it suffices to prove that (ii) shows T to be
regular. Let xeX,. Hence [sup|Tul: A4 finite, 4 = [0, x]} is a norm-

ued
bounded directed family by (ii). Therefore there exists a limit Sx
= lim sup|Tule Y** ([17], Th. 5.10). S is additive and positively homogene-
A ued

ous on X, and can be extended to the whole of X. Moreover, S = T and
so we put T; = §, T, = §—T, which gives the desired decomposition of T (for
similar arguments see e.g. [17]). m

We immediately conclude that if either X = L, (u) or Y= C(K) then
B(X,Y)=P((X,Y). But there are examples of spaces with the above
property such that X is not isomorphic to any L,-space and Y is not
isomorphic to any L,-space, either ([1], [18]). This phenomenon and
Krivine’s theorem (3) give reasons for an investigation of spaces X, Y such
that B(X, Y) = P,(X, Y) for p other than 1 (or co) or 2. Some results in this
direction were obtained by Nielsen [13]. Ibidem one can find a study of
pairs of spaces E, X with the ideal property, i.e., such that (up to notations)
the composition of a majorizing operator from E into X with an arbitrary
operator in X is again majorizing. Although the class A, is not an operator
ideal in the sense of Pietsch [16], it preserves the ideal property of composi-
tions under suitable geometric conditions imposed on E and X. We shall see

below that the ideal property is closely related to the behaviour of p-regular
operators.
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ProrosiTioN 2.2. Let 1< p, g < oo. Then the following assertions are
equivalent:

) B(X*, Lo Ay (Ly, X*) S Ay (Ly, L),
(2) Kl (Xa Lq) S Hp(Xs Lq):
©) B(X*, L)) = Py(X* L,).

Proof: The equivalence of the first two conditions follows from Nielsen
[12]. Since all the properties above are of the finite-dimensional character,
we may replace L, and L, by I, and I, respectively. Then by using finite
rank operators we can see that the above conditions are just reformulations
of each other. =

Remark. The same method can be used to establish the following
relation:

K\(X, L) S A,(X, L) if and only if B(X*, L,) = K,(X*, L,).

CoroLLARY. The above features are “lattice superproperties” of X, i.e., they
are hereditary with respect to taking Y such that Y lfr. X.

It suffices to make use of the extension property of 1-concave operators as
it appears in [17] (Proposition 3.9.).

The following result proves a useful tool for our purpose.

LemmA 23. Let 1<p,q,r<oco. Then the following equivalent
conditions:

1) Kb, ) s, L),

)] K. (,, L) el {, )

imply one of the situations:

(3i) g=2 1<p,r<om,

(3ii) 1€q<2r>qg orr=qg,pz2qorr<q,p=o,
(3iii) 2<g< 0, g<p<worp=gq,rxzq orp<gq,r=o0.

Proof. (1) is equivalent to (2) by Nielsen’s characterization of p-
absolutely summing operators [12] and the fact that K, (I, I)* = K, (I, L)
(cf. [17]). Hence we may assume 1 < g < 2 since case (3iii) is immediate. We
infer that (1) yields r = ¢, provided p < co. In fact, since II, < A, (see [14]),
there is a C > 0 such that for all xe(}})"

sup {L(UX)IUIl: UeB(ly, L)} = 4, (L xi®e?)
< Cxy (Y X ®ef?) = Ck,(x).
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Now by taking x/ = ¢ and the formal embedding U: I' — [, we have
n]/q < Cn(llr—1/2)+ nl/r‘,

where a, = max(a 0), and this is possible if and only if r = ¢'. If r = ¢’ then (1)
implies A, (L, L) = Ky (I, 1) € O ,(lp, L), which clearly gives p 2 ¢. »

In the above proof one can also apply Pietsch’s concept of a limit order
[16]. In fact, conditions (3) are sufficient for (1) or (2); however, we shall present
a more general result in the next section.

LEmmMa 24. Let 1<g<2 1<p<oo. If Ki(X,l)=I,(X, 1) then
there is a C > 0 such that

[[sup ]| < Cly (%)

Jor all x = (xy,...,x,)e X" with disjoint components.

Proof. Since II,(X,l)<s4,(X,1), by the remark following
Proposition 2.2 there is a C >0 such that

L(UX) < C[U] ], (x)"

for all Ue B(X*, I;) and all X'e X*". Let xi,..., x,e X* be arbitrary disjoint
vectors. Then there exist disjoint vectors x,,..., x,€ X with 1 1% < 2 such
that {x{, x;> = 0 for i # j and <{x{, x;> = ||x{| (cf [3]). Since X is 2-convex by
Corollary to Proposition 2.1 and Lemma 2.3, we have ||U|| < 2¢, where U
=Y x,®e® and ¢ is a 2-convexity constant of X. Moreover, ||Ux{|| = [|x];
hence

I,(x) < 2Ce|jsup |x]]|.

By duality [7] X satisfies the desired property.

We do not know whether in the above assertion one could obtain the ¢-
convexity of X. We guess that the answer is negative. Take, e.g,, p = 2. The
key point in our proof is the estimation of A,(T) from below by A, (T). It
was done in fact for an arbitrary isomorphism 7, and such an estimation for
any Te B(X, ) is possible if and only if X is isomorphic to a Hilbert space
([14], Theorem 3.4.)!

3. A characterization result. In this part of the paper we characterize the
property Ky (X, L) S IT,(X, L,) for all possible values of p and q. We shall
write X eAM if X is 1som0rphlc to a sublattice of C(K) [17].

Tueorem 3.1, Let 1<p<oo, 1<g< . Let X be a Banach lattice
such that p(X) is attained in the following three cases:

() p(X)=q and 1 <g<2,
(i) p(X) =g and 2 < p=gq,
(i) p(X) =0 and ¢ >2, p<yq.

icm°
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Then
L K(X,L)sH,(X, L)
if and only if one of the following conditions is satisfied:
Ila. g =2, X arbitrary,
IIb. 1<q<2 p(X)>q or X is q'-convex, p = q,
Ile. 2<g< 0, p>qor p=gq, X is g'-convex or p<gq, XeAM.

Proof. I=1IL If ¢4 >1 we show the implication by applying the
Corollary following Proposition 2.2 and Lemma 2.3 with r = p(X), since /.,
Lfr. X ([8], [11]). If g =1 we rather use Lemma 24.

Ila=1. This follows by Proposition 2.2 and Proposition 2.1 (3).

IIlb=1 let 1<g<2 If p(X)>4q then g(X*)<gq and hence
K (X, L) =A,(L;, X*) =II,(L,, X*) by [20]. By Kwapief’s result [9]
I, (L X¥ c H1 (X, Ly). Since IT, = II, [15], the implication holds true in
the first case. If p=>g and X is g¢'<convex, then K,(X,L)
A (X, L) cII,(X, L) by [17] and [15].

Ilc = 1. If p > g we use the factorization of 1-concave operators through
Ly [17] and Lemma 1.4 in [13]. If p =g and X is g’-convex, we proceed as
in the case g < 2. Finally, if Xe AM then 1-concave operators are 1-integral
[15] and hence p-absolutely summing for all p, 1<p<o0. =

Let us notice that a more general form of the assertion IIb=-1 can be
found in [13] (Theorem 1.5) and by way of analogy also Ilc=>1I can get a
stronger form. However, we are mainly interested in the converse conclusion,
and that is why we have the result in the form presented here. We infer also
that, for a given p, K, (X, E) I ,(X, E) for any X if and only if B(l,, E)
=I,(,, E), eg., if E is a subspace of a quotient of L,, g <p, cf. [13], when
p>2or if E is isomorphic to a Hilbert space when p < 2. In fact, the case
p > 2 follows immediately. In the case p < 2 we take X which is 2-concave,
say X =1I,. Then from K, (I, E) = l,(l,, E) € II,(l,, E) we deduce by
duality that A,(E, l,) =I1,(E, l,) = 4, (E, 1;), and by applying Theorem 3.4
from [14] E turns out to be isomorphic to a Hilbert space.

Unfortunately, we are not able to avoid the restrictions of Theorem 3.1.
The most interesting problem seems to be connected with (i). By Lemma 2.3,
the condition K, (X, [,) = I,(X, 1), p<gq, g > 2, yields p(X) = o (in fact
p(Y) = oo for any Banach lattice ¥ 1fr. X). However, there are examples of
spaces which have the above property without being AM-spaces (|1], [187).
Now we give some equivalent formulations of this property. For simplicity
we restrict ourselves to the case p = 2.

ProrosiTioN 3.2. Let 2<g<oo and 1/2=1/g+1/s. Consider the
statements:

(1) Ki(X, L) s T5(X, Ly);
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(2) there is a C >0 such that
ky(ax) < Cw,y(x)|lall, for all ne N, xe X", ael;;
(3) there is a C >0 such that

wy(x]) € Cw,(x) for all neN, xe X",
4 B (X, Ly) = II,2 (X, Ly);

) Ki(X,L)SI,(X, L) for all r<g;

Then (1)<>(2) = (3) <>(4) = (5).
II, , above denotes the ideal of (s, 2)-summing operators, i.e., of oper-
ators T such that [ (Tx) < Cw,(x) for all x.
A Proof. By the Nielsen characterization of 2-absolutely summing oper-
ators [12]

Ae(T8) < C|| TNl A4, (S)

for all Sed,(l, ;) and TeB(l,, X), provided (1). Now (2) is a finite-
dimensional reformulation of (1).

Since w, (X)) < kg (x), hence (2) = (3) follows by the Holder inequality. We
can associate an L;-space L(x') with any vector x'e X%, by taking the
completion of X/ker x' under the norm |||x{|| = {x', |x|> (cf. [17]). The natural
embedding S,.: X — L(x')is a positive operator and ||S,,|| = 1. Since (4) depends
only on the finite-dimensional lattice structure of L,, we have (3)<>(4).

By Pietsch [16] (Th: 20.1.12) any (s, 2)-summing operator is (r, 2)-mixing
for r < g. Since 1-concave operators factorize through L;-space as follows: T
=UV, Ve B, (X, L), UeB(L;, L,) ([17], Prop. IV.3.3), it follows by (4) that
V is (r, 2)-mixing and U is g-absolutely summing ([13], Lemma 1.4).
Therefore T is 2-absolutely summing ([16], Theorem 20.2.1). m

4. p-concave and p-absolutely summing operators. The problem studied in
this section is related to Maurey’s result [10], which states that an operator
from X into E is p-concave if and only if, for any positive operator S from
C(K) into X, TS is p-absolutely summing. Evidently, if X &AM then
K, (X, E) =II,(X, E). For some special spaces E, e.g, E = L,, the converse
holds true as well [19]; also K, (X, L) = II, (X, L,) if and only if p(X) > ¢q'
(Theorem 3.1).

In this section we characterize those Banach lattices X for which
K, (X, E) =II,(X, E) for some E.

LeEmMMA 4.1. Let 1 < p<co. A Banach lattice Y is isomorphic to Ly if
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and only if there is a C >0 such that
(+) L, (¥) < Cw,(y)

Jor all y =(yy,...,y)eY" with disjoint components.
Proof. Let Y= L;. Then for disjoint V1>, Yn€Y we have

L(y) = sup 2ladllyli/lally = supl[Y a |y lally = w, ().
aE, —+ a

Now assume (+) is satisfied. Then for ceR%, for disjoint y,,..., Va€Y, we
have

L (ey) < Csup {(3. ¢ <y, yd InllP =47 v 2 0, Iyl < 1}

<
< Csupe; Iy I =73 y| .

Put ¢; = |y}~ 1. Then
vl < Cl”’”z%“-

Hence by Schiotterbeck’s result ([17], Prop. IV.2.7) Y is isomorphic to L,;. m
THEOREM 4.2. Let X be a Banach lattice. Let p, q be such that 1 < p < o0,
q # 2, max(q, 2) = p. Then

K,(X,L)=1,X,L) ifand only if XeAM.

Proof. We shall prove the “only if” part since the “if” part is evident.

We observe that there is a sequence e = ()2, < L, such that |lgj| =1
and a = w,, (¢) < . In fact, we take either disjoint normalized vectors if 1
< p <4 or independent normalized p-stable functions if 1 < g < p < 2. From
K, (X, L)) =1II,(X, L)) we infer that for TeB. (X, L) and SeB(l,, L) we
have STell (X, L). Moreover, by the Banach-Steinhaus theorem there is a
C > 0 such that

(++) m,(ST) < C|IS) -1 T
Let (x)j=1 = X% be a sequence of disjoint vectors and let (x,) be such that
I<ixll €2, x5, %> =0 for jk and (x), x;> =[x}l [3]. By applying
(++) to the operators T= ) x;®eP, S =Y el ®e¢; we infer that

Jj=1 i=1

(+++) 1,(x') < 2Caw, (x') w, (x).

In order to apply Lemma 4.1 and hence to finish the proof it suffices to
show that X is p’-convex, which ensures that wp(x) is bounded. To this end
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note that X is of finite concavity since by Proposition 3.1, p(X) > 1. We use
here the inclusion K, = K,. Moreover, p(X) = o0 if 2 <p <g, ie. p(X)>yp.
For the remaining case, p <2, let us assume that s = p(X) < p'. Then §
= q(X*) and by [11] I, 1fx. X*. Hence there is a C; > 0 such that for each
natural number n one can find disjoint vectors xi, ..., x,€ X* which are C;-
equivalent to ef,...,e¥". In particular, w,(x)<C,; R Lt

" Xiye.. X,€X be as in (+++). Since X is r-convex for all r < s, we have
w,(x) < C,n' "7, One can choose r so that 1/r <1/s+1/p" as s> 1.
Now it follows from (+ + +) that

nilp < 2aCCy Contr= i gt = tir,

and thus 1<1/r+1/s—1/p'<1, which is a contradiction. Therefore
p(X) > p, and hence X is p’-convex.

Remark. By following the proof of Theorem 4.2 we conclude that
K, (X, E)c (X, E) if and only if XeAM

provided one of the following conditions is satisfied:
(1) There is a q # 2, p < max(q, 2) such that I, fr. E,

(2)  Thereis a C > 0 such that for each n one can find ey, ..., e, e E with [le]|
=1 and w,(e) < C, and p(X) > 1.

Let us point out three cases omitted in the above result.

Lp<g=1

ILp=zg=2

Since K, (X, ) =K, (X, ;) = B(X, 1) [10] and IT,(X, I;) = I1,(X, L),
we have K,(X,l)=1II,(X,1l,) if and only if B(X, ) =I,(X,l,). This
defines the class of Hilbert-Schmidt spaces introduced and investigated by
Jarchow [5].

L p>g>2.

By using similar arguments we deduce that the discussed property of X
can be phrased as B(X, L) = I ,(X, l). Since I/, = L,, this shows X to be a
Hilbert-Schmidt space.

We know three examples of Banach lattices satisfying I and I1 and III,
namely Ly, L., L; ®L,,. On the other hand, in any of these situations if X is of
finite concavity or of convexity strictly stronger than 1 then X is isomorphic to
L, or to a sublattice of L, respectively. We conjecture that there are no other
examples.
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