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On the local linear independence of translates
of a box spline

by

WOLFGANG DAHMEN (Bielefeld) and CHARLES A. MICCHELLI (Yorktown
Heights, N. Y.)

Abstract. In an earlier paper [4] we studied the linear independence of the translates of a
box spline over R'. In this paper, we show that the (global) linear independence of the translates
implies their independence over any bounded domain. We approach this question by studying
the class of polynomials spanned by translates of a box spline. Specifically, we show that its
dimension equals the number of translates whose support contains some generic point when all
translates are independent. As an application of this result we construct linear spline projectors
which have optimal approximation rates.

1. Preliminaries: notation and problem formulation. For any vectors
x o, x xP=(xi,...,x}), not necessarily distinct, such that X
= {x!, ..., x"} < R°\{0} and '

(1.1) (XY =span {X} =R,
the box spline B(x|X) is defined by requiring that

(1.2) [fIBEXX)dx= | ft;x*+...+t,x")dt, ...dt,
R

[o,13"

holds for any continuous function f on R°. The box spline was introduced in
[1] while several of its basic properties were given in [2].

An attractive feature of the box spline is that it unifies many classical
finite elements thereby giving a deeper understanding of spline spaces on
regular grids [2, 3, 7, 8, 11] (see eg. [6] for more details and further
references). In this context, one is Jed to consider the space

(1.3) FP(X) = span {B(- —a|X): aeZ°}.

Next we will briefly review some basic properties of the box spline B(-|X)
and the space & (X) which will be frequently used (cf. [2]).
Using standard notation we write for «, feZ%, a=(x, B2 W 1]
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— a o,
=oy+ ..o, X=X al=ag !,

(;) =al/(B!(a—pB)!) and let IT,
be the space of all(real) polynomials of (total) degree <k,
O, =IL(R)={ Y ¢, x ¢,eR}.
| €k

The box spline is knoyvn to be a piecewise polynomial of total degree
< n-—s, Yvhere. |X] =n is the cardinality of X. Furthermore, for every set
Y= X with dim (Y} =|Y| = s—1 and any vector of the form x = ¥ ¢, x|,
e {0, 1], tl}e (s~1)-dirgensional hyperplanes x+ <{Y> (cut region) boﬁiﬁl:j the
sets on which B(x|X) is a polynomial. We let ¢(X) be the union of cut
regions for all the multi-integer translates of the box spline B(-|X).

Essential information about B(x|X) and the s $ i
ace ¥ i
terms of the number ’ (1) can be given in

(14)  d(X) =max{m: for all Y= X, |Y| = mimplies (X\Y) = R}.
It is known that

(1.5 B(+|X)e C{O~1(Re)\ CUN(RY)
and when

(1.6) Xczt

we have

(1‘7) HH(X) < ‘Sﬂ(X)a Hd(x)+1 ¢ L(X).

Clearly, in general

(1.8) d(X) < |X]—s,

wlll)ere, howe.ver, thf: inequality is usually strict, so that (1.7) does not describe
all polynomials being spanned by elements of %(X). In fact, to describe the

local polynomial structure of % (X) we n i
K need the foll i
also [4, 6]). Define for any I <s lloving notions [2] (see

(19) #(Xx)

={Y<= X: dim (X\Y)=I-1 while dim X\VyzllralVgyY)
and consider the subspace of distributions
(1.10) Di(X) = {T: Te % (R’), Dy T =0, Ye,(X)}

yeY
In the univariate case, s = 1, D, (X)
. X , D, reduces to IT,5.., (R). I
. _ ix)-1 (R). In general, for
s> 1, it was shown in [4] that D (X) is a finite-dimensional subspace of

whe _ . N .
re Dy =[] D, and D, is the directional derivative in the direction W

e ©
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polynomials. Moreover, when X < Z° Poisson’s summation formula shows
that the mapping

(1.11) (AN (X)) = ¥ f @ B(x—aX)

aeZs
is one-to one and onto D,(X) [4]. This was first proved in C. de Boor and
K. Hollig, B-splines from parallelepipeds, MRC Report # 2320, University
of Wisconsin, 1982, by different means for Dg(X) intersected with all
polynomials as it was mnot observed there that D,(X) only contains
polynomials (see [2] for a proof of this latter fact when X < Z°). In
particular, (1.11) implies

(1.12)
Conversely, recalling from [2] that for any Ve X

Dy B(-|1X) =7y B(:|X\V)
where V,f (1) =f()=f (=¥ Vv = IL P,, we see from (1.2) that Dy B(x|X)

vanishes off the cut regions wheneveryVe %,(X). Hence the polynbmial pieces
of any function in & (X) must belong to Dy(X). Thus Dy(X) represents
exactly all polynomials which are locally in #(X). .

Thus a central objective of this paper is to provide more information
about the space D,(X) in order to understand the local structure of & (X).
Specifically, we wish to analyze the local linear independence of box splines,
ie. we determine when for any bounded domain Q = R

Y a,B(x—alX) =0,
aeZS

implies‘aa = 0 for all & such that @ msupp B(: —alX) % @. It will be shown
here that local independence is equivalent to global independence which
means that
(1.14)

D,(X) = #(X).

(1.13) xe®,

Y 4,B(x—aX)=0 forall xe R
agZS
implies a, =0, aeZ".

Only in the special case s =2 for sets X composed of repetitions of
at most the four directions (1,0), (0, 1), (1, 1), (—1, 1) has this problem
been analyzed [3, 5. In this case, it is easy to count the number of translates
B(x—0|X) whose support intersects any fixed point not on a cut region [5]-
Local independence follows from (1.12) by exhibiting as many linearly
independent elements in D, (X) as translates which do not vanish at a generic
point [3, 5]. ‘

In order to use this approach for arbitrary spatial dimension s > 1 and
any X < Z* we introduce for any given bounded domain Q = R®

b(xQ) = {neZ: xeQ+a}.
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When Q = supp B(*|X) we denote this function by b(x|X). Thus for any
x¢c(X), the cut regions of the functions B(: ~a}X), acZ", |b(x|X) is the
number of translates which are positive at x. Our central objective is to
establish a relation between |b(x/X) and dim D,(X). Both numbers were
heretofore undetermined. For this purpose, we define for any X < R* and
I<s,

(1.15) B(0)={Y cX: |Y| =1 dim (Y} =1,
We will show that _

dim D, (X) = |4,(X)|
while, when in addition X « Z* and x¢c(X), then

[B(x|X) = Y. |detY]
Yed (X}
where for notational convenience we have denoted the s xs matrix whose
columns are the elements of Y also by Y.
Hence, in view of (1.12), a necessary and sufficient condition for local
linear independence of the translates B(-—o/X) is that

(1.16) |det Y| =1 for all Ye,(X).

This is the condition that was shown in [4] to be equivalent to global

independence. Thus local linear independence holds iff global independence
does.

Furthermore, when (1.16) holds we will show that one may uniquely
interpolate any given data at the lattice points in b(x/X), xé¢c(X), by
elements in D, (X). This enables us to use methods similar to those in [10] to
construct local linear projectors (quasi-interpolants) from L,(R®) onto #(X).

2. Construction of a basis of D,(X). The main result of this section is
Tueorem 2.1. Let X be any finite set in R®\ {0} such that <X> = R*. Then

dim D(X) = |%,(X).
When s =2, e' =(1, 0), e =(0, 1) and

@.1)

1 2 2 2
Xy=Jel . ., e, . ., e e+el
1 ma

)

1<i<j<a

)

1Si<j<4
This result was proved in [5] by other means.

. Before we start proving the general result, let us briefly point out that its
validity is easily checked for some special choices of X.

cettet e?—el, L, et—el)
iy L

it is easy to see that |#,(X,) = m;m;. Then Theorem 2.1 gives

dim D,(X,) = m; m;.

icm°®
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First suppose X is comprised of repetitions of the coordinate vectors
(6); =0y, i,j=1,...,s that is,
X={e,... e ..
RCATELE)
In this case, D,(X) is easily seen to be the set of all functions which are
polynomials of degree <g; in the ith variable, i=1,...,s. Therefore
s ¢

dim D,(X) = [] (g;+1) while clearly |%,(X) = I1 (g;+1), also.
i=1 i=1
When X consists of vectors in general position, i.e. any s of its vectors

X
span R, then |48, (X)| = <'S'

S S
B A
gt 1

). Furthermore, since in this case d(X) = |X|—s,

: X]
(cf. (1.4), (1.12) gives D,(X) = M,y_,(R*) and this space has dimension (' ').-

s
Before proving Theorem 2.1 we give another proof of the latter case
when X is in general position which illuminates the proof of the general case.
This proof uses induction on |X] so that we suppose X = {y} U X". Then
#B,(X) is the disjoint union of %,(X’) and the set

(DU Y YeX, ¥ =s—1.
For any Y='{y!,..., "'} = X' we choose a dual basis {1, 1%, ..., 2571} for

.y .
DuYtie Ay=124)=0i=1,...,s—1,and F-y=0,i=1,...,s—1.
Also, let

22 () =@

where |X| =n. When X is in general position, #(X)={Vc X: |V|=n—
—s+1} and so we have Dy, Qy =0 for all Ve®,(X), that is, dep,(X).
On the other hand, for Y= X' as above we have X'\ Ye % (X") while

(23) Dyny @y =(n=3)! ] (x-A)#0

xeX\Y

so that Qy ¢ D, (X"). However, for any Y' = X, |Y'| =s5—1, Y' # Y it follows

 that (X'\Y)n Y# @. This yields

(24) DyyQy=0, Y #Y

Hence the set {Qy: |Y| =s—1, Y< X'} spans all homogem‘:ous polynomials
of degree n-s. Therefore appending this set to any basis for D,(X') we
obtain by the induction assumption

n--1 <n—-1)_(n>
(s—-1>+ s ) \s
linearly independent elements of degree < n—s in Dy(X). This shows

inductively that Dy(X) = I,_,.

4 — Studia Mathematica 82.3
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Such a simple construction does not work in general. However, the
above remarks provide a guide for the proof of Theorem 2.1 which follows.

To this end, we find it useful to record some elementary properties of
the set % (X).

LeEmMA 2.1. Let X be a finite subset of R*\ {0} such that (X» = R°®. Then

(a) Ve, (X) if and only if V = X\Y for some Yedh,_ 1 (X)

(b) For any Y, Y'e By 1 (X) with {¥> 5 (Y'> the set (X\Y")) (YD
contains some element of ¥,_ (X N (YD)

Proof. (a) quickly follows from the definitions (1.9) and (1.15). The
second assertion follows from the fact that the set

(X nCYOINXNCYDINLYD) =X n Yy (YD

spans a set of dimension <s—1.

As a consequence we state

ProprosITiON 2.1. For finite X < R\ {0} such that {X> = R® and for some
ye R\{0} let Ved ({y}uX). If yeV then
2.5) V= {y} u(X\(T))
Jor some Ye B, ((X) such that {{y} Yy = R’. However, if y¢V then
(2.6) dim {(X n{YIN\V D <s5~1
for all YedB,_y(X) such that {{y} uY) =R i.e. V contains an element of
W (X YD) for all Y as above.

Proof. By Lemma 21 (a) we have V=({y}uX)\<Y) for some
Ye B, ({y} v X). Suppose first that ye V. This implies that y¢ (Y> and so
{{y} v Y) = R° which proves (2.5). Now suppose y¢ V. Then ye (Y) which
gives {{y} U YD  R°. Hence whenever Y'e %, (X) such that {{y}u Y’
= R° we have (Y') 3 <(Y>. We can now use Lemma 2.1 (b) to conclude that

V=({y} u X\ Yy = X\ (YD

contains some element of %,_,(X N (Y}), which finishes the proof. k
Our next comments concern some general properties of the classes
Dy(X). We will use them later in an inductive proof of Theorem 2.1.
Lemma 2.2. Let W < R°\{0}, ye R%, with dim (WD = s—1 and WU {y}>
= R°. Then for any linear mapping A from R* onto R*~*' such that Ay =0
there exist m polynomials Py(x), ..., P, (x), x R®, where m = dim D;_ , (AW),
such that '
D, P,(x) =0,
Dy Pi(x) =0 forall Ve¥, ,(W),i=1,..., m.
Proof. According to [4], D, (AW) is a finite-dimensional subspace of
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polynomials. Let Q;(u), ..., Q,(u), ucR~!, be a polynomial basis for
D,_(AW). Define P;(x) = Q;(Ax). Then D, P, =0 because Ay = 0 and since
Ve#, (W) if and only if AVe#,_;(AW) we see that P;e D,_,(W).

We now turn to the proof of Theorem 2.1, which we do by induction
on the spatial dimension s and the cardinality |X| of the set X < R°\{0},
(XS =R For s=1, X < R"\{0}, we have D, (X) = Ix—1, |41 (X} = |X]|
and so the assertion is valid. Furthermore, it is also true for any s > 1 when
|X| = n=s because D;(X)=II,(R) and |#,(X)| =1 in this case.

Now we assume that (2.1) holds for all finite sets X = R'\{0}, | X1 =,
where 1 <1 <s, and for all X = R°\{0}, |X| €n, where n>s. To advance
the induction hypothesis, we consider some vector y and fixed set X such
that :

2.7 X cR\{0}, [X|=n (X)>=FR, yeR\{0,
and proceed to prove the assertion of Theorem 2.1 for the set {y} U X. Since
(28J DS(X) < Ds(XU {y})

our goal is to construct |B,(X U {y})|—|%,(X)| linearly independent elements
in D,({y} U X)\D,(X) which when appended to any basis of Dy(X) will span
all of D,(X U {y}).

The construction of such polynomials is the objective of

TuroreM 2.2. Let X and y be given by (2.7). For each Ye B,_1(X) such

that {{y}uY)=R" there exist my polynomials Qy; J= 1, ..., my, where
my = |B,— 1 (X A YD), satisfying the following conditions. .
(i) For '
Py; =Dy, Qv J=1,....my,
the set {Py;: j=1,..., my} is a linearly independent set of polynomials such
that
29) D,Py; =0, DyPy;=0 forall Ve@, (XN (YD), j=1, ..., my.

Moreover,

(i) DyQy,; =0 for all Ve (X N (YY), j=1,..., my.

(iii) Qy;€D,({y} U XN\D(X), Jj=1,....my.

(iv) Let # be any subset of By, (X) such that Ye @ implies ({y} v Y)
= R° while for any two Y, Y'eR, (¥Y)# (Y'>. Then the collection of
polynomials

Oy i=1, .., my, Ye #}

is linearly independent. .
Remark. Conditions (i), (i) generalize the properties (2.3) .and (24) in
the special case that Xwu{y} is in general position. In this case the
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polynomials Qy ; can be chosen to be the polynomials given by (2.2). In fact,
then for all Ye%,_,(X) one has Y= X n{Y) so that my = [#,..,(Y)| = 1.
Therefore the Py; are constants.

Proof of Theorem 2.2. Let A4 be any linear mapping from R® onto
R*™! such that Ay = 0. By our induction assumption we have

dim D,y (A(X N (YD) = [Hs-1 (X n YD)

Thus applying Lemma 22 to W = X n{Y) guarantees the existence of
linearly independent polynomials Py ;, j =1, ..., my satisfying (2.9).

The construction of the polynomials Qy ; satisfying (i), (ii) with respect to
the polynomials Py ; is based on the following observation.

Lemma 23, Let ¥ be a collection of sets V <R such that

S=<{U{V: Vet'})> has dimension s—1 and u¢S. If P is any polynomiul
satisfying

D,P=0, Vevy,
then there is a polynomial Q such that
D,0=P, D,Q=0, Vev .
Proof. Let A: R°— R° be any linear mapping satisfying
AS =R,

s

Au = ¢'.

Then for v = Ax we may write for some ge N
q
P(x)=P(4"'v)=R(v) = Z DLRJ-(UI, ey Vg q)
=0

where R/’s are polynomials in vy, ..., v,..;. We define

1
G(v) = EomviﬂRj(Un cees Dg—q)
and let ‘
Q(x) = G(Ax).
Then
0
DuQ(x)=%G(U) = R(v) = P(x)

while by the definition of 4 -

21
Dy Q(x) =D 4y G(v) = Z l"‘viﬂ Dy Ri(vy, .., v5-1).
. isol+1
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However,
0= Dy P(x) =D,y R(v) = l—ioviDAij(vl, e 1), Ve,
whence we conclude’
D R;j(vy, ..., 05-1) =0, Ve

This completes the proof of Lemma 23.

We are now in a position to construct the polynomials Qy ; satisfying (i),
(ii) by induction on [X\{Y)|.

When X\<Y> = {u}, Lemma 2.3 provides the desired polynomials by
choosing P = Py; and ¥ =¥, (X n<Y))

To advance the induction on [X\ (Y} assume | X\ (Y)Y > 1, ue X\<¥)
and let

X =X\ {u.

By our induction hypothesis there exist polynomials Qy ;. j=1, ...my, such
that .

(2-11) PY.j = DX’\<Y) QIY,j
and
(2.12) DyQy;=0, Ve®,_(X'n(YD).

Since X\ (Y> = {u} U(X'\ <Y, (i), (i) will be proved as soon as we find
polynomials Qy ; satisfying

D, QY,j =0y,

DyQy;=0, VeZ. (X))
Observing that X n<Y)=X"nLY), 5o that - #,_; (X N YD)
=W, (X' n YD), Lemma 2.3 provides a solution of (2.13) by choosing P
=Q’YJ and ¥ = 4 S_I(XF\(Y)). )

In order to confirm that the polynomials Qy ; constructed above belong

to DX uiy)) let We® (Xu iy} If ye W Proposition 2.1 says that

W = ({y} v X\<Y"
for some Y'e#,—(X), (Yo ¥y =R.I ) =Y) we obtain by (i)
(2.14) Dy Qy;=D,Dx\ysQy,; =Dy Py; =0

where we have used (2.9) in the last equation. If Y +# <Y>,. .Lex_nma 2.1 (b)
says W=VUV, VoV =0, Ved,_ (X n(Y)), so that (ii) yields

Dy QY,j = Dy.(Dy QY,}) =0.

(2.13)
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If y¢ W the same reasoning applies by the second part of Proposition 2.1 so
that Dy Qy ;=0 for-all We® (X v {y}), ie. Oy, ;e D,(X U iy})j=1, ..., my.
Thus in order to complete the proof of (iii) we have to make sure that

(2.15) Oy, ¢ Dy(X).
But by Lemma 2.1 (a) X\<(Y>e% (X) so that (2.15) is an immediate

consequence of (i).
As for (iv) suppose

my’
Y 2 ey Q3 =0, xek
Ye# j=1

holds for some constants cy,;. Combining Lemma 2.1 (b) and (ii) yields for
any fixed Ye® '

my’ my

0= Dyyry( X ] cy,; Qyy(x) = j; ey, Py j(x).

YeR j=
Since by (i) the Py, j=1,..., my, are linearly independent we conclude
¢yj=0,j=1, ..., my, finishing the proof of Theorem 2.2.

We are now in a position to construct a basis for Dy({y} U X). To this
end, note that the above results suggest partitioning the set

o (X|y) = {Ye B, (X): {y}uY) =R}

into equivalence classes &;,..., 4, r=r(X), where Y, Y' belong to
the same class if and only if Yy =(Y">. Let us denote by #(X|y)

={Y:i=1,...,r, Y;ed) any set of representatives of the classes 8.
THEOREM 2.3. Let % be any basis of Dy(X). Then

(2.16) {0y YeR (XY j=1,....,mlu¥
is a basis for D({y} U X).

Proof. From Theorem 2.2 (iti), (iv) it is clear that the elements in the set
(2.16) are linearly independent and in D,({y} U X). Thus it remains to show
that they span all of D({y}u X). Let QeD,({y}u X). Since for each
YeR(Xly) {y} uX\(Ye® (XU {p}), by Lemma 2.1 (a) we have

Dy Dy\ry Q(x) = 0,

ie.,

Ry(x) = DX\(Y} Q(x)
satisfies '
2.17) D, Ry(x) =0.

Moreover, for each set We®,. (X N (Y}) we have WA(X\(YD) =@ and
2.i8) X\YD) U Wed,({y} L X).
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In fact,

(X\KY)uW=X\Z,
where Z = (X n (Y>)\W. Hence dim{(Z) =s—2 and since {{y}u Yy =R®
we have {y}uZeB,;((y} U X). Thus (X\YD)u W =({y} u \(y} L 2)
and (2.18) follows from Lemma 2.1 (a). Hence

0= DX\<Y>DWQ =Dy Ry
which means that for each Ye#(X]y)
(2.19) RyeD,_ (X n YD)
We next show that (2.17) and (2.19) imply that there exist coefficients cy j,
j=1,..., my =]# (X n (YD), such that
my

(2.20) Ry =Y cy;Py;
=1

where Py ; are the polynomials in Theorem 2.2 (i). To see this let again
A: R*— R® be any linear mapping satisfying

ALY =RTY,  Ay=¢
and define
P(u) = Ry(x)
where u = Ax. Since We #,_ (X n (YD) iff AWe#,_1(A(X N (YY) we ha}ve
for such W according to (2.19)
0 = Dy Ry(x) = D45 P ()

so that as in [4] by the Hilbert Nullstellensatz P is a polynomial in the first
s—1 variables uy, ..., 4, i.e. for some r

s~ 1

i1
Puy, ..., u) = Giyoig i (U UL - U

0Sig,mmmisem (ST

By (2.17) we obtain by the definition of A

a
0=D,Ry(x) = 5~ PW)

and hence EZ—ai (u) = 0. Hence Ry(x) is a polynomial and (2.20)
£
follows from Lemma 2.2.

Thus, by Theorem 2.2 (i), (i) the linear combination

my
z Cy,j Oy, J

YeR(X|y) j=1

RELES

i L(x) =
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where the cy; are given by (2.20) belongs to D,({y} U X)\D,(X) and satisfies
for Ye 2(X|y)

my

Digry L(x) = Y €1, Py (x) = Ry (x).

j=1
In other words,
(2.21) Dy\ry (L=Q) =0, YeR(X]y).

Now let V'be any set in %,(X), then Lemma 2.1 (a) says that V= X\(Y> for
some Yed_((X). If ¢ <Y> then (2.21) shows that Dy (L~ Q) = 0 while for

YY) we have ¥ =({y}u X)\(¥ye#,(X U {y)) and so Dy(L-Q) is still

zero because L, Qe D, (X U {y}). Hence we conclude that
L—-QeDy(X)

proving D (X U {y}) is spanned by the set (2.16). This completes the proof of

Theorem 2.3.

In or.der to finish the proof of Theorem 2.1 we merely have to count the
elements in the basis (2.16). Again by our induction assumption we have

(2.22) 19 = |2,(X)].

Furthermore, we clearly have

(2.23) [ (XY = |8, ({y} L X))~ |48, (X).

But’ since by definition for each equivalence class &, in .of Xy, 16
= |- 1 (X N (D), we get

LW =Y 8= T m
i=1

YeR(X|y)

which combined with (216), (2.22) and (2.23) completes the proof of
Theorem 2.1. .

3. A formula for {b(x|X)l. The objective of this section is to determine
the number of tran_slates B(: —a|X) containing any given point xe R* in their
support as a function of x and X. For any bounded set Q < R* we define

(3.1 b(x|Q) = {ae 2z xeQ+a!

while for Q = supp B(-|X) we use, as in Section 1, the notation
b(x|X) = {eez*: xe(supp B(:[X))+al.

Our main result is then

THEOREM 3.1. Let X be a finite subset of Z°\{0}. Then
BdX) = ¥ |det ¥

YeBy(X)
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holds for all x not in ¢(X), the cut regions for all translates of B(-|X) over Z°.

As a consequence of Theorems 2.1 and 3.1 as well as of some results of
[4] we obtain the equivalence of local and global independence of the
translates B(x—a| X), aeZ*,

THEOREM 3.2. Let X be a finite subset of Z*\{0}. The following statements
are equivalent:

(i) |det Y| =1 for all Ye#,(X).

(i) The translates B(- ~—alX) are locally linearly independent, i.e. for any
domain Q < R

Y ouBlx—oX) =0, xeQ,
F oA

implies a, = 0 if (supp B(+ —~o X)) N2 # @.

(ili) The translates B(- —«|X) are globally linearly independent, ie.

Y 4,B(x—xX)=0, xeR,
FTAd
implies a, =0, oeZ" .

We start the proof of these theorems with some general observations.
Referring back to definition (3.1) we see that in any neighborhood N of R®
not intersected by any of the translates 0Q-+a, ae Z*, [b(x[Q2)| is constant and
N is covered by exactly |h(x|2) translates Q+oa, aeZ"

Prorosimion 3.1. Let Q be a bounded measurable subset of R® such that
02 has measure zero.

(i) If 1b(x|)| is comstant for all x¢ ) (0Q+a), then

aZ®
for all x¢ | (0Q+a).
weZ®

(i) Moreover, if |b(x|Q)| is constant for all xe R', then

vol,(Q) =1Z°n Q.
Proof. Since  is bounded and measurable, the function

16 (x|Q) = vol,(€)

S = Z Xo+a
ol
is measurable. In fact, f(x)=|h(xQ) =bh, x¢ ) (02-+a). Since 0Q has
aeld
measure zero we obtain
(3.2) [ f{x)dx = bN.
[0.N)¥
On the other hand, since € is bounded we get |{aeZ®: (Q+

+a) £ [0, NT° # @} = N¢4+0O(N*"') whence we conclude

(3.3) ‘ j(x) dx = vo]s () NS+O(NHM1)'
[0.NF
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Comparing (3.2) and (3.3) and sending N to infinity proves the first part -

of the assertion. As for rest of the assertion, note that there are exactly
Ib(0]Q)] = b lattice points a, ..., a® such that
OsQ+a, i=1,...,b.
Hence
—d'eQ,
which completes the proof.

CoroLLary 3.1. Let Q R be some bounded measurable subset of R such
that 08 has measure zero. Suppose there exist subsets Z, = Z* i=1,..., 1,
such that

i=1,...,1b0Q) = [b(x|Q),

(34) Ziij"_‘(Da i#], U Z =2,
and for each i =1, ..., 1 the collection
{Q+a: 0eZ,)
forms a tessellation of R®, ie..
s Q+)nQ+PH=0, a#f, a pez,
) U (@+a) = R
aeZ;
Then

I = b(xQ) = vol,(Q) = |Z° ~ Q.

Proof. Only the first relation needs comment. But since for each i any
xeR‘ belongs by (3.5) to exactly one translate Q-+, aeZ;, the claim is
obvious.

As an application of this observation we obtain the following fact about
parallelepipeds.

. CoroLLARY 3.2, Let X < Z°, |X| =5, (X> = R*. Then Jor any set P of the
Sform .

P= {Z tixi:I0<[1< ]atl;ésh l:: 11"'1 S}
i=1
where ge{0,1), i=1,...,s, one has
|b(x|P)| = |det X| = |P~ ZY¥.

Proof. Let PNnZ = {fxl, .-, ). Then the sets Z; = laf+ Xf: BeZ),
where we have again identified X with the matrix whose columns are the
elements in X, satisfy (3.4). Since the sets {P+a, ae 2,

. doi=1,..., 1 form a
tessellation of R®, the assertion follows from Corollar;f 3.1.
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For later usc we observe below that Corollary 3.2 extends to regions
which can be partitioned by parallelepipeds. Let us use the abbreviated
notation supp B(-| X) = B(X) lor any X < R*\{0}.
CoROLLARY 3.3. Let X < Z°\ {0} and choose subsets Y, = X, Ye B(X), i
=1,.... 1 and peZ*® such that

(3.6) vol(B(Y)+B) n(BY)+p)) =0, i#).

!

Then for Q= \) (B(Y)+p') one has for x¢c(X)
151

i
|b(xIQ) = Y, |det Y.
=1

Proof. Note that by (3.6) for x¢c(X)
!

b(x) = Y. [b(xIB(Y))

J=1
whence the assertion follows from Corollaries 3.1 and 3.2.

Remark. Corollary 3.3 allows us to point out that |b(x]Q)| = const for
all xe R does not imply that the hypothesis of CoroMary 3.1 is satisfied. For
instance, for e' = (1, 0), ¢*=(0,1) and X = {e*, % e'+¢? e*—e'} = Z%,
B(X) is a closed convex polygon. We remove from B(X) a part of its
boundary so that the resulting figure 2 is a disjoint union of parallelepipeds
of the type appearing in Corollary 3.2. Therefore |b(x|Q)| is everywhere
constant even though Q does not satisfy the hypothesis of Corollary 3.1. This
example indicates that the key to proving Theorem 3.1 is the decomposition
of B(X) into parallelepipeds.

Turorem 33. Let X be a finite subset of R\{0}, (X} =R’. Then for
each Ye#,(X) there exists fye R such that for Y, Y e %B,(X)

3.7) vol,(B(Y)+By) n(B(Y)+By)) =0, Y#Y,
while '
(38) U (B(Y)+py) = B(X).

Y ey X)
Moreover, each By has the Jorm

Py = Z ;2

zeX\Y

where ¢.e{0, 1}.
Proof. We proceed by induction on |X|. When |X| =s there is nothing
to prove. Suppose the assertion holds for any X, s <|X] < n, with (X> = R'.

.
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We will now prove it holds for the set X, = X U {y}. For this purpose, we
define

I'={xeB(X): x+ty¢int B(X) for all t >0},

Then I' is a closed subset of the boundary of B(X). Furthermore, any closed
line segment in B(X) containing a point of I" in its (relative) interior lies in T,
Therefore I' is partitioned by some collection of (s~ 1)-faces of B(X). By our
induction hypothesis there is a collection of parallelepipeds

P(X) = {B(Y)+py: YeB,(X)}

satisfying (3.7) and (3.8) with respect to X. In particular, the (s — I)-faces of
some of the parallelepipeds in #(X) being (s— 1)-parallelepipeds must induce
a partition of I'. Let % denote this partition. We now construct a partition of
B(X,) by appending to 2(X) the following set of parallelepipeds .«/. Each
element of % has the form

B(V)+By
where fyel and Ved#,_,(X) satisfies
(CRON . Wrovy=~r.
In addition, from the decomposition (3.8) it follows that
(3.10) Br= 3 cu c¢el0,1},

ueX\V

The corresponding parallelepipeds in ./ are then obtained by forming the
sets ‘

BVU{y)+py ={x: x=u+ty, ueB(V)+p, 0<1t < 1}.
Clearly, the set Q=) {P: Pe U #(X)! is contained in B(X,). In order to
show that B(X,) < Q it is, in view of our induction hypothesis, sufficient to
show that any xe B(X,)\B(X) is also in Q. Such an x has the form x = u
+ty, ueB(X), 0 <t < 1. Let L denote the line segment connecting x and wu.
L must intersect the boundary of B(X) since otherwise xe B(X). Let {v}
= L~ 0B(X). By definition of I we must have vel’ and x = o +1toy where 0
<to < 1. By definition, x lies therefore in some element of ., showing that
xel) {P: PesZ}. This proves
Q = B(X,).
The assertion follows now as in Section 2 by also observing that
*"Jas(Xy) = ”s(X) u {{y} VR4 Ve '%x*l (X)v <{y: v V> = [("l
As an immediate consequence we have
CoROLLARY 3.4. Let X < R°\ {0} be finite such thar <X > =R Then

vol(B(X))= Y |det ¥].

Yedy(X)

icm®
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We are now ready 1o complete the proofs of Theorems 3.1 and 3.2.

Theorem 3.1 readily follows from Theorem 3.3 and Corollary 3.3.

Proof of Theorem 3.2. The equivalence of (i) and (iii) is known [4, 9],
and (iii) trivially follows from (ii). To prove that (i) implie§ (ii) we recall that
D (X) = span {B(x—«|X): xeQ, xeZ"} for any domau:n @ such that
Q ne(X) = . Since by Theorem 2.1, Theorem 3.1 and (i)

dim D,(X) = |h(x|X), xe%,
the functions B(- =« X), aeb(x|X), x&£, are linearly independent on Q.

4. Interpolation from D,(X). Let us point out next an interes@ing
relationship between the local linear independence of translates of box splines
and the following interpolation property of D,(X). ‘

TuroriM 4.1, Let X < Z5\{0} be a finite set such that (X = R*. Then
Jor any x& R”\c:(X) the ser b(x|X) is unisolvent for Dy(X), i.e. given any data
§f: aeb(x1X)), there exists a unique polynomial P in Dy(X) such that

(4.1) Plo) =[ aeb(x]X),
if and only if
4.2 |det Y| =1  for all Ye#,(X).

Proof. If (4.2) is not satisfied, Theorems 2.1, 3.1 imply
[b(x}X)| > dim Dg(X)

roving the necessity of (4.2).
P Cc%nversely, il (4}‘12) holds Theorems 2.1, 3.1 yield dil‘n D, (X) = |b(x]X)| so
that it remains to show that the only element in D(X) mte.rpolatmg th§ Zero
data must vanish identically. Let € be some neighborhood in R on which all
translates of B(:]X) are polynomials, ie. 2ne(X)= (2): Thus by X)
=la', ..., ") for all ye(2. Assume now that PeD,(X) satisfies

P)=0, i=1,..,b.
By (1.11) we observe that the function
Q(x) = (AP)(x) = ¥ P{o) B(x—0l|X)
aeZd
is in D,(X). However, for any ye@ we get
0 = Y P@Bly-aXlp= Y P@By-oX)=0.

werS aeb(y| X)

Hence Q =0 and therefore (1.11) or Theorem 3.2 yield P(a) =0, for all
aeZ* Thus P =0 which completes the proof of Theorem 4.1.

5. A linear projector onto .#(X). In this section we shall apply th:a
previous results to construct linear projectors (quasi-interpolants) from L, (R’)
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onto &(X). Furthermore, combining this with Theorem 4.1 leads to the
construction of linear optimal order approximation schemes which only
require function values at the lattice points. R

Choose any point z¢c(X) and set ¢(x) = B(x+2z|X). Since ¢(0) =1 the
expansion ‘ ) :

(@) = ¥ g
EEZS+

is defined in some neighborhood of zero. For sufficiently smooth functions f

we introduce

LN® = ¥ a(=)Df(x) = (P(=iD) f)(x).

le] €n—s

Since Dy(X) < II,_, we know in particular that

(5.1) 4(D)P(X)@(X)x=0 =0, qeD(X)\I,
and
5.2) P0)30)=1.

Also we have shown in [4] that the mapping
(5.3) (Bf)x) = 3, (Lf) (@) p(x—0a)
a2

reproduces D (X), i.e. Pg=gq for all geD,(X). Note that the function
(54) F(x) = (Lo) (x) = L(B("| X)) (x+2)

is a piecewise polynomial defined off the cut regions of B(- +:zX). In
particular, for our choice of z, F is well defined on Z*. Thus the mapping
(5.5) @) (x) =} (Lf)(a+2) B(x—a]X)
aeZS

is defined on % (X) and by the usual procedure of using the Hahn-Banach
Theorem we can extend Q to all of L,(RY for any p, 1 < p< oo (cf. [4]).

Treorem 5.1. Let X satisfy (4.2). Then Q is a linear projector Srom L,(R)
onto & (X). .

We use the following lemma for the proof of this result.

LemMaA 5.1. The mapping

GN(x) =} f@)F(x—a)
aeZ’
reproduces D,(X).
Proof. Using the Poisson summation formula, we have for any
polynomial ge D,(X)
(5.6 (Ga)(x) = 3, e*™*(q(~iD+x) F)(2na).

aeZ¥
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To simplify this sum we recall that in [4] we showed
X)) (@(D)B(xX)(2m) =0, aez*\{0),
for all ge Dy(X). Obviously, whenever geD,(X) the polynomial r(x) = g(cx
+y) is for any ce C, ye C* also in Dy(X). Thus (5.7) implies that

¢ (D) (e* B(x] X)) (2me) = 0
for all aeZ"\10}, qeD,(X) and ye R'. Hence it follows that also

gD (0 (x) e B(x| X)) (2m0) = 0,  aeZ*\ {0},

for any polynomial v. Since
(58) F(x) = P(x)e* B(x]X)
we see that (5.6) simplifies to

(Gy)(x) = (g(—iD+x) F)(0)
which in view of (5.1), (5.2) and (5.7) gives Gy = ¢. .

Proof of Theorem 5.1. Let © be any region in supp ¢ on which all

the translates of ¢ are polynomials. On €, as pointed out before, b (x|supp ¢)
= h(€) is constant and clearly Oeb(£). Furthermore, {or xeQ, b(Q)
= b(x-+2]X), so that according to Theorem 4.1, there is a unique polynomial
pae D,(X) such that

Pa(@) = 0oy, 0& ().

Hence, by Lemma 5.1, we have for xe@

Pa(x) =(Gpa)(x) = 3 po(@)F (x—a) = ;(Q)P:;(“)F (x—a) = F(x),
aeZ® ¢ e
and 50 F (&) = 0y, b (). Since F(x) =0 for a¢supp ¢ we get F (o) = dgq
for all aeZ® Therefore Q is a projector on ¥ (X) as asserted..

In order to pass from the projector @ to an approxi%natlon sc-heme
involving only function values instead of derivatives we will det‘a‘armme a
corresponding alternative representation of (Lf ()(z) as a functional on
D,(X). To this end, suppose again that (4.2) holds and choose as above

Cz¢e(X) in some neighborhood of zero. Again by Theorem 4.1 there are

unique polynomials p,e D, (X), «eb(z]X) satislying
P(f) =8y, @, Beb(aX),
So that g(x)= Y q(B)pp(x) for geDy(X). Thus

Pabiz| X)
Y f(B(Lpy)(2)

peabiz|X)

i =
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[10] 1. J. Schoenberg, (‘,mn-ilmli:;n.;'w to hthc; [(::;f;l(e)m[tqs/' ggprlolx;mfzx;on of equidistant data by
i walptic functions, Quart. Appl. Math, 6}, 45 » 112-141.
s ' [t1] ;” Z:wurt, Multivariate splines with nondegenerate partitions, SIAM J. Numer. Anal. 10
Aq =(Lg)(z), gqeDy(X). (1979), 665 675.
Therefore the operator ' UNIVERSFTAT BIELEFELD

Universi(tssirasse
4800 Bicleleld 1, West Grermany

@@= A( +0)B(x—aX)

: and
0eZS

IBM T, WATSON RESEARCH CENTER
0 ‘ j | oights, New York 10808, US.A,
still reproduces D,(X) although @ will in general no longer be a projector on Yorktown Heights, New Yor
" ' 967
eeived March 27, 1984 (1967)
It is now a matter of routine (cf. [4]) to show that the operators Received M

Revised version July 24, 1984

Onf = ) (L) (h(oz+z))B<;.1‘——a] X)

aeZS

and

Oif =3 Af(h«w))B(i—atX)

h
aeZ’

realize the optimal approximation rate O(h*®*!) with respect to ‘any L,-
norm.
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