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STUDIA MATHEMATICA, T. LXXXIL (1985)

On the a.e. divergence of the arithmetic means
of double orthogonal series

by

F. MORICZ and K. TANDORTI (Szeged)

Abstract. The classical coefficient test for the (C, 1)-summability of single orthogonal series
is due to Men'shov (1926) and Kaczmarz (1927). The first named author has extended the
Menshov-Kaczmarz theorem for double orthogonal series in [5] giving sufficient conditions for
the (C, 1, 1)- and (C, 1, 0)-summability. The second named author has proved in [10] that the
condition ensuring the (C, 1, 1)-summability is necessary in the case of nonincreasing dyadic
blocks of the coefficients if all double ONS are taken into account. Now we prove that the
coefficient test for the (C, 1, O)}-summability is also necessary in the same sense. Besides, we
present counterexamples showing that the Kolmogorov type and Kaczmarz type results ob-
tained in [5] are the best possible ones.

1. Introduction. Let (X, #,u) be a positive measure space and
@ = {@u(x): i,k =1, 2,...} an orthonormal system (in abbreviation: ONS) on
X. We will consider the double orthogonal series

o o
(L1) Z Z gy Py (x)
i=1 k=1
where a= {ay: i,k=1,2,...} is a double sequence of real numbers
(coefficients) for which

s @

(1.2) Y af < .
i=1 k=1

R

I

By the  Riesz-Fischer  theorem, there  exists a  function

fla, ¢; x)e LX(X, #, 1) such that the rectangular partial sums

m n

Sty @3 %)= 3, Y, awou(x)  (mon=1,2,..)
1

i=1 k=

of series (1.1) converge to f(a, ¢; x) in L*-metric:

Hm | [$malas @3 %)—f(a, @; x)12du(x) = 0.

mmn-+oo X

This research was completed while the first named author was a visiting professor at the
Indiana University, Bloomington.
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We will study the a.e. convergence behavior of the following arithmetic
means of the rectangular partial sums:

1 m m n P
oin(a, ®; X) =; Z Siw(a, @5 x) = Z Z (1_'1—1)aik i (x)
i=1 m

i=1 k=1
and

k]

Y sula, 5 x)
1 k=1

" j~1 k—1
y (1 _IT)(l ——nw)alkqo,k(x) (myn=1,2,..).

i=1 k=1

El.—

i

O (a5 @2 %) = "
i

InaE}

The following two theorems were proved in .[5].
THEOREM A. If

(1.3) > Y ai[loglog(i+3)][log(k+ 1)]* < oo,

i=1 k=1

then for every double ONS ¢ = {e, (x)}

im on0(@, @; x)=f(a, p;x) ae

mn— o0

TueoreMm B. If

(1.4) Y. Y af[log log(i+3)]*[log log(k+3)]* < oo,

i=1 k=1

then for every double ONS ¢ = {g, (x)}

lim on5(a, 95 X) =f(a, p; %)  ae.

myn—r o0

In this paper the logarithms are to the base 2.
During the proofs of Theorems A and B, a Kolmogorov type and a

Kaczmarz type result (cf. {2, pp. 118 and 1197 concerning si
( ’ . [2, pp. singl t
series, respectively) were obtained in [57. & sinele orthogonal

TueoreMm C. If
(1.5) _Zl kzl af, [log log (max {i, k} +3)]2 < co,

then for every double ONS ¢ = {¢p,, x)}

p,l,,ili, (S2p,20(a 03 X) =035 10 (0. @3 )] =0 ae.
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Tueorem D. If condition (1.5) is satisfied, then for every double ONS
¢ = {ow(x)}

lim [ max max  |oki(a, @3 X)~0l) 0@, ;)] =0 ae

g~ 2P<ms2PT 1l 2Pgng2atl '

The main point is that the sufficient conditions (1.3) and (1.4) in certain
cases are also necessary and condition (1.5) is the best possible if all double
ONS ¢ = {¢u(x)} are taken into account on a particular measure space.

To be more specific, [rom now on (except Lemma 1) let (X, F, u) be
cither the unit interval I = (0, 1) or the unit square S = (0, 1) x(0, 1) (in the
latter case we will write (x,, x,) rather than x) with the o-algebra of Borel
subsets and Lebesgue measure denoted by |-|. It will be clear from the context
whether || means the measure on the real line or plane.

Let us set
2p+l 2q+1
1/2
(1.6) A4={ Y ¥ &} (»a=01,..)
i=2P+1 k=29+1
24+1
1/2
A= ¥ af,,}/ (g=0,1,..),
k= 2941
ap+1
1/2
A={ Y a}* =01,
i=2P+1

and

A% -1 =lagyl.

We agree that by 27* we mean 0 in this paper. With this agreement, formula
(1.6) for p= —1 orfand ¢ = —1 comprises the subsequent formulas all.

The following two theorems where proved in [10].
TueoreMm E. If for p,g=—-1,0,1,...,

Ady > max{A¥iy Afgsi)
and condition (1.4) is not satisfied, then there exists a double ONS
® = {®y(xy, x3)} on S such that

lim suploil(a, ®; x;, xz)| =  ae.
myn oo
Tugorem F. Let {A:i=1,2,...} and {y: k=12, .. be non-
decreasing sequences of positive numbers, and let

. i
(L7 I og Tog(i+3)
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(i) Then there exist a double ONS ¢ = (D (x)) on I and a double
sequence a = {ay) of real numbers such that

o0 o0
(1.8) Y 2 AV <o,
i=1 k=1
lim Syp04(@ @3 X)  exists ae. onl,
PYRLS
and

lim supla;,l,'zq(a, O x) =00 aeon (0,4,
g+
(ii) Furthermore, there exist a double ONS ¥ = W) on 1 and g
do.uble sequence b = by} of real numbers such that condition (1.8) is satisfied
with by, instead of ay, ‘

M 11 . :
lim Gzﬂ,za(b’ ¥, x) exists ae. on I,
pg oo

and

li;r;fip 5,0 240, PiX) =0 ae on(0,4).

2. New r'e.sults. We will prove that, in the case of nonincreasing dyadic
blOCkS,.COH'dItIOH (13) is not only sufficient but also necessary for the
conclusion in Theorem A.

TheOREM 1. If for p = —1, 0, 1; Lo k=1,2,.

2rt+1
2.1 Ap={ ¥ @i} >maxd,, ,, A
i=2P+1

ey
1
mk+1y

i I (1 ) . . .
and condaition 3 1§ not  sqt IS]IEC’, 1}1@” I]'ler@ exiIsts a t{()Ltble ONS
¢ (drk(xl’ :CZ)I on $ Such that

(2.2 lim supjoz) (a, @; x,, Xo)| = 00 e
mn—r o0
In accordance with our agreement, for p= ~1 in (2.1) we have

Aju= lay k=1,2,..).
The next theorem reveals that condition (1.5) i i
‘ ndition (1.5) in Theore y the bes
possibls (1.5) em D is the best
(1. s
SauTPfEOREM 2If At i=1,2,...) and et k=1, 2, oo} are nondecreasing
g quences of posmrve numbers and condition (1.7) iy satisfied, then there exist o
ouble ONS ¢ = Py (%)} on I and a double sequence a

= (g1 of
: S @ = . : = () of real numbers
such that condition (1.8) is satisfied and '

(23)  lim sup max ma g ¢ x)- 1
X |Op(a, ®; x)—ol! b;
BA0 2Pgmgaptl 2‘1\<nS24+1| 'T‘”( %) 2n,20(¢: @3 )]

=0 ae on (0,4).

icm
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3. Auxiliary results. We begin with a few definitions and notations. By
an interval {a, b> we mean cither open interval (a, b), or one of the half-
closed intervals [a, b) and (a, b), or closed interval [a, b]. By a rectangle R
= {uay, by> x<az, by) we mean a rectangle with sides parallel to the
coordinate axes.

A function f defined on [ (or ) is said to be a step function if I (or S)
can be represented as the union of finitely many disjoint intervals (rectangles)
such that f is constant on each of these intervals (rectangles). A subset H of [
(or §) is said to be simple if H is the union of finitely many disjoint intervals
(rectangles).

Given a function f defined on I and a subinterval J = {u, b} of I, we set

(x~a
WX = {'/ (‘h—a) for xeJ,

0 otherwise.
If H is a subset of i, then by H(J) we denote the set into which H is carried
over by the linear transformation X = (b—d)x +a. Similarly, given a function

g defined on § and a subrectangle R = {ay, by} x<az, by of S, we set

Xy—dy Xp—a; for (x;, x;)eR
g(l‘q—-aﬂ b, ) (%1, %3)

“/(Rw X1, xz) = %
0 otherwise.
Finally, if H is a subset of S, then by H(R) we denote the set into which
H is carried over by the linear transformation %; = (b —a;)x;+a, and
Xy = (by—ay) X3 +ay.
Now we present five lemmas. The extension of the Rademacher—
Men'shov inequality is due to Agnew [1] (see also [4]).
Lemma 1. For every ONS ¢ = {@y(x)}, sequence a = {ay) of real
numbers and M, N =1, 2, ..., Y
[[ max  max [,,,(a, @; 0] du(x) < [log 2M]*[log 2N1* ¥ ¥ ai.
X 1€mEM 15pEN . i=1 k=1
The next lemma is due to Men'shov [3] (see also [9]). In the sequel, by
Cy, Cyy..ee we denote positive absolute constants,
Lemma 2. For every p=2,3,..., there exist an ONS {filp; x):
i=1,2,....2p of step functions on | and a simple set E(p) €1 such that
(a) |E(p) 2 Cy,
®) |fi(p; %) € Cy for xel and i=1,2,...,2p;
(c) for xe E(p) there exists an integer m = m(p; X), p < m < 2p, such that
fip; %)= 0 for each i =1,2,....m and

m~1

i/i(p; X) = Zl./}(p; X)2 C3/p log p.
==

=1
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We note that this lemma was originally proved in the case where p = 4%,
q > 2 is an integer. However, Lemma 2 obviously follows from this particular
case.

Let

R o= {r(x)r(xg): L k=1,2,...5(x1, X2)€S}

be the two-dimensional Rademacher system (concerning the one-dimensional
Rademacher system we refer, e.g., to [11, p. 212]).
Lemma 3. If condition (1.2) is not satisfied, then
lim sup|oid(a, &; x;, X;)| =0 ae
m,n -0
This lemma is an easy extension of a result of Zygmund [11, pp. 205
and 212] from the one-dimensional case to the two-dimensional case. We
omit the “proof.

In the remaining part of this section we will consider the single
orthogonal series ¢

G.1

Z a; ¢ (x)
i=1

where ¢ = {@;(x): i=1,2,..} is an ONS on I and a = {a;: i=1,2, .
is an ordinary sequence of real numbers with

(32) at < 0.

s

i

1

We will use the following notations for the partial sums of (3.1) and the
first arithmetic means of them:

m
Sm(a, @; x) = 2 a; ¢;(x)
=1

and
inm m i—1
Omla, @; %) ==Y s;(a, @; %)= 3, [1=—— |, o;(x) (m=1,2,..).
mi=y (=1 m

The next lemma was proved in [6].
Lemma 4. If ja| 2 |ajeq] for i=1,2, ..., and

o0

2. o [log(i+1))* = w0,

i=1
then there exists an ONS ¢ = {¢,(x)} of step functions on I such that

33) lim sup|s,, (@, @; X)) =00  ae.
m-roo

icm
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We note that actually only the a.e. divergence of the orthogonal series
(3.1) was proved in [6] instead of unbounded divergence expressed by (3.3).
But (3.3) follows from this divergence theorem in a routine way (cf. the proof
of Lemma 5 below).

Lemma 5. If for p=0,1,...,

2p+1 apt2
S oatz Y 4
i=2P+1 j=2Ptlag
and
Y
Y af[log log(i+3)]* = o,
i=1

then there exists an ONS ¢ = {@;(x)} of step functions on I such that

(3.4) lim supls,,(a, ¢; x| =0  ae.

proo
Proof of Lemma 5. Combining [7, Theorem 2] and [8, Theorem 7]
yields the following weaker version: under the conditions of Lemma 5, there
exists an ONS ¢ = {¢;(x)} of step functions on I such that

lim sz,,(a, ¢@; x) fails to exist a.e.
p—o0

To prove the stronger statement (3.4), we distinguish two cases.

Case 1: (3.2) is not satisfied. Then by Zygmund’s theorem quoted above,
the one-dimensional Rademacher system can be taken in the capacity of ¢.

Case 2: (3.2) is satisfied. Then first we construct a nonincreasing
sequence A= {4: i=1,2,...} of positive numbers tending to 0 such that
for p=0,1, ...,

2pt+1 2p+2.
S etz Y Adf
i=2P+1 j=2Pt1%
and
o PY A
(Y Aa)log(p+2] = 0.
p=0 w24y

Thus, by the above weaker version, there exists an ONS ¢ = {¢;(x)} of step
functions on I such that for ia = {4 a;}

(3.5) lim s,,(Aa, @; x) fails to exist ae.
p—ro0

An Abel transformation yields
2P-1

(3.6) 5,048, @3 0) = T (hi—his1) 8185 @304 255,5(a, @5 ).


GUEST


278 F. Méricz and K. Tandori

By (3.2) ‘
o0 i .

1
¥ (=) flsi(a, @3 0N dx < T (= i) (X o]
0 i =

< )
i=1 !

1/2

o 212
MY af} " <.
j=1

Hence B. Levi’s theorem implies that the series

i (A —Aip1)si(a, @3 x) converges a.e.
i=1

By (3.5) and (3.6),
lim A,,5,,(a, @; x) fails to exist a.e.
p—o

which is equivalent to (3.4) to be proved.

4. Proof of Theorem 1. The methods applied during the proof are similar
to those which were elaborated in [10]. o ‘

First we make a reduction. Instead of Theorem 1, it is enough to prove
the following. ‘

Tueorem 1. Under the conditions of Theorem 1, tﬁere.e.xlsl‘ an ONS
Y= (W, (x,, x2)} of step functions on S and a subset H of S with |H| > 0 such
that

4.1) lim suploil(a, ¥; x;, x,) = for (x;, x;)e H.

m,n—co

First we show how Theorem 1’ implies Theorem L. -
Let us assume that Theorem 1’ has been proved. Then there exist an

increasing sequence {r,ip=1,2,...,1 = 0} of integers and a sequence {H,:
p=1,2,...} of simple subsets of S such that for p=1, 2,...,
“2) H,| = Ca.

and for (x;, x;)e H,

i-1
4.3) max (1 "*ﬁ"‘)aik P (%1, X2)
rp<mnSrp+ 1 |(LKYQun\Qrp,p),
o Tp 4 (_L
Zp+ Y, Z |etgel My (Z hll =0),
i=1 k=1 jm 1 k=

where

an= {(15 k) i=112)"': m; k=1,2,..., n} (”’h n == ]1 2,...)

icm
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and

My = max [¥y(x, x) (@ k=1,2,..).
(x1,%3)eS

Our goal is to construct an ONS & = {d, (x;, x,)} of step functions on

S and a sequence {E,: p=1,2, ...} of simple subsets of S such that these
sets are stochastically independent, for p=1, 2, ...

(44) IEp[ } C4:
for (x, x;)e k,

i—1 LN
(4.5) max (1“"""“>aik Py(x1, X2)| Z p+ 3 Y lawl My,
rpEmAS, ) ”"‘)Ean\Qr,,.r,, m =1 k=1
(this is actually (4.3) with &, instead of W), and
(4.6} max [Py (xy, X S My (L k=1,2,..).
(x1,xp)eS

We will proceed by induction on p. If p =1, then let
By (X1, x3) = Py (xy, Xp) for i, k=1,2,...,r, and E, =H,.

Conditions (4.4)-(4.6) are obviously satisfied.

Now let pg>2 be an integer and assume that the step functions
1ulxy, xp)t i k=1,2,...,r,} and the simple sets {E,: p=1,2,..., py
~1} have been defined in such a way that these functions are orthonormal on
S, these sets are stochastically independent, and relations (4.4)-(4.6) are
satisfied for p=1,2, ..., po—1. We can divide S into a finite number of
disjoint rectangles {R,: s =1, 2, ..., ¢} such that the functions {®, (x,, x,):
Lk=1,2,...,r,} are constant on each R, and the sets {E, p
=1,2,..., pp—1} are the unions of certain R,. Let R, and R denote the
two halves of R,, for example, if R, = {a,, b;)x<ay, b,), then let R,
= ay, (ay +by)/2] x {ag, by and RY = ((a+by)/2, by ) x {ay, by>. We set
for i, k=1,2,..., rpy+1 when max {i, k} > Tro?

Py Xy, X3) = Zl [P (R xy, X2) = Wi (RY; Xy, X3)]
5= ,
and
Epy = U LHyg (RO Hy (R,

It is easy to verify that the step functions {®,(x, x5): L, k=1, 2, ..., Fpg+1}
form an ONS on §, the simple sets {E,: p=1, 2, ..., po} are stochastically

independent, and conditions (4.4)~(4.6) are satisfied for p = p, due to (4.2)
and (4.3). ‘
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The above induction scheme shows that the ONS @ = [ (xq, x3)} and
the sequence {E,} of stochastically independent sets can be defined so that
conditions (4.4)-(4.6) are satisfied for every p = 1, 2,...

Putting (4.5) and (4.6) together, we can conclude for (x,, x;)e E,
%)) max  |oi0(a, &3 x, X Zp (P=1,2,..)

rp<m,n<r1,+1

Setting
E =lim sup E,,
Pt
(44) implies |E| =1 via the Borel-Cantelli lemma. If (x;, x;)& L, then we
have (4.7) for infinitely many p. Consequently, (2.2) is satisfied which was to
be prﬂoved.
Proof of Theorem 1. We may assume that condition (1.2) is satisfied.
Otherwise, (4.1) immediately follows {rom Lemma 3 even with H =§.
Our starting point is that if condition (2.1) is satisfied, while (1.3) is not,
then
o0 o0
TN A [log(p-+3)1* [log(k+1)]* = .
p=-1 k=1

We will distinguish three cases:

@ Y A2 [log(p+2]* = cc,
p=0

(b) i A% [ogk+1)]* = Y af [log(k+ 1)]? = o0,
k=1

k=1
(c) for every r=1,2,...,

(4.8) T Y A% Tog(p+2)1 [log (k1)1 = .
p=r k=r
Case (a). By Lemma 5, there exists an ONS ¢ = o (%)} of step
functions on I such that
(4.9) lim suplszp(a‘“, P X) =00 ae
. poroo .
where a'' = {a;: i=1, 2, .0
On the other hand condition (1.2) clearly implies
o
Y af < o,
i=1
and thus Kolmogorovs theorem (see, eg. [2, p. 118]) is applicable 10
obtain

lim [s,, (@, ¢; x)=0a,,(a”, @; x)]1 =0 ae
P

icm°
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This and (4.9) give that
lim suplo,,(a"), @; X)) = co  ae.
preo
We take an arbitrary sequence (Ry: i=1,2,...;k=23,...} of
- disjoint rectangles such that

7] o0

(4.10) J, kUz Ry = 8,\S where S, =(0,2)x(0, 2).

i

Set for i=1,2,...,

_ Joi(xq)  for (x4, x3)€ S,
Vi (xr, xa) {0 for (x1, X5)€5,\S;

while for i=1,2,...;k=2,3,...,

Rul™'?  for (xy, x5)e R,
4.11) Xy, X =%| ik 1s X2)€ o
( Valx xa) =19, for (x;, x,)€ S5\ Ry.
It is not hard to check that ¥ = {(xy, x;): i, k=1,2,...} is an ONS of
step functions on S, and for almost every (x;, x;) in §
lim supla}p ,(a, Y3 x;, X,) = 0.
P

Finally, the system ¥ = {¥,(x;, x,)} defined for (x;, x;)eS by
(4‘12) qjik(’xla xZ) = 2w1k(2x17 zxz) (ia k= 1: 21 "')

and H = 8y;; = (0, ) x(0, ) meet all requirements stated in Theorem 1'.
Case (b). By Lemma 4, there exists an ONS ¢ = {¢,{x)} of step
functions on I such that
lim sup [s,(aqy, @; X)) =0 ae.
where Gy = {Cl“‘: k = 1, 2, ...}.
Let {Ry: i=2,3,...;k=1,2,...} be again disjoint rectangles whose
unjon is contained in S;\S (cf. (4.10)). Set for k=1,2,...,
pr(xa)  for (x4, x2)€S8,
» X2) =40
Vrudxe, ) {0 for (xy, x2)€S3\S;
while for i=2,3,...; k=1,2,..., set (411). o
Clearly, W = {W(xy, x2): i, k=1,2,...} is an ONS of step functions
on §, and for almost every (x;, x;) on S )

lim sup|oid(a, ¥; Xy, X3)| = 00. "

n=roo

Setting (4.12) and H =S,,, completes the proof in this case.
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Case (c). Without loss of generality, we may assume that the coefficients
a, are rational numbers and different from zero. In fact, we can choose a

sequence &= {@;, #0: i,k=1,2,...} of rational numbers such that for
p=—1,01,...:k=1,2,...,
apt1
pk = { Z ~tzk}llz max lAp+1 K zp.k-i-l}
=2P+1
(we recall that A_, , = WUJ for p= —1),

Z Z &, [log log (i +3)]* [log (k+ 1)]* = oo,

i=1k=1

and

“Ms

o0
z [ — | < 0.

i

Then for every ONS

i i |y —

i=1 k=1

Thus,

{o; (xl, xy)} on §,

o0 oD
Y Y lag— a3y < o,

b=
1
B §
0 i=1 k=1

1
gl(l)ih (%1, xz)| dx,y dx; <

lim [sp,(a, @; xq, x5)—
m,n—o

S (@, @ X1, X5)] exists a.e.,

a fortiori,

hm [Gmn(a @3 X1, x2) am (a ?; X1, xz)] ex1sts a.e.
Consequently, if there exists an ONS & = {@,,(x,, x,)} 6n S and a subset H
of S such that

lim sup o0 (@, @; x;, Xx,)| = ©

myn— o

for (xy, x;)e H,
then also

lim sup|o}Q
m,n - o0

(a, @; x;, x5)] = 0 for almost every (x;, x,) in H,

So, we may assume from now on that the coefficients ay are rational
numbers different from zero. From (2.1) and (4.8) it follows that for every
r=1,2,...,

)

23p+tq 42
X X P2 Agpr1 1,201y = 0.

p=r q=r

Thus, there exist an increasing sequence {rj: Ji=1,2,..;ry =2} of integers

icm
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and a nonincreasing sequence {s J: j=12,..
to 0 such that for j=1,2,.

} of positive numbers tending

w© 'J+1“1 rj+1-1

4.13) Z Z p*q 2”‘“"’/42,,+1 a1 =0
J=1 p=ry q=rj

and

RS RERIT S T

(4.14) sz Z Z p2q22[1+qA2p+1 1,29+ 11 < 1.
[1:7’/ qﬂfj
Letj==1,2,...be fixed and let {RY: r; < p, g <rj.y} be disjoint rectangles

in § with

D] = 2np+
IR[:FIQI ij) q 27 qupH-l 2g+1 g

By (4.14), this is possible. We apply Lemma 2 separately for 2°~* and 2971,
and set for 20 i< 2Pt 20 k < 20%!

T 0es %) =y 3o @275 30 fy gy, 277
(here (x,, x;)&8) and for r; < p, g <rjsy
A9 = E@r Y xE(207).
Finally, we set for 22 <i<2/%! 20k <20%!
ik)(xh Xg) = IR%I_UZ./}D (Rm X1, X2)

P4 <Tj+1

; X2)

and for r; <
H(i) — I:j(i) (RU)).

It is easy to see that for every j=1,2,... the step functions
lf"’(x1 x5): 29 < i, k <29**} form an ONS on § and the simple sets {HY:
r; < p, q <rj} are disjoint. In addition, (a)—(c) in Lemma 2 result in the
following properties: for r; <p, 9 <rj4+,

(4.15) IH(;;}[ = Cy 5'12 g 2p+qA§p+l_1_zq+1_.1:
(4.16) S e, %) =0 for (x4, x5)€ H‘,{;
if G, HEL2n, 27 X [24 20,

further, for (%, X3)€ HY) there exist integers m = m(xy, x,) and n = n(x, Xa),
Wm0t Wan <2‘1+1, such that

@17 f,ﬁ{‘ (%4, xz) >0 for ?<i<m, 2°<k<n,
and

Cs
(4.18) Z Z A (x4, %3) 2 Z5

i=2P k=24
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Now we take into account that the @ are rational numbers and
different from zero. Therefore, for j =1, 2, ... there exists a positive integer
Q; such that for every i, k, and s with 2 <i<2"!, 2V <s, ke <2Vt

@ Pl ks

A Q;
where the P(i, k, s) are also integers and s 0.
We consider a decomposition of S into disjoint rectangles [R,: n
=1,2,.. } of equal measure:

JJ
IRn|=1/Qj (”"—‘:1,2,...,Qj).
We set for 25 <i 21, 2V g, k < 20%,
Ask v(i,k)

g (xy, x3) = SRy X1, %3)

ik p=v(i-1,k+1

0 andv(i, k)= 3 P(, s,k (i>2) and for r,<p,

I=25+1

where v(2% k) =
q <TFj+y
LY

FQ = Ql H(R,).

We agree to denote by .4 the set of ordered pairs of positive integers

(the so-called lattice points), while for j =1, 2, ... we set
A=, Ke s alr) < oc(er) Plry) <k < P(ripy)}
where
a(m)=22" and Bm)=2" (m=0,1,..).

‘ Now it is routine to check that for every j=1, 2, .
i (x1. x5): (i, e 47} are orthonormal on S, and the sets (FY: r,
< p, g <rj4q) are simple and disjoint. From (4.15)-(4.18) it follows that for
every pair (p, q), 1; <p, 4 <7Tjiq,

.. the step functions

(4.19) I’”)l Cystp qZZ”*“A

apt Lo gl

(4.20) gD (xy, x,) = 0 for (x, x;)e F{)

if (i, k)¢ (227, 227 1] x (24, 1],

and for (x,, x;)e FY) there exist integers m = m(x,, x,),
2P <m <20t 20 < < 20% 1 such that

n = n(xla xz)a
4.21) g (x1, x) 20 for 2 <ig 2" M <k <
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and

am-—1 "

(4.22) )IEDY

im22P g k=241

Ay (x4, x;) =

Next, we will define an ONS (i, ke U A

oy, x3):
functions on § and a sequence {G;:j=1.2,...] of slochdshcally
independent simple subsets of § such that for every j=1, 2, ...,
RS R ES T

MDY

p=ry q=rj

of step
(4.23) |Gyl = \Fl,

for (x4, x;)& G, there exist integers p, g, m, and n such that r; <
Waem<2tt Wan Wt

Pg <rtiyi,

(4.24)  wy pp(xq, X5) is of constant sign
for every 2%’ <ig 2™ 2 <k<n
am=1 n C3
(4.25) Y Y anou(xg, x3)| =~
(g2l k=201 5
and
(4.26)  @u(x(, x3) =0 for (x4, x,)eG;
if (i, khe.47; but (i, k)¢ (227, 227 1 (21, 207 1].
The construction will be done by induction on j. If j =1, then we set
rag—1ra-1
U U g
pPEry 4=y

and for (i, k)e. ', )
Pu(X1, X2) = gh) (x1, x3).

Then conditions (4.23)-(4.26) practically coincide with (4.19)-(4.22).

Now let jo=1 be an mtcger and assume that the step functions
o (%y, x2)t (L k)eA)ij = 1,2,...,jo} and the simple sets {G: j = 1,2,.... o}
have been defined in such a way that these functions are orthonormal on S,

‘these sets are stochastically independent, and relations (4.23)-(4.26) are

satisfied for j=1, 2, ..., jo.

We can split S into a finite number of disjoint rectangles {Ry: s
=1,2,...,0} such that the above step functions are constant on each R,
and the above simple sets are the unions of certain R,. Let R, and Ry be
disjoint subrectangles of Ry with equal measure:

Rl =[R{] (=1,2,...,0).


GUEST


286 F. Méricz and K. Tandori

We define
o Tio+2 1 tigtaT!
Gj0+1 = | U U
s=1 p=rjn+1 4=Tjg+1
and for (i; k)e.# 1

[FUO* D (R L FYO™ (RY)]

Got+1)

@i (xy, X)) = Z Lo
s=1

s Jo+1)
(R x4, X2)—Gik

(RYs x415.%3)].

It is not hard to verify that the step functions {ou(x1, x2): (i, k)e 47, j
=1,2, ..., jo+1} are orthonormal on §, the simple sets {G;: j=1, 2, ..., j,
+1} are stochastically independent, and (4.23)-(4.26) are satisfied also for j
=jo+1 due to (4.19)-(4.22).

o

This induction scheme shows that the ONS {¢, (xy, x,): (i, k)e U .47}

j=1

of step functions and the sequence {G;: j=1,2,...] of stochzllstically
independent simple sets can be defined so that conditions (4.23)-(4.26) are
satisfied for every j=1, 2, ...

By (4.13), either

r2j+17 1 rgj41-1

00
2 2 ,29p+q 42
(427) Z 82 Z Z rq 2r 4A2p+1.,1 a*+toy & 0
j=1 p=raya=ry; '
or
) r2j= 1 rgp-1
2 . 2, 2nptq 42
Z S2j-1 Z Z p q 2° qA2p+1__1,2q+1..1 = 00,
i=1 PEraj-14=rzj—1

For the sake of definiteness, assume that (4.27) is the case.
We define an ONS {@ (x, X,): i, k=1, 2, ...} of step functions on S,
0
as follows. Set for (i, k)e ) Ay
J=1

Fulx1, x2) = { Pulxy, x2)  for (x1, x:)es,
0 for (x;, x;)e8,\8;
and for (i, e\ ) A4
i=1
[Ry =42 for (xy, x;)€ Ry,

Pulxy, x )={
e 0 ) for (xq, x5} 85\ Ry,
where {Ry: (i, ke A"\ 'U1 A"y} are arbitrary disjoint rectangles in S,\S.
=
By (4.19), (4.23), and (4.27)

s

Y [Gajl = co.
J=1
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Thus, by the Borel-Cantelli lemma, for G = lim sup G; we have |G| = 1.
j—roo
By (4.24)-(4.26) we can deduce that for every j=1,2,... and
(xy, x2)€ Gy there exist integers m; = m;(x,, x,) and n; = n;(x;, X,) such that

XY <my, ny < 244 and
m; n .
2/ J i—1 ~
1 Ty ) ik Pu(x15 X3)
i:»a(rzj)+l kwjﬁ(rzjﬂ-l )
mi~1

1 2 ) Ilj C3
2 3 Z iy B (X1, Xo)| 25—
i=alrgp+1 k=plrg)+1 2825

since 1—~(i~1)/2" =4 for i < 2™, If (x,, x5)€ G, then this estimate holds
for infinitely many j, and, consequently,

m n
(4.28) lim sup max

J=roo (m,my EmV"ZJ

= 00.

i—1 s
(1 _——)aik B (%1, x2)
I=a(rg)+1 k=plrgp+1 m

In the following, we slightly modify the definition of the functions
Pue(xy, Xz)- By (1.2),

oo 2

2
Y (E[ > g Bulx, x2)]* dxy dx, < o0,
b

=1 (Lkyeds;

~

whence

e
by [ Z Ay Py (%1, xz):|2 <@
J=1 GRedy)

for almost every (xy, X,) in S,. Thanks to this fact, the series

o

(4.29) | PRZICEY

J=1 (DY

ay By (X1, X2),

involving  the one-dimensional Rademacher functions @ j=1,2,... 5
converges for almost every t in I for almost every (x,, X3) in S, (see e.g. [11], .
p. 212]). It is well-known that then series (4.29) also converges for almost
every (xy, x,) in S, for almost every t in I. So, we can select a dyadically
irrational number t, in I such that series (4.29) converges for almost every
(xy, X5) In S for t=tg.

We define a new system ¥ = {Yu(x;, x5): i, k=1,2,...} on S, as
follows:
if (, edyj=1,2,...

if (i, e S\ U Aoy
j=1

r3(to) iy P (x5 X2)

Vi (xq, %) = jl

Pk (x4, X2)
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It is evident that y is an ONS of step functions on §,,, by (4.28) for
(Xi, XZ)E G

. . m n . j— 1 .
(4.30) limsup max 3, (1 — e Jay Y (X4, X5)] = 00
Jmw mmedgj lizatrypt 1 k=plryj)+ 1 m

and the series (cf. (4.29))

9]

(4.31) y 3

j=1 (ke

converges for almost every (x;, x,) in §,.

Ay Wi (X1, Xa)

o
Given a pair (m, n)e A"\ |) .45, let j(m, n) be that positive integer for
Jj=1

which (m, n)e.# 3. By definition, for (x,, x,)e S
(432 ald(a, ¥ixi, X)) |

m n i1
= ) > (1—7)‘% Vi (X1, X2)+R(m, n; Xy, X5)

i=a(r2j(m’ w1 k= ﬁ(’lj(m,n)) +1

where
Jomn =1

i—1
R(m, n; xq, xp) = Z Z (1—‘——~M>u,,¢ Vilxy, X2).
J=1 kedy m

Our next goal is to show that the limit

(4.33) lim R(m, n; x;, x;) as m, n— o0, (m, ne.d"\ Cj g
i=1

exists for almost every (x,, x,) in S,. To this end, we introduce the notation

Saﬂ(j; X1 xZ) = lklplk(xla x2 ((X ﬁ)E " 2

i=alryj)+1 k=plragp+1
and apply an Abel transformation to obtain

1 alrajy )= 1

a—1
1- AW (Xg, Xp) = —
(«',k)grzj( m ) kY (X1, %) -~

o(ryeg)—1
ATk VA T .
+( m ‘sm(rszr 18254 1) (/’ X, xz)

Sargi4 1y U3 X1 5 X2)
a=a(r21)+1 2i+1 ’

=RV(m, ji %1, %)+ RP(m, j; x,, x;), say.
This shows that

(4.34)  R(m, n; x;, x,)
JOmym =1 L Jlmymy~1
= 21 RO (m, j; xq, x,)+ Z R (m, j; xq, x,).
J=
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First, we deal with R (m, j; x,, x,). Setting for j=1,2, ...,

Oy(xy, Xp) = max Vs xi, X2,
u(r2j)<5v~<.a(rzj+1)
obviously
Junym ~ 1 Jimyn) 1 o (V )
: 2j+1
R (m, j; %, x3)| < I 5%y Xa)
J=1 J=1

Thus, for [=2,3,...,

-1
(5}1)()(1, .‘Cz) = max 1 Z R(L)(m,j; X1, xZ)\
alrgp) <mSulryye ) j=1

(4.35)
1 -1

e Y 8 (4 5 X3)

o r21~1),§1 J( v

since ry = Py -+ 1. In virtue of Lemma 1, for j=1,2,...,

2

2r2j+ 1 .2 2
[ 67 (xy, Xg)dxydx; < 4°2 e Y Gk
0 ket "5 ;

{4.36)

Dty

whence, on the basis of (1.2) and (4.35),

Ms

22
(4.37) i [O{1 (xy, x)]%dx,y dx,
=200
< i ,,,L_,__ 5 UL Y 4
= I=Za(r21~l)j=1 (i'k)e'f'Zj
ot - 0 I

01,2 N I
af 2 Y

1=Fhrolra-1)

o) j'l“ ‘1
2 A2t ST
<C Z Z Cl'kz ’2]*!‘1
= LS i
I ety a(raet)

43 3

J=1 (hker'2)

o
- 2
<G, Y af <.
J=1 (hkedt'zj

By B. Levi's theorem, for almost every (xy, Xg) in Sy -

lim (" (xy, x;) = 0.

1= 00

(4.38)
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Secondly, we treat R®(m, j; x;, ;). By definition, for I =2,3, ...,
-1

-1
Z R(Z)(m,j; X1, X2) = Z Sa(r2j+1)’ﬂ(rzj~(-1)(i; X1 xZ)
j=1 j=1

(4.39)

-1
“(rz;'-u)—ll .
T m Z,l Sa('2j+1),ff(r2j+1)(1’ Xy, X3)

j
=R®(I; x;, x)+R¥(m, I; x;, x5},  say.
Since series (4.31) converges a.e., the limit
(4.40) lim R®(L; xq, x,)
-0

exists for almost every (xy, X;) in .
On the other hand, for I=2,3, ...,

(4.41)

5™ (xy, x5) = max
a(rgp) <mSalray4 1)

l—la(r2j+l)5.(x1 X)) € ——— z 8,0, x )
j=1oalray) e a(ra-1) /=1 S
(cf. (4.35). This, (1.2), and (4.36) imply, in the same way as in the case of
(4.37), that for almost every (x;, X;) in S,

(4.42) lim 8% (x,, x;) = 0.

I+

[RW (m, I; xy, x2)]

1 -1

=

- Collecting (4.34), (4.35), (4.38), (4.40)-(4.42) together, we can establish the
existence of the limit (4.33) for almost every (x,, x,) in S,. On account of
(4.30) and (4.32), we can conclude

lim suplogs (@, Y5 X1, X)| = 00
mn—oo

for almost every (x;, x;) in G. Since G = S and |G| = 1, this relation holds
for almost every (x;, x,) in S.

Finally, setting for i, k=1, 2, ...,

P (X1, X3) = W (2x4, 2x3), (X3, X2)€S,
we get (4.1) with H =S,,; and this completes the proof of Theorem,1'.

5. Proof of Theorem 2. We begin with the definition of an increasing
sequence {M,: r=1,2,...; M; =2} such that for r=2,3, ...,
C,log M, red

Zr+C Y 2M?

(5.1)
8r Ay 41 Va1 =1

where

) .
y(r) = 22 and (as before) B(r) =2,
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Then we define the double sequence a = {ay: i, k=1,2,...
by

1 of coefficients

1
— for i=2'41,2%+41,...,y(N+1;
rM, Iy(r)-n"p(r)ﬂ + v()

= k=241:r=1,2,...,
0 otherwise.

Clearly, condition (1.8) is satisfied:

2M?

o 0 o0
2922 2 2 2
Z Z ag A vie = Z Z a25+1,2'+1’12$+1 Voret
jm 1 k=1 r=1 s=1
w 2M2

r=1 s=1VzMrzl)%(r)+1\ = '

The main part of the proof is the definition of the ONS (@ (xy, x2):
i,k=1,2,...}. To this end, we apply Lemma 2 with p = M, for every r
=1,2,..., denoting by {fi(r;x): i=1,2,..., 2M?) and E(r) the resulting
ONS of step functions on I and simple subset of 1, respectively. By (a)—(c) in
Lemma 2, we have for r=1,2,...,

(52) [E()] = C1s

(5.3) Ifitr; x) € C, for xel and i=1,2,..,2M%

furthermore, for x e E (r) there exists an integer m = m(r; x), M2 <m<2ME,
such that f;(r; X) =0 for i=1,2,...,m and

(54) Y fitrs x) = C3 M, log M,.
i=1

First, we define an ONS ¢ = {¢@u(x): i, k=1, 2, ...} of step functions
on I, = (0, 2) and a sequence {H,:r=1,2, ...} of stochastically independent
simple subsets of I in such a way that the following conditions are satisfied:
for every r=1,2,...,

(5.5 |H,| = Cy,

(5.6)  loulxy, xa) S €y for

xely, i=241, 2241, ., p+ L k=2"+1;
for xeH, there exists an integer m=m(r;x), M}*<m < 2M?, such that
(x)=0 for s=1,2,...,m and

m

(5.7) Y Pysyp ey )= Ca M, log M,
1

§=

Parsir,2r 41


GUEST


292 F. Méricz and K. Tandori

and
(58) @u(x)=0 for xel if (i, k) # (2’+1,2°+1)
with s =1,2,...,2M%;r =1,2, ...
In the special case r =1, we set for s=1,2, ..., 2M?3,
0ros1s()=fll;x) and  H,=E(1).

Now let r, be a positive integer and assume that the step functions
Osirare (X s=1,2,..,2M}; r=1,2, ..., ro} and the simple subsets
{(H,: r=1,2,..., 1} of I have been defined so that these functions form an
ONS on I, these sets are stochastically independent, and properties (5.5) (5.8)
are satisfied for r=1,2, ..., rg.

We will define the step functions

e — 2 !
{(p25+1,2r0+]+1(x). s=1,2,..., 2M7 44}

of the (ro-1jst block and the simple set H, . in the following way. We
divide I into a finite number of disjoint intervals {J,: p=1,2,...,P} such
that the functions of the first ro blocks are constant on each J, and cach set
{H,: r=1,2,...,ro} is the union of certain J,. Denoting by J, and J, the
two halves of the intervals J,, we set for s=1,2, ..., 2M,20Jrh

r
Preny ot = p; Lfi(ro+ 13 Jhs X)=fi(ro+ 15 T35 %)]

and

, .
Hyyo1= U [E(ro+ 13 T)UE(o+1: 7).
p=1

It is easy to see that the step functions
{‘qux,zrn(x}: s=1,2,..,2M%r=1,2,,.., ro+1}
form an ONS on I, the simple sets [(H.: r=1,2,...,ro+1} are
stochastically independent, and properties (5.5)-(5.7) are satisfied for r = r,
+1, due to (5.2)~(5.4).
This induction scheme shows that the ONS

{Ppirare s =1,2,2M}r=1,2,...}

and the sequence {H,: r =1, 2, ...} of stochastically independent sets can be
defined so that conditions (5.5)-(5.7) hold true.
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Then we consider an arbitrary decomposition {J,} of the interval (1, 2)
into disjoint subintervals and set for

(i, k) # (+1,2'+1)  with s=1,2,...,2M% r=1,2,...,

Wl =12

for xeJy,
P (x) = % 0 .

for xel,\Ju;

while we extend the functions ¢y, (x) defined previously from I onto I, simply
by setting @u(x) =0 for xe(l,2). Thus, the entire ONS {@u(x): I, k
=1,2,...} is defined on I, so that conditions (5.5)(5.7) and (5.8) are
satisfied. )

If xg H, for some » = 2, 3, ..., then from (5.1), (5.6)-(5.8) we can deduce
that

o 1 .
(59) |G§;(r)~ 1,281 -1 (Cl, [ x)_o-y(}‘),/i(n (aa @, x)l

2Mr2 28 or r—1
. 2
= Z (1"2))(},)__1>(1“‘2r+1_1>azﬁ+1,2’+1(/’23+1,2f+1‘(x)~cZ Z M,

s=1 e=1
1 2M,«2 r—1
SO S— N O S DL
8 M, Ay 41 Vo w1 s=1 ° L e=1
C; log M? rl!
> A8 Y aMEzr.
8 2 e
Py + 1 Vo + 1 e=1 )

Thanks to stochastic independence, for H = lim sup H, we have [H| =1. If

xeH, then (5.9) is satisfied for infinitely many r, a tortiori,

11

lim [ max max  |om (@, @3 X)= 055 (4, @3 x)|] = co.

P~ aPgm<2Pt1 2dgn<2at!

Since H = (0, 1), this relation is satisfied for almost every x in I.
It remains only to contract the functions into I:

Dy (x) = \/5 Pk (2x)

and this completes the proof of Theorem 2.

for xel and i, k=1,2,...;
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Remarks concerning the paper
“On a class of Hausdorff compacts and GSG Banach spaces”

by

WOLFGANG M. RUESS (Essen) and CHARLES P. STEGALL (Linz)

Abstract. The main result of the above paper by O. L. Reynov which appeared in Studia
Math. 71 {1981) is incorrect.

We show, by counterexample, that the main result of the paper [7] is
not correct. Moreover, it is clear that the mistake is not technical in nature,
but fundamental: there is an improper use of interpolation techniques, not
only those of [2] but of interpolation methods in general, e.g. [1]. We
emphasize, however, that all the results of [7] that are true are easily
obtained by applying the results and techniques of [2-6]; for example,
Theorem 0.1 of [7] follows easily from [6].

ExampLE. We consider the Banach spaces I; and [, in their natural
duality.

Let B={xel,| |x|<i"?}. This is a norm compact convex circled
subset of [,

o0
Let A= () (nB+n"1 D), where D is the unit ball of I,,. Now, consider

n=1
the sequence a = (i"!). Since 1< nfi-+i/n for all i,neN, it follows that
1/i € n/i*+1/n for all i, neN , and we have aeA. We shall compute the
distance (in the norm generated by A) from the element a to the linear span
{J{AB| 420} of B in l,. Suppose b = (b),eB, 1 =0, a > 0 are such that a
—ibeoA. We must have o> 0, because a¢span B. Then there exist b,
=(h, ) e B and x, =(x,;)eD such that

.%:N,u,i = a(nbm,a-%x,,,i) for all i, neN.

Since, for i = 24,

" Qendln Mathermaties 29 2 . &
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