e ©
Imn STUDIA MATHEMATICA, T. LXXXIL. (1985)

Strict dual of Cb(X, E)
by
M. NAWROCKI (Poznati)

Abstract. A representation of the strict dual of the space C*(X, E) of all bounded
continuous functions from a completely regular space X into a Hausdorff topological vector
space E is obtained.

1. Introduction. The Riesz-type representations of functionals on spaces
of vector-valued continuous functions have been studied by several authors
including [3, 6, 8, 9, 11, 14, 16]. In most of these works, at some point, the
density of the algebraic tensor product C*(X)®E in the space C'(X, E)
equipped with the strict topology B, was important and, moreover, this
seemed essential for obtaining the corresponding results. However, although
C"(X)®E is always f,-dense in C*(X, E) for a locally convex E, and also for
some concrete classes of not necessarily locally convex spaces E, the general
case remains open. This had been obstructing research (cf. [11, 147]) for quite
a while until Kalton (cf. [7]) realized, using some idea of “submeasure
convergence”, that at least if X is compact (and then f, is the uniform
topology), the “representation theory” can avoid the “density problem”. A
version of this works fine also if X is an arbitrary completely regular space
and is used in this paper to prove that C*(X)®E is always dense in C*(X, E)
with its weak. topology (i.e. the weakest one defined by the dual of
(C®(X, E), Bo)). This suffices to obtain the results given in the abstract.

2. Preliminaries. Throughout this paper X will denote a completely
regular space, E a real Hausdorff topological vector space, C®(X, E) the
space of all bounded continuous E-valued functions on X. We will denote by
Cb(X) the space C*(X, R) and by I(X) the subset of C?(X) of all functions
satisfying 0 < < 1. The algebraic tensor product C*(X)®E is the subspace
of C"(X, E) spanned by the functions of the form f®e, f®e(x)=f(x)e,
where feC"(X), ecE. The uniform topology u on C*(X, E) is the vector
topology which has as a base at zero the family of all sets of the form
{feC’(X, E): f(X) « W}, where W is a neighbourhood of zero in E. The
strict topology By is the linear topology which has as a base at zero all sets of
the form {fe C*(X, E): gf(X) = W}, where W is a neighbourhood of zero in
E and g is a bounded real function on X vanishing at infinity.
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Let Y be a completely regular space. We will denote by (YY), 2 (Y),
and ¢#(Y) the families of all compact, zero, and cozero subsets of Y,
respectively. By #(Y) we will denote the algebra of subsets of Y generated
by Z(Y). We refer to [5] for general facts about 2 (Y).

Let f be a function on X into E or R and UecZ (X). /< U means that
there exists a ZeZ (X) such that Z < U and supp f = Z, where supp f
= {x: f(x) # 0}.

We recall that if Ae #(X) or Ae Z(X), and BecZ(X), A — B, then:

(a) there are sets Oe Z'(X), Ze Z(X) such that Ac O < Z <= B;

(b) there is a function e l(X) such that y <B and y(4) = {1}.

If E is a topological vector space, then its topology may be generated by
some family of F-seminorms. This implies that E has a base at zero
consisting of zero or cozero and balanced sets.

3. The topology y, on C’(X, E). A positive Baire measure m on X is a'

finite, real-valued, nonnegative, finitely "additive set function on #(X) such
that if Be #(X) then m(B) = sup {m(Z): ZeB, Ze Z(X)}. The measure m is
called tight if for every ¢ > 0 there exists a compact set K such that m(B) < ¢
for any set Be g#(X) which is disjoint from K. The family of all positive, tight
Baire measures on X will be denoted by M," (X).

By , is denoted the vector topology on C*(X, E) which has as a base at
zero the family of all sets of the form

(% {feC"(X, E): m({x: f(x)¢W}) < &}
where me M, (X), W is a neighbourhood of zero in E which belongs to %(E)
and ¢ is a positive number.

Let 7 be the family of all linear topologies T on C*(X, E) satisfying
7|y < wlg for any u-bounded subset H of C*(X, E). We define 7, as sup 7.

LemMa 1. If T is a linear functional on C*(X, E), then the following
statements are equivalent:

(a) TE(Cb(X, E)a ?o)’a

(b) Tf, — O for every net {f,} = C*(X, E) which is u-bounded and p,-
convergent to zero.

Proof. The implication (a)=>(b) is obvious. (b) implies that the weak

topology o (T) induced on C*(X, E) by T belongs to 7. Thus a(T) < Yo, 50
T is yg-continuous.

Lemma 2. The space C*(X)QE is yo-dense in C*(X, E).
Proof. Fix feC’(X, E). Let R be the family of all functions of the
form } ¥, ®f(x), where y;eI(X), x;e X, y;(x) =1 and suppy; ~suppy;

i=1
=Qifisj i,j=1,...,n neN.ltis easy to see that R is u-bounded. Let V
be a yr-neighbourhood. of zero of the form (x). We can assume that W is
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balanced. Choose a balanced neighbourhood of zero W, in E such that W,
+W, < W and WyecZ (E). By the tightness of m we can find Ke ' (X)
such that m(B) <e/2 for every Be #(X), BnK =@. The set f(K) is
compact, so f(K) « S+ W, for some finite subset S of E. It follows that there

are sets By, ..., Bye #(X) such that K < U B;, B;nB;=Q if i #j and f(x)

—f(xYeWfor any x, xX’eB;, i=1, k Let Zie Z(X), Ujgc# (X) be such
that Z; = B; « U; and m(U;\Z) < a/(2k We can find sets O,ec% (X) such
that Z, c O, cU;and 0;nO;=Q if i j,i=1, ..., k. There exist functions
YieI(X) such that y,;(Z)= {1}, suppy; =0, i=1, ..., k. Choose x;eZ;,

k
i=1,..., k. Then the function h= Y ¢;®f(x,) belongs to R and

i=1

k

k
L mUAZ)+m(X\ U V)

i=1

< kef(2k)+¢/2 =¢.

m({x: (f~mHEW}) <

Therefore f—geV, so C*(X)®E is yo-dense in C* (X, E).

4. The dual of (C*(X, E), 8,).
THEOREM. Every fo-continuous linear functional on C®(X, E) is 7o~
continuous.

Proof. Let Te(C*(X, E), ). There exists a Bo-neighbourhood of zero-
={f: gf (X) = W;} in C*(X,E) such that

1) ITf1 <1

We may assume that W, is balanced and belongs to ¢ (E). Since f, < u, we
can find a u-neighbourhood of zero G = {f: f(X) < W,} in C*(X, E) such
that W, is balanced and

) GeV, W,eW,

for any feV.

Wye Z (E).

We first observe that

(3) for every ¢ > 0, there is. a K,e o' (X) such that, if feG and f(K,) = [0},
then |Tf| <&

Indeed, let K, be a compact subset of X such that {x: |g(x)| = ¢} = K,. For
any feG, f(X) < W, by (2). If, moreover, f(K,) = {0}, then gf(X) ceW,.
Therefore by (1), |Tf| <e.

We define F(U) = sup {|Tf]: feG, f < U} for any UecZ (X). Obvious-
ly F is positive, finite and if Uy, U,ecZ (X), U,.c U,, then F(U,) < F(U,).
We will show that
(4) FU,uUg<

F(U)+F(U,) for any U,, UecZ (X).
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‘Let Uy, UyecZ (X), feG and f < Uy U U,. There is a Ze %' (X) such that
suppfcZ < U, uU,.Fixe>0.Let K, besuchasin(3). Put K = Z nK,, H,
=K nU,, Hy, = K\H,. For any xe H, there are sets U e cZ (X), Z*¢ Z(X)
such that xeU* < Z*c U;, i =1, 2. The family {U*: xgK} is an open
cover of K. By the compactness of K we can find a finite subset S of K such
that K < {{U% xeS}. Let Zj={) {Z% xeSnH}, i=1,2 Then
Z’E,Z(X), Z! & U, i=1,2 There are sets Z;c Z(X) and 0; ec;‘t‘(X) such
that Z;c O, = Z, < Uy, i=1,2. Let Yo, ¥y, Y,el(X) be functions with
supports U, u U, \(Z} U ZY), 0y, O,, respectively. We define functions ¢,
=Y:ilpo+yr+¥2)7), i=0, 1, 2. Let fi=¢.f, i=0, 1, 2. Then f, <Uy,
[ <U, and fy(K,) = {0}. Moreover, fieG, i=1, 2, and f = fo+f,+f;, s0
that

ITf| < | Tfol +ITHI+ITfl <

This implies F(U,uU,) < F(U;)+F(U,). Suppose additionally that
U, nU,=0Q.Fix ¢ > 0. Let f;, f,eG be such that Tf; = F(U)—¢/2, i'=1,
2. Then f = fi+f, <U;uU,, feG and Tf > F(U,)+F(U,)—e. Thus

®)
F(U,uUy) =

e+F(Uy)+F(U,).

F(U,)+F(U,)" for any U, UyecZ(X), Uy nU, = Q.

From (3) it immediately follows that

(6) for every e¢>0, there exists a K,e X' (X) such that F(U)<e¢ if
UecZ(X) and UnK, = Q.

Moreover, .

(7) for every ¢ >0, and UecZ(X) there is a Ze Z(X), Z < U such that ‘

FU\Z)<¢

Indeed, if this statement fails to be true for some ¢ > 0, then by induction we
can find a sequence {f,} =G such that suppf,nsuppf; =@ for i+ j and
Tfi>ei,j=1,2,...But f"= fi+ ... + f, belongs to G for every ne N and
Tf" > ne. This contradicts (1).

We define m(B) = inf {F (U): UecZ'(X), U > B} for B < X. It is easy to
see that the family & of all subsets B of X such that for any given &> 0
there are ZeZ'(X), UecZ(X), Z =« B < U satisfying m(U\Z)<¢ is an
algebra. By (7), ¢ (X) = 4, so #(X) = 4. The function F restricted to #(X)
is a positive Baire measure on X. From (6) it immediately follows that m is
tight.

We will now show that T is ys-continuous. Let { fa},eA be a u-bounded
net in C?(X, E) which is p-convergent to zero. There is a & > 1 such that
1fu} ©0G. Fix &> 0. Let Z, = {x: f,(x)¢eW;}, U, = {x: f,(x)¢eW,}. Then

icm

Strict dual of C*(X, E) 37

Z,eZ(X), Ujec#(X) and Z, = U,. We can find functions ¥, (X) such
that ¥,,< U, and ¥, (Z,) = {1}, ae A. Let h, = ¢, f, and k, = (1 —,) f,. Then
h,<U, and 6~ *h,eG, so that |Th,| < dm(U,). Moreover, k,(X) = &W,, and
so k,eseV where s = sup{|g(x)}: xeX}. Thus |Tf,| < |Thd+|Tk| < m(U,)
+s¢. This implies that lim Tf, = 0, and so, by Lemma 1, T'is y,-continuous.

CoroLLARY 1. The space C?(X)®E is o (Y, Y')-dense in C*(X, E), where
= (C"(X, E), ﬁo).

Proof. By the Theorem, ¢(Y, Y') <
follows from Lemma 2.

CoroLLARY 2. (C*(X, E), Bo) = M,(Bo(X), E).
(For the definition of M,(Bo(X), E') see [11])

Proof. This corollary follows immediately from [11], Theorem 4.8 and
Corollary 1.

Yo. Now, the statement immiediately
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An atomic theory of ergodic H” spaces
by

R. CABALLERO and A. de la TORRE (Milaga)

Abstract. Let T be an invertible measure-preserving ergodic transformation on a
probability space. We define elementary functions associated with T, called “atoms”, and we use
them to define ergodic Hardy spaces H” for p< 1. From this atomic definition we obtain
maximal function characterizations of H”. We identify the duals of H” and of H!, and finally
we obtain interpolation theorems between H” and L,, p<1<gq. ’

Introduction. In this paper we study the Hardy spaces induced by
an invertible, ergodic, measure-preserving transformation on a probability
space X.

P In [2], Coifman and Weiss studied the space H'(X), which they defined
as the space of functions in L, (X) whose ergodic Hilbert transform is in
L,(X). Their main results are that, as in the classical case, H' can be
characterized in terms of maximal operators and that the dual of H' can be
identified with the space of functions of bounded mean oscillation. (See [4]
for the case H'(R").

It was found later that H?(R" can be defined in terms of elementary
functions called “atoms” [1], this atomic characterization being very useful
in studying interpolation, duality, etc.

Since the methods of [2] do not seem to work for p <1, we use an
“atomic” approach. We define H4(X) for 1/2 < p < 1, p < g, as the spaces of
functions that can be written in terms of (p, g) atoms. In the first section we
show that H™ can be characterized in terms of maximal operators as in the
case p=1. As a corollary we show that H»¢ depends only on p, i.e. H™
= HP®, so that we may write simply H”.

In the second section we use our atoms to study the dual of H?. One
easily sees then that the dual of H' is BMO, obtaining another proof of the
result in [2]. For p <1 the analogy with the case H”(R") breaks down since
the dual of H?(X) (p < 1) is made only of multiples of the functional induced
by the measure on X, while in the classical case H?* is a space of Lipschitz
functions. For ergodic H” spaces, defined by an ergodic action of Rin X, this
result was obtained by Muhly in [6], but his methods are entirely different
and do not seem to be applicable to the discrete case. Our “atomic” proof
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