Strict dual of $C^b(X, E)$

by

M. NAWROCKI (Poznań)

Abstract. A representation of the strict dual of the space $C^b(X, E)$ of all bounded continuous functions from a completely regular space X into a Hausdorff topological vector space E is obtained.

- 1. Introduction. The Riesz-type representations of functionals on spaces of vector-valued continuous functions have been studied by several authors including [3, 6, 8, 9, 11, 14, 16]. In most of these works, at some point, the density of the algebraic tensor product $C^b(X) \otimes E$ in the space $C^b(X, E)$ equipped with the strict topology β_0 was important and, moreover, this seemed essential for obtaining the corresponding results. However, although $C^b(X) \otimes E$ is always β_0 -dense in $C^b(X, E)$ for a locally convex E, and also for some concrete classes of not necessarily locally convex spaces E, the general case remains open. This had been obstructing research (cf. [11, 14]) for quite a while until Kalton (cf. [7]) realized, using some idea of "submeasure convergence", that at least if X is compact (and then β_0 is the uniform topology), the "representation theory" can avoid the "density problem". A version of this works fine also if X is an arbitrary completely regular space and is used in this paper to prove that $C^b(X) \otimes E$ is always dense in $C^b(X, E)$ with its weak topology (i.e. the weakest one defined by the dual of $(C^b(X, E), \beta_0)$). This suffices to obtain the results given in the abstract.
- 2. Preliminaries. Throughout this paper X will denote a completely regular space, E a real Hausdorff topological vector space, $C^b(X, E)$ the space of all bounded continuous E-valued functions on X. We will denote by $C^b(X)$ the space $C^b(X, R)$ and by I(X) the subset of $C^b(X)$ of all functions ψ satisfying $0 \le \psi \le 1$. The algebraic tensor product $C^b(X) \otimes E$ is the subspace of $C^b(X, E)$ spanned by the functions of the form $f \otimes e$, $f \otimes e(x) = f(x)e$, where $f \in C^b(X)$, $e \in E$. The uniform topology u on $C^b(X, E)$ is the vector topology which has as a base at zero the family of all sets of the form $\{f \in C^b(X, E): f(X) \subset W\}$, where W is a neighbourhood of zero in E. The strict topology f0 is the linear topology which has as a base at zero all sets of the form $\{f \in C^b(X, E): gf(X) \subset W\}$, where W is a neighbourhood of zero in E and E0 is a bounded real function on E1 vanishing at infinity.

^{3 -} Studia mathematica LXXXII.1

Let Y be a completely regular space. We will denote by $\mathcal{K}(Y)$, $\mathcal{Z}(Y)$, and $c\mathcal{Z}(Y)$ the families of all compact, zero, and cozero subsets of Y, respectively. By $\mathcal{Z}(Y)$ we will denote the algebra of subsets of Y generated by $\mathcal{Z}(Y)$. We refer to [5] for general facts about $\mathcal{Z}(Y)$.

Let f be a function on X into E or \mathbb{R} and $U \in c\mathscr{Z}(X)$, f < U means that there exists a $Z \in \mathscr{Z}(X)$ such that $Z \subset U$ and supp $f \subset Z$, where supp $f = \{x: f(x) \neq 0\}$.

We recall that if $A \in \mathcal{X}(X)$ or $A \in \mathcal{Z}(X)$, and $B \in c\mathcal{Z}(X)$, $A \subset B$, then:

- (a) there are sets $0 \in \mathcal{Z}(X)$, $Z \in \mathcal{Z}(X)$ such that $A \subset O \subset Z \subset B$;
- (b) there is a function $\psi \in I(X)$ such that $\psi \prec B$ and $\psi(A) = \{1\}$.

If E is a topological vector space, then its topology may be generated by some family of F-seminorms. This implies that E has a base at zero consisting of zero or cozero and balanced sets.

3. The topology γ_0 on $C^b(X, E)$. A positive Baire measure m on X is a finite, real-valued, nonnegative, finitely additive set function on $\mathscr{B}(X)$ such that if $B \in \mathscr{B}(X)$ then $m(B) = \sup \{m(Z): Z \in B, Z \in \mathscr{Z}(X)\}$. The measure m is called tight if for every $\varepsilon > 0$ there exists a compact set K such that $m(B) \le \varepsilon$ for any set $B \in \mathscr{B}(X)$ which is disjoint from K. The family of all positive, tight Baire measures on X will be denoted by $M_r^+(X)$.

By μ_t is denoted the vector topology on $C^b(X, E)$ which has as a base at zero the family of all sets of the form

$$\{f \in C^b(X, E): m(\{x: f(x) \notin W\}) \leq \varepsilon\},\$$

where $m \in M_t^+(X)$, W is a neighbourhood of zero in E which belongs to $\mathscr{B}(E)$ and ε is a positive number.

Let \mathscr{T} be the family of all linear topologies τ on $C^b(X, E)$ satisfying $\tau|_H \leq \mu_{\parallel H}$ for any u-bounded subset H of $C^b(X, E)$. We define γ_0 as $\sup \mathscr{T}$.

LEMMA 1. If T is a linear functional on $C^b(X, E)$, then the following statements are equivalent:

- (a) $T \in (C^b(X, E), \gamma_0)'$,
- (b) $Tf_{\alpha} \to 0$ for every net $\{f_{\alpha}\} \subset C^b(X, E)$ which is u-bounded and μ_i -convergent to zero.

Proof. The implication (a) \Rightarrow (b) is obvious. (b) implies that the weak topology $\sigma(T)$ induced on $C^b(X, E)$ by T belongs to \mathcal{F} . Thus $\sigma(T) \leqslant \gamma_0$, so T is γ_0 -continuous.

LEMMA 2. The space $C^b(X) \otimes E$ is γ_0 -dense in $C^b(X, E)$.

Proof. Fix $f \in C^b(X, E)$. Let R be the family of all functions of the form $\sum_{i=1}^n \psi_i \otimes f(x_i)$, where $\psi_i \in I(X)$, $x_i \in X$, $\psi_i(x_i) = 1$ and $\sup \psi_i \cap \sup \psi_j = \emptyset$ if $i \neq j$, i, j = 1, ..., n, $n \in N$. It is easy to see that R is u-bounded. Let V be a μ_r -neighbourhood of zero of the form (*). We can assume that W is

balanced. Choose a balanced neighbourhood of zero W_1 in E such that $W_1 + W_1 \subset W$ and $W_1 \in c\mathscr{Z}(E)$. By the tightness of m we can find $K \in \mathscr{K}(X)$ such that $m(B) \leq \varepsilon/2$ for every $B \in \mathscr{B}(X)$, $B \cap K = \emptyset$. The set f(K) is compact, so $f(K) \subset S + W_1$ for some finite subset S of E. It follows that there are sets $B_1, \ldots, B_k \in \mathscr{B}(X)$ such that $K \subset \bigcup_{i=1}^k B_i, B_i \cap B_j = \emptyset$ if $i \neq j$ and $f(x) - f(x') \in W$ for any $x, x' \in B_i, i = 1, \ldots, k$. Let $Z_i \in \mathscr{Z}(X), U_i \in c\mathscr{Z}(X)$ be such that $Z_i \subset B_i \subset U_i$ and $m(U_i \setminus Z_i) \leq \varepsilon/(2k)$. We can find sets $O_i \in c\mathscr{Z}(X)$ such that $Z_i \subset O_i \subset U_i$ and $O_i \cap O_j = \emptyset$ if $i \neq j$, $i = 1, \ldots, k$. There exist functions $\psi_i \in I(X)$ such that $\psi_i(Z_i) = \{1\}$, supp $\psi_i = O_i, i = 1, \ldots, k$. Choose $x_i \in Z_i$, $x \in I(X)$ is a function $x \in I(X)$ belongs to I(X).

 $i=1,\ldots,k$. Then the function $h=\sum_{i=1}^{k}\psi_{i}\otimes f(x_{i})$ belongs to R and

$$m(\lbrace x: (f-h)(x) \notin W \rbrace) \leq \sum_{i=1}^{k} m(U_i \setminus Z_i) + m(X \setminus \bigcup_{i=1}^{k} U_i)$$
$$\leq k\varepsilon/(2k) + \varepsilon/2 = \varepsilon.$$

Therefore $f-g \in V$, so $C^b(X) \otimes E$ is γ_0 -dense in $C^b(X, E)$.

4. The dual of $(C^b(X, E), \beta_0)$.

Theorem. Every β_0 -continuous linear functional on $C^b(X,E)$ is γ_0 -continuous.

Proof. Let $T \in (C^b(X, E), \beta_0)'$. There exists a β_0 -neighbourhood of zero $V = \{f: gf(X) \subset W_1\}$ in $C^b(X, E)$ such that

(1)
$$|Tf| \leq 1$$
 for any $f \in V$.

We may assume that W_1 is balanced and belongs to $c\mathscr{Z}(E)$. Since $\beta_0 \leq u$, we can find a u-neighbourhood of zero $G = \{f : f(X) \subset W_2\}$ in $C^b(X, E)$ such that W_2 is balanced and

(2)
$$G \subset V$$
, $W_2 \subset W_1$, $W_2 \in \mathcal{Z}(E)$.

We first observe that

(3) for every $\varepsilon > 0$, there is a $K_{\varepsilon} \in \mathcal{K}(X)$ such that, if $f \in G$ and $f(K_{\varepsilon}) = \{0\}$, then $|Tf| \leq \varepsilon$.

Indeed, let K_{ε} be a compact subset of X such that $\{x : |g(x)| \ge \varepsilon\} \subset K_{\varepsilon}$. For any $f \in G$, $f(X) \subset W_1$ by (2). If, moreover, $f(K_{\varepsilon}) = \{0\}$, then $gf(X) \subset \varepsilon W_1$. Therefore by (1), $|Tf| \le \varepsilon$.

We define $F(U) = \sup\{|Tf|: f \in G, f \prec U\}$ for any $U \in c\mathscr{Z}(X)$. Obviously F is positive, finite and if U_1 , $U_2 \in c\mathscr{Z}(X)$, $U_1 \subseteq U_2$, then $F(U_1) \leqslant F(U_2)$. We will show that

(4)
$$F(U_1 \cup U_2) \leqslant F(U_1) + F(U_2) \quad \text{for any } U_1, U_2 \in c\mathscr{Z}(X).$$

Let $U_1,\ U_2\in c\mathscr{Z}(X),\ f\in G$ and $f\prec U_1\cup U_2$. There is a $Z\in\mathscr{Z}(X)$ such that $\sup f\subset Z\subset U_1\cup U_2$. Fix $\varepsilon>0$. Let K_ε be such as in (3). Put $K=Z\cap K_\varepsilon,\ H_1=K\cap U_1,\ H_2=K\setminus H_1$. For any $x\in H_i$ there are sets $U^x\in c\mathscr{Z}(X),\ Z^x\in \mathscr{Z}(X)$ such that $x\in U^x\subset Z^x\subset U_i,\ i=1,2$. The family $\{U^x\colon x\in K\}$ is an open cover of K. By the compactness of K we can find a finite subset S of K such that $K\subset \bigcup\{U^x\colon x\in S\}$. Let $Z_i'=\bigcup\{Z^x\colon x\in S\cap H_i\},\ i=1,2$. Then $Z_i'\in \mathscr{Z}(X),\ Z_i'\subset U_i,\ i=1,2$. There are sets $Z_i\in \mathscr{Z}(X)$ and $O_i\in c\mathscr{Z}(X)$ such that $Z_i'\subset O_i\subset Z_i\subset U_i,\ i=1,2$. Let $\psi_0,\ \psi_1,\ \psi_2\in I(X)$ be functions with supports $U_1\cup U_2\setminus (Z_1'\cup Z_2'),\ O_1,\ O_2$, respectively. We define functions $\varphi_i=\psi_i(\psi_0+\psi_1+\psi_2)^{-1},\ i=0,1,2$. Let $f_i=\varphi_i f,\ i=0,1,2$. Then $f_1\prec U_1,\ f_2\prec U_2$ and $f_0(K_\varepsilon)=\{0\}$. Moreover, $f_i\in G,\ i=1,2,$ and $f=f_0+f_1+f_2,$ so that

$$|Tf| \le |Tf_0| + |Tf_1| + |Tf_2| \le \varepsilon + F(U_1) + F(U_2).$$

This implies $F(U_1 \cup U_2) \leq F(U_1) + F(U_2)$. Suppose additionally that $U_1 \cap U_2 = \emptyset$. Fix $\varepsilon > 0$. Let f_1 , $f_2 \in G$ be such that $Tf_i \geq F(U_i) - \varepsilon/2$, i = 1, 2. Then $f = f_1 + f_2 < U_1 \cup U_2$, $f \in G$ and $Tf \geq F(U_1) + F(U_2) - \varepsilon$. Thus

(5) $F(U_1 \cup U_2) = F(U_1) + F(U_2)' \text{ for any } U_1, U_2 \in c\mathscr{Z}(X), U_1 \cap U_2 = \emptyset.$

From (3) it immediately follows that

(6) for every $\varepsilon > 0$, there exists a $K_{\varepsilon} \in \mathcal{X}(X)$ such that $F(U) \leqslant \varepsilon$ if $U \in c\mathcal{Z}(X)$ and $U \cap K_{\varepsilon} = \emptyset$.

Moreover,

(7) for every $\varepsilon > 0$, and $U \in c\mathscr{Z}(X)$ there is a $Z \in \mathscr{Z}(X)$, $Z \subset U$ such that $F(U \setminus Z) \leq \varepsilon$.

Indeed, if this statement fails to be true for some $\varepsilon > 0$, then by induction we can find a sequence $\{f_n\} \subset G$ such that $\operatorname{supp} f_i \cap \operatorname{supp} f_j = \emptyset$ for $i \neq j$ and $Tf_j > \varepsilon$, $i, j = 1, 2, \ldots$ But $f^n = f_1 + \ldots + f_n$ belongs to G for every $n \in \mathbb{N}$ and $Tf^n > n\varepsilon$. This contradicts (1).

We define $m(B) = \inf\{F(U): U \in c\mathscr{Z}(X), U \supset B\}$ for $B \subset X$. It is easy to see that the family \mathscr{B} of all subsets B of X such that for any given $\varepsilon > 0$ there are $Z \in \mathscr{Z}(X), U \in c\mathscr{Z}(X), Z \subset B \subset U$ satisfying $m(U \setminus Z) \leqslant \varepsilon$ is an algebra. By (7), $c\mathscr{Z}(X) \subset \mathscr{B}$, so $\mathscr{B}(X) \subset \mathscr{B}$. The function F restricted to $\mathscr{B}(X)$ is a positive Baire measure on X. From (6) it immediately follows that m is tight.

We will now show that T is γ_0 -continuous. Let $\{f_\alpha\}_{\alpha\in A}$ be a u-bounded net in $C^b(X, E)$ which is μ -convergent to zero. There is a $\delta > 1$ such that $\{f_\alpha\} \subset \delta G$. Fix $\varepsilon > 0$. Let $Z_\alpha = \{x: f_\alpha(x) \notin \varepsilon W_1\}$, $U_\alpha = \{x: f_\alpha(x) \notin \varepsilon W_2\}$. Then

 $Z_{\alpha} \in \mathcal{Z}(X), \ U_{\alpha} \in c\mathcal{Z}(X) \ \text{and} \ Z_{\alpha} \subset U_{\alpha}.$ We can find functions $\psi_{\alpha} \in I(X)$ such that $\psi_{\alpha} : \subset U_{\alpha}$ and $\psi_{\alpha}(Z_{\alpha}) = \{1\}, \ \alpha \in A.$ Let $h_{\alpha} = \psi_{\alpha} f_{\alpha}$ and $k_{\alpha} = (1 - \psi_{\alpha}) f_{\alpha}.$ Then $h_{\alpha} \subset U_{\alpha}$ and $\delta^{-1} h_{\alpha} \in G$, so that $|Th_{\alpha}| \leq \delta m(U_{\alpha}).$ Moreover, $k_{\alpha}(X) \subset \varepsilon W_{1}$, and so $k_{\alpha} \in s\varepsilon V$ where $s = \sup\{|g(x)|: x \in X\}.$ Thus $|Tf_{\alpha}| \leq |Th_{\alpha}| + |Tk_{\alpha}| \leq \delta m(U_{\alpha}) + s\varepsilon.$ This implies that $\lim Tf_{\alpha} = 0$, and so, by Lemma 1, T is γ_{0} -continuous.

COROLLARY 1. The space $C^b(X) \otimes E$ is $\sigma(Y, Y')$ -dense in $C^b(X, E)$, where $Y = (C^b(X, E), \beta_0)$.

Proof. By the Theorem, $\sigma(Y, Y') \leq \gamma_0$. Now, the statement immediately follows from Lemma 2.

COROLLARY 2. $(C^b(X, E), \beta_0)' = M_t(Bo(X), E')$. (For the definition of $M_t(Bo(X), E')$ see [11].)

Proof. This corollary follows immediately from [11], Theorem 4.8 and Corollary 1.

References

- R. C. Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104.
- [2] H. S. Collins and J. R. Dorroh, Remarks on certain function spaces, Math. Ann. 176 (1968), 157-168.
- [3] R. A. Fontenot, Strict topologies for vector-valued continuous functions, Canad. J. Math. 26 (1974), 841-853.
- [4] D. H. Fremlin, D. J. Garling, and R. G. Haydon, Bounded measures on topological spaces, Proc. London Math. Soc. (3) 25 (1972), 115-136.
- [5] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, New Jersey, 1960.
- [6] G. W. Johnson, The dual of C(S, F), Math. Ann. 187 (1970), 1-8.
- [7] N. J. Kalton, Isomorphisms between spaces of vector-valued continuous functions, Proc. Edinburgh Math. Soc. 26 (1983), 29-48.
- [8] A. K. Katsaras, Continuous linear functionals on spaces of vector-valeed functions, Bull. Soc. Math. Grèce 15 (1974), 13-19.
- [9] -, Spaces of vector measures, Trans. Amer. Math. Soc. 206 (1975), 313-328.
- [10] -, On the strict topology in the non-locally convex setting, Math. Nachr. 102 (1981), 321-329.
- [11] -, On the strict topology in the non-locally convex setting. II, Acta Math. Hung. 41 (1-2), (1983), 77-88.
- [12] L. A. Khan, The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc. 22 I (1979), 35-41.
- [13] A. H. Shuchat, Approximation of vector-valued continuous functions, Proc. Amer. Math. Soc. 31 (1972), 97-103.
- [14] -, Integral representation theorems in topological vector spaces, Trans. Amer. Math. Soc. 172 (1972), 373-397.

38

M. Nawrocki

icm[©]

[15] V. S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl. 48 (1965), 161-228.

[16] J. Wells, Bounded continuous vector-valued functions on a locally compact space, Michigan Math. J. 12 (1965), 119-126.

INSTYTUT MATEMATYKI UNIWERSYTETU ADAMA MICKIEWICZA INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVERSITY ul. Matejki 48/49, 60-769 Poznań, Poland

Received March 19, 1984

(1964)

STUDIA MATHEMATICA, T. LXXXII. (1985)

An atomic theory of ergodic H^p spaces

bу

R. CABALLERO and A. de la TORRE (Málaga)

Abstract. Let T be an invertible measure-preserving ergodic transformation on a probability space. We define elementary functions associated with T, called "atoms", and we use them to define ergodic Hardy spaces H^p for $p \le 1$. From this atomic definition we obtain maximal function characterizations of H^p . We identify the duals of H^p and of H^1 , and finally we obtain interpolation theorems between H^p and L_q , $p \le 1 < q$.

Introduction. In this paper we study the Hardy spaces induced by an invertible, ergodic, measure-preserving transformation on a probability space X.

In [2], Coifman and Weiss studied the space $H^1(X)$, which they defined as the space of functions in $L_1(X)$ whose ergodic Hilbert transform is in $L_1(X)$. Their main results are that, as in the classical case, H^1 can be characterized in terms of maximal operators and that the dual of H^1 can be identified with the space of functions of bounded mean oscillation. (See [4] for the case $H^1(\mathbb{R}^n)$).

It was found later that $H^p(\mathbb{R}^n)$ can be defined in terms of elementary functions called "atoms" [1], this atomic characterization being very useful in studying interpolation, duality, etc.

Since the methods of [2] do not seem to work for p < 1, we use an "atomic" approach. We define $H^{p,q}(X)$ for 1/2 , <math>p < q, as the spaces of functions that can be written in terms of (p, q) atoms. In the first section we show that $H^{p,q}$ can be characterized in terms of maximal operators as in the case p = 1. As a corollary we show that $H^{p,q}$ depends only on p, i.e. $H^{p,q} = H^{p,\infty}$, so that we may write simply H^p .

In the second section we use our atoms to study the dual of H^p . One easily sees then that the dual of H^1 is BMO, obtaining another proof of the result in [2]. For p < 1 the analogy with the case $H^p(\mathbb{R}^n)$ breaks down since the dual of $H^p(X)$ (p < 1) is made only of multiples of the functional induced by the measure on X, while in the classical case H^{p*} is a space of Lipschitz functions. For ergodic H^p spaces, defined by an ergodic action of \mathbb{R} in X, this result was obtained by Muhly in [6], but his methods are entirely different and do not seem to be applicable to the discrete case. Our "atomic" proof