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Some combinatorial and probabilistic inequalities
and their application to Banach space theory

by
STANISLAW KWAPIEN (Warszawa) and CARSTEN SCHUTT (Kiel)

Abstract. Some combinatorial and probabilistic estimates are proved. As applications they
are used to study invariants of Banach spaces, such as the projection constant, '

Introduction. We consider here for x, ye R, 1<p< o0

>

Ave [i(x; Vewli=1ll;
n

and give the order of this expression in terms of the vectors x and y. For
special vectors x or y this was already considered by E. D. Gluskin [4] and,
independently, in [7].

It seems that the estimates that we obtain are, in a sense, crucial if one
wants to compute projection constants of symmetric Banach spaces and
related invariants.

We give some examples and applications. We characterize the symmetric
sublattices of I'(co) and the symmetric subspaces of I'. We compute the
positive projection constant of a (nnite-dimensional) Orlicz space and show
that it is, up to a universal constant, the same as the one of the dual space.
For symmetric spaces this is in general not true.

The order of the projection constant of the Lorentz space 121, ne N, is
estimated. The result seems to be rather peculiar.

We are grateful to J. Lindenstrauss and G. Schechtman for discussions.

0. Preliminaries. In this paper we are mainly concerned with finite-
dimensional Banach spaces that have a 1-symmetric basis, i.e. a basis {e}t=y
such that for all ;e R, &, = +1,i=1,..., n and all permutations # we have

n . n
12 aell = || Y & aien-
{m] iml

The projeétion constant of a finite-dimensional Banach space E is given by

Y (E) = inf {||P||| P is a projection from I® onto E}.
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And for spaces with 1-symmetric bases we can define the positive projection
constant

yZ (E) = supinf {||[P}|| P is a positive projection from F onto E}
FRE

where the supremum is taken over all lattices F that contain E as a
sublattice.

The notions from Banach space theory we use are standard and can be
found in [5].

1. Combinatorial estimates. We consider here the set &
. permutations of {1, 2, ..., n}. On this set we introduce the measure u with

u(n) = 1/n! for each ne &. Thus the integral equals the average over all
permutations: ‘

jf(n du(n)=~— Zf(n)
) Suppose that o= (a);<1j<,€ R"*" is a matrix with n rows and n
columns. Then s(k), k=1,2,...,n*> denotes the nonincreasing
rearrangement of {|a; j|: 1< i, j < n}. This notation will be used throughout
this section.
TueoreM 1.1. For all neN and all ae R**" we have
in7t Z _flmax |al1t(l)!dl"' n! Z s (k).
k=1 $ 1<i<n

Proof. Let us observe that both expressions in the inequality define
norms on R**". Therefore to prove the right-hand inequality it is enough to
check it for the extreme points in the unit ball of the norm given by the
expression on the right side of the inequality. However, it is easy to see that
these extreme points are matrices a such that [g; | = 1 for at least n pairs of
(i, j) and a;; = 0 for all other (i, j), or such that |a;.56] = n for a pair (iq, jo)
and qg;; = 0 for all other (i, /). For such matrices it is very easy to verify
the inequality.

To prove the left-hand inequality it is enough to consider only matrices
a with at most n terms different from 0. This is so, because if we replace by 0
numbers which do not enter into s(k), k=1, 2, ..., n, then the left side of
the inequality will not change, while the right side will not increase. We may
also assume that there are no two.different from 0 terms in the same row or
column. This is so, because if we move any term a;, into row / and column
m so that there are no other terms different from 0 in row ! and in column m,
and if we put O instead of a;,, then for the new matrix the left side will be
the same as for the old one, while the right side will not increase. To see this
let us denote by a' the new matrix and let x: G — & be the map defined as
follows:

n

of all

icm°
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if w(j) = k and 7 (l) 3 m then n*(]) =
n*(t) = n(t) for all other t;

if m(j) # k and w(l) = m then n* (j) =
n*(t) = n(f) for all other ¢;
for all other m let n* = x. Then it is easy to see that for all e & we have
n** =7 and

max |a; ,,(,,l+ max Ia( RS

1<isn

m, * (m™ ! (m)) = k, =* (j) = =(l), and

k, n*(n™ ' (k)) = m, =* () = n(j), and

Max |y qp|+ max [ ).
1<ign 1<i<n

This justifies our claim.

Thus, without loss of generality we may assume that all numbers in the
matrix which are different from 0 are placed on the diagonal of the matrix.
Therefore, taking the average, we will obtain a new matrix with constant
terms on the diagonal and such that the right side will not increase, while the
left side will remain unchanged. So, the whole proof is reduced to verifying
the inequality for the diagonal matrix with all terms on the diagonal equal to
1. For this matrix the right side of the inequality is equal to

11 N
—T T ees e " ——2”’
TR TR b =

cf. [2), Ch. 4, §1. w

TueoreM 1.2, For 1 £ p< oo and all neN and ac R**" we have

n nz
URPIRICE L) st}
k= k=n+1
n n "2
<X o) Tdpm <07t T s+ T s(p)”.
& i=1 k=1 k=n+1
Proof. Let &’ be the matrix defined by a;=a; if a;; in the

nonincreasing rearrangement into s(k), k=1, 2, ..., n* has the index less
than or equal to n, and let ¢; = 0 in the opposite case. Then for the matrix
d =a—d" we have |aj; < s(n) for 1<i, j<n By the triangle inequality
‘we obtain

”Z 16,0 )P dpa(m) < § Z la‘.,.a)l")“’du(n)H(Z lafiwol?)"” dps(m)

g fm]

<([(S 1) dn ()" + f(‘ZI lafrwcol) dpa(m)
® im] =

w2
=t Y s+

k=n-+1

n~! i s(k).
K=1
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To prove the left-hand inequality let us denote

m) = (Z |a.{,n(t)]p)1/p
i=1
for simplicity. By the Holder inequality we obtain
[fPdp < (] fdupiee- 1)(§f2pd”)(l’“ bizp=1).
=3 =3 =

By simple computations'wc obtain

1
Z lai P lagd?+= Y, laq*?
%k ni<ij<n
J#l

2
-l ( jfﬁ(n)du(n)) +s(nf ffﬂ(n)du(n)
] 1

.By Theorem 1.1 it follows that

f 127 (m) () =

@

Y s <2 ] max ol du® <2 (3 |amqol?) " dpa(m).
k=1 @ i=

S 1s€is
Let
n ! n?
={J (Z laiy?) P dp(@m})’  and  x = E!;j“"(n)d,u(n) =n"1 . ZH s(k)P.

Combining the above inequalities, we get
X271 (224 2 )Pt

or, which is the same,

plp—1)
¢<§)=<i> _2£_2P<0.
y y y

Since the function ¢(4) is increasing for A > 37 and ¢ (3% > 0, we conclude
that x/y < 3%. This together with Theorem 1.1 proves that

n MZ n
L sWHe Y s(?) <5 [ (X 1auol?) " dus(m.

2. Symmetric sublattices of I' (c,) and symmetric subspaces of /. If M is
an- Orlicz function, then M* denotes its complementary function [5]. Let

> y,>0 with Y y;=1. Then we can
0-and M(1)=1 by

yeR" be such that y; >y, >

=1
associate with y a convex function M with M(0) =

icm
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putting

k
21) M(Y y)=kn fork=1,..n
i=1
and extending it (e.g. linearly).
Lemma 2.1. Let ye R with yy 29,2 ... 2 y,>0and 3 y; =1 and let
i=1

M be a convex function satigfying (2.1). Moreover, let

By = {xe K| Z M(x) < 1},

4
B = convex hull {(& Y y)-| Z h=n,g=1%1,i=1,..,n}
=1

Then we have
B = By, < 3B.

Proof. To prove the left-hand inclusion we just have to observe that

n [ n
2 Mle ¥ oyl = Z /n=1.
i=1 J=1 i=
On the other hand, let
Y M(x)= with x; 2%, > ... 2x,20
i=1
and let
X =848 =(X1, 00y %, 0, ., O+(0, .0, 0, Xpiqs ovny X0)
be such that M(x) > 1/n for 1 <i<r and M(x) < 1/n for r <i < n. Since
M(y,) = 1/n, we have %< (yq, ..., y1) Moreover, since (yq, ..., y1)eB, we
get Xe B.
On the other hand, for every i, 1 <i<r, there is a k; with
(22 kifn < M(x) < (ki+1)/n.
Since '

r

’é kin<g Y M(g1 y) < }5 M(x

i=1 =

-

we conclude that

0,...,0)eB.

ky ke
=(Z yj’“w Z yjs
J=1 J=1
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Moreover, we have by (2.2)

kyt+1 ket 1

. ky ky .
2=(2 Y Visoos2 2 950, ., 02( Yy, Ty 0,....,0)> %
i=1 j=1 j=1 i=1

Thus Xe2B and £+%¢3B. u
CoroLLARY 2.2. There is a C >0 such that for ali neN, yeR", y, >y,

>..2y,>0 and Y yi=1 we have
e

1 c
&5 ot < [ max ol dute) < 1,

[}
where || ||, denotes the norm of (IM)* with M satisfying (2.1). ‘
On the other hand, for every Orlicz function M there is a ye R" such that
the above estimates are satisfied.
This corollary is proved by Theorem 1.1 and Lemma 2.1.
We say that a norm is an average of Orlicz norms if

I = if a1l

with Y |a;| = 1. We call 'such a space an average of Orlicz spaces.

THEOREM 2.3. There is a .C > 0 with the following property: E is a finite-
dimensional symmetric sublattice of I'(co) if and only if E is C-order
isomorphic to an average of Orlicz spaces.

Proof. Let {y,}f":, be a l-symmetric, normalized basis of a sublattice.
Then, because of symmetricity, we get

n 0 n 0 n
[ anl=Y max ¥ ayk ) =Y Ave max | Y auyyilk, D).
i=1 k=1 1€ISwm =71 - k=1 =7 1SI€w §=1
Since the vectors y; are disjoint, we have
n a0 .
|2 ayl=Y Ave max max |ay,y;(k, ).
i=1 k=1 m 1SI€w 15ign

Now we put z (k) := max y;(k, }) and obtain
] .
Lo o0
|3 ayll= Y Ave max |ay,z (k).
i=1 k=1 =® 1%i<n
Now we apply Corollary 2.2, In order to find all averages of Orlicz spaces as

C-order isomorphic copies of sublattices of I* (co) we apply again Corollary
22. m
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CoroLLARY 24. There is a constant C > 0 such that Jor all ne N and all
xe R" we have

- X,
CHlxl < /n flng{gc i%du(n) <Cll-
Risn Tl

Proof. We see immediately that for y=(1/\/rﬁ),f'=1 we get in (2.1)
M~ (k/n) ~ \ﬁc7n. Thus the result follows from Corollary 2.2. u
LemMmA 2.5 [7]. Let {e}i=, be a l-symmetric basis of E. Then

N
Ve (E) =inf max Y max [<x* e <(x, e

"l =1 j=y 1Kign

N
where the infimum is taken over all sequences satisfying S|l =n
I=1

With this lemma and Corollary 2.4 we obtain the following corollary.
This has been done in ([7], Prop. 3.2).

CoroLLARY 2.6. Let {¢}j=1 be a 1-symmetric basis of E and ide L(I, E)
n

the natural identity id((@)/=,) = Y. a,e;. Then we have

i=1
(| % L
nl |l —=e
by
where C is a constant not depending on n.
CoroLLARY 2.7. There is a C >0 such. that for all ne N we have
@) C*/nflnn < yh(2") < C/nfinn ifl1<r<2,
@ € /nlnm " <L) < C/nllnn) " if 2<r
Proof. The left-hand inequalities are consequences of Corollary 2.6.

The right-hand inequality (i) follows from Corollary 2.4 and Lemma 2.5 if
one chooses as a sequence

;’?? (kél:l :l/k)v v (l/\/‘l?(lj)"l= !

with = & permutation, For the right-hand inequality in (i) we choose instead
the sequence used in ([7], Proof of Theorem 3.1) to get the estimate for I2, m

TureorREM 2.8 (cf. also Corollary 4.3). There is a constant C > 0 such that
Jor all Orlicz functions we have

C iy (R < vE (B < Cyi ().
Proof. By Theorem 2.3, IM is C-isomorphic to a sublattice E of I* (/).

)'1 < Cyi(E)

=~
< 0.

7 = Studia mathematica LXXXIL. |
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Thus there is a positive projection from I* (/) onto E with [|P|| < y5 (I}'). By
dualization it follows that the identity on E* can be positively factored with
the same bound. By Lemma 2.1 of [7] it follows that

PRI S CyE(h. w

It was pointed out to us by Gideon Schechtman, Rehovot, that the estimate
of Theorem 1.2 for p = 2 gives a characterization of the finite-dimensional
symmetric subspaces of I*. The infinite-dimensional version of this characteri-
zation was proved by Dacunha-Castelle [1]. It seems that the arguments in
[1] were purely infinite-dimensional and that the finite-dimensional version
could not be obtained from them.

The following arguments are given here with the permission of Gideon
Schechtman. Let

(2=1/m)~ *mt? if +<1/n,

(2.3) ) :
@—1/m)~t@t=1/n) if t>1/n.

M(t) = {
M is an Orlicz function.

LemMMA 29. Let a; =2 a, = ... 2 a, = 0. Then we have

n n2
@)~ @iy <n™t Y a+(n™t Y 4 )1/2 < 6n7 ! |l(@)2 il
i=1 i=n+1
Proof. Assume that {lal|, < 1/2. Since 2M (t) € M (2t), we have
C=1m ™ { Y Qa—1n+n Y af)<1/2.

a;>1/n - a;<i/n

In particular, we get

a;>1/n a;>1fn
Therefore we have
n
> <2 and card{il ¢, >1/n}<n
i=1
It follows that
n 'lz ‘
Y oat(n™t Y a?)‘/2<3.
i=1 i=n+1

To prove the left-hand inequality assume

n "2
Yoa+n(t Y @)’ <1
i=1

i=nt+1

icm
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Clearly, we have
w2
2
n oy asn( Y a+ Y d)<n(ln+ln)=
ayslin i=nt1 a;<1/n
i<n

and, moreover, since a,.; <

gn? Z o<

1/n, we have

a; < Z aQ < 1.
ap>1/n i=1
Thercfore we get

n2

Z M@ == { ¥ Qa-im+n ¥ af}<4. =
ap>1fn aq<1i/n

Let yeR", y= 0, and ;
= 121 M@y)/ Y M)

= =1

where M is defined by (2.3). Note that M, is an Orlicz function.

Lemma 2.10. There is @ C> 0 such that for all neN and all x, ye R",
y =0, we have

n

C™ ixllae, < (3,
1

i=

M)~ Ave (3, baywol”)"™ < Clixlu,

Lemma 2.10 follows immediately from Theorem 1.2 and Lemma 2.9.

Tueorem 2.11. There is a C>0 such that every finite-dimensional
symmetric subspace of I' is C-isomorphic to an average of Orlicz spaces.

Prqqf. Let {y;}{-; be a l-symmetric basis of a subspace of I. By
symmetricity and the Khintchine inequality it follows that

15 axi

is up to a factor \/5 the same as
Z AVG Z [@ny Y1 (k) )
k=1 = .

Now we have to apply Lemma 2.10. w

3. The projection constant of />,
LemmA 3.1. Let {e}}=y be a l-symmetric basis of the Banach space E.
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Then we have
N

(Z Kx* Cnity) {(x, 5’?‘>| < \/va

inf max

Voo (E) <
Iel=1 1S4
N

where the infimum is taken over all finite sequences with 3 lixll =n
=1
This lemma easily follows from the equality n =y, (E)7, (E), the Khin-
tchine inequality and the l-symmetricity of the basis {e}/-;.

THEOREM 3.2. There are constants C;, C, > 0 such that for all neN,

> 5, we have
n n
< 2,1y < R
Cl\/lnlnn Veo (I )\szllnlnn

. Proof. By Lemma 3.1 and since it is enough to consider only extreme
points x* = (l/ﬁ)L, — up to signs and permutations — of the dual unit
ball we obtain for the projection constant

2)1/2

X (z)
n 1 }lz
Y s,(k)+7( ¥ |s,(k)fz)”2}

(i)
k=1 N k=nt+1

mfz 2(2

or by Theorem 1.2,
N
inf ¥ {n’l
=1

where s, denote the decreasing rearrangements. By Corollary 2.4 we know
that

icm

n
Y sk
k=1
is up to a constant equal to n~*/?||x||,. Thus we obtain for the projection
constant ‘
PR i 2172
G.1) inf ¥ —= {lxlla+( Y Is:(01%) "}
I=1 n k=n+1

In order to estimate this expression from above we just consider the vector

=(1//in2if, with |Ix,; = ¥, Wiln2i) < 5 Let C>0
i=1

be such that Y 1/(jln?2j) < C. Then the set
. =1

2Inlnn, n}

o, i=1, ..., [M(Cjln? 2j)]}

1 .
{-f———j]:l,...
S

| Cijin?2j <

1
h {\/i}InZJ

n, 1<i,j<n}

RN AR
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is contained in the set of the greatest n numbers of

1
—=—| 1 < i,j < nb.
{\/ifln 2]' EVAS "}
Indeed, the cardinality is less than

_—
J=1 lenzzj\”

Now, (3.1) is — up to a constant — less than

n 1 {( | /2 n 1 12
______ : )
Inlnn \/;, & in?2i ;1 l==[n/(CZ':ﬂn22})] ijIn?2j

Z ln(len 1(CjIn’j) 1/2
lnlnn Jln j
\<~ s
¢ \ 1nlnn

In order to estimate (3.1) from below we recall that for xe R, x; > x, > ...
.2 X, 20 there are natural numbers I, =1, > ... »1,>0 such that

.Zl =n and {x,/\/fl 1<j<l, 1<i<n} are the greatest n numbers of
= .

Jj < n}. Thus we can estimate (3.1) from below by

o o3, 5
'ang: {lx.uﬁ(glm "‘“(z+1)) }
ok (i)

=1
n/i. Thus the above is

Since Y}

i=1

=nand l; 2,2 ... 21,20, we have |, <

Jm ) Qm

:7_;1nf z (z x, ()2 (1 +In i)/

N
and this, by Hélder’s inequality and Z 1%dl2,1 = n, is

f‘“fZ(Z 'x'(l)') L i+ ) > 0

=1 \i=1 Inlnn "
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4. The positive projection constants of finite-dimensional Orlicz spaces. In
this section E will denote the expectation of random variables, and we will
use the notations x v y = max {x, y}, x Ay =min{x, y}. Let &)=y, (n)=y
be two sequences of random variables on a probability space.

Lemma 4.1. Let {e;} be a 1-symmetric basis of an n-dimensional Banach
space F. We have

n
M rEE) <nE|Y Gel) " max E max (<, x*) &,
i=1

x*hpest  L&IS

p) ' min E max [{x, e¥dny.

e + > n(E *
(“) 'Vw(F) = n( “i=21 e | x|l p21 1€isn

Proof. Inequality (i) is a continuous version of Lemma 2.5. To prove

(i) we use once again Lemma 2.5. For given ¢ > 0 let x;, Xj, ..., Xy be
N

vectors in F such that 3 |lx|lr =n and
=1

N
e+yi(F)> max Y max [{e, x*) {(x, e}
||x*]|F*$1 =1 1<isa
Since the expectation of a random variable is not greater than its supremum,
we have
N

max ) max [<e, x*)<x;, e})|
Il a1 (=1 1<i<n

n
EllZ meflle) " E 3 max fn xi, et

N
EIIZ meXe)” " z [xlle) min E max |{x, ey n
1= [[E2F:2¢ 1€isn

= "(E”Z "ieﬂlF;‘)—l ' n‘un E max (<, e >l
i=1 lixll p= 1sis
Combining this with the preceding inequahty, we obtaln the proof of (ii).

. Let M be an Orlicz function such that lim M(s)/s =0 and let ¢
§=0
=M"1(1). By I} we will denote the n-dimensional Orlicz space given by M,

that is, IM coincides with R" equipped with the norm whose unit ball is the
set {(o): Z M (o) < 1}

Wlth M we associate a sequence (&)=, of independent, nonnegative
random variables such that the distribution of each ¢ satisfies E¢, Iys
= tM(1/t) A 1/g for each t > 0. Such a distribution exists and is unique. It
has an atom at 0 and beyond this atom it has a density which is equal to
(72 M (1s)—s"* M(1/s)I

sz~ 1"
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LemMmA 4.2. For each sequence (o) in I we have

(I—e Ml < E Jmax. loaf G5 < 211(et)l e -

Proof. Since

max |o & < 1+Z L2123 A

1si€n

we get

n . n
E max e & < 1+ 3l B, 0 < 1+ 3 M.

Thus we deduce that if ||()||y < 1 then E max Joy| € < 2, which proves the
right-hand inequality. On the other hand

P(max ful& > 9 = 1= ]] (1-P (ol > )

15ign i=1

> 1-exp(— Y P(mfé>9)
i=1
for each s> 0. Since for each x >0 such that 1—e™' > 1—¢"* we have

l—e™*2(1—e YHx, we deduce that if P(max |ofé > l)s —e™ ! then
1€i€n
for all s =0,

P(max loyf & =) 2 (1—e™) Y Pllafg=s v 1).
1si€n i=1

Since for each nonnegative random variable #n we have Enl,.,

o0
= [ P(n>s v c)ds, integrating the last inequality we get
0

E max loal & = (1—e™ ") Z lot BT gy a1 = (1—€7Y) Z M (i) A leil/e.

Hence if E max ol < 1—e™?' then P(max )& 2 1)< 1—e"! and by
X‘;I'Sn

what precedes Z M () A loyl/@ < 1. By the choice of ¢ it follows that if
/o < 1 then M (]oz,l)<ta‘|/g and therefore Z M) Alol/e <1 1mp]1es

that Z M (o) < 1. This proves the left-hand inequality.

Let M* denote the complementary function of M and let (5:“) o* be
defined for M* in the same way as (&), ¢ are defined for M. We will assume
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in the sequel that the sequences (¢), (¢¥) are independent. For two sequences
a,, b, of real numbers we will write

a, ~b, up to a constant C
if

Ctla,<b,<Ca, forall n.
CoroLrArY 4.3. Up to a universal constant,

Vo) ~ y L) ~ n(ENEe) " ~n(EIEDI) T ~n(E m

€

ax &¢&XL
i<

Proof. Since the norm of the canonical isomorphism between IM* and
(IM)* does mot exceed 2, we obtain by Lemmas 4.1 and 4.2

$—e D (ENEw) ™" < 75 B9 < an(EIEI)
Once again by Lemma 4.2 it follows that, up ‘to the constant 2,
ENEMaer ~ E Jmax & &F ~ E &M ar-

This proves Corollary 4.3.
To estimate the order of E max & &F let us introduce the function

1<isn

H@)=u  [[ ()7 (M ()= M(s)s)(M* (t)~ M* (t)/t)ds de

0<s5<p,0<t<g*
st<u
and let G = H™" be its inverse function. Easy computations yield
E¢; 6?14“{;5!4 = uH (1/u).

, Remark. If M or M* satisfies the 4, condition then H is equivalent in
the sense of Orlicz functions to the function

H@w) = 1] M (s) M* (t)dsdt.
. 0<s<s‘q,<0u<r<q

Another formula for H is the following one:

H@=u  [{  (st)2M*(M () M(M* (t))dsdt.

0<s5<0,0 <t<g*
St <u
By Lemma 4.2 we have for each sequence (@) of real numbers
@)y < E Jnax lewl € &% < 2 {1t
i<n

Putting in the above inequalities oy =1, i=1, 2,...,n, and applying
Corollary 4.3, we obtain the following estimate:
CoroLLARY 4.4. Up to a universal constant,

YH (B9 ~ nG(1/n).

icm°®
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The order of y (I5) was computed in [7]. Here we want to give more
precise estimates. For the case of If it is better to consider slightly different
random variables from those we introduce in the general case. For a fixed P

let (€)=, be a sequence of independent random variables each of them
distributed by

PG <t =exp(—c,t™) for t>0, where ¢,=TI((p—1)/p)?

and let (§f)i=; be such a sequence for p* = p/(p—1). If ¥ |af” =1 then the
i=1
random variable max || is equally distributed with ¢,, and therefore we
18i%n
have

E max |oy| & =E& =1,

1€ign

By Lemma 4.1 this gives the following inequalities:

n(ENENM " < vhm < n(ENEIN,) "

This implies that E[[(¢¥), < E|l(¢),« and by symmetry the last two
expressions are equal. As a consequence of this we immediately obtain the
following result:

CoROLLARY 4.5. For 1 <p < oo and all ne N we have
Vol =208 = n(EIENI,) ™ = nEICI) " = n(E max e,

Thus to compute 7 (IF) we may assume that p < p*, or p=2.If p < p*
then &*? has finite moments of order greater than 1 and hence by the Law
of Large Numbers we have

limn™! 3 & = BEFP = F(1/p") P T2~ p),

n-roo i=1

the convergence being in L,. This shows that

fim n™ P E[(ER]], = lim E(n™* 3 &7 = P(1/p%) 1 T @~ )P,

1=+ 00 (LD

Il p =2 then by arguments as in Theorem 2, Ch. VII, § 7 of [3] we obtain

L]

% 1
ImE (&2vr) =2,
o nlnn \/7?
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COROLLARY 4.6. .
—-1/2
() If p=2 then lim yZ(1?) (1”1?}1) = J/x.
(i) If p <p* then lim yL(B)n/P~1 = I'(1/p*) I'(2—p)~ /2.
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