STUDIA MATHEMATICA, T. LXXXIL (1985) I :

Holomorphic approximation in infinite-dimensional
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Abstract. We establish a sharp version of the classical Oka-Weil theorem for
pseudoconvex Riemann domains over Fréchet spaces with basis. As an application of this result
we show that the compact-ported topology introduced by Nachbin coincides with the compact-
open topology on the space of all holomorphic functions on an arbitrary open subset of a
Fréchet-Schwartz space with basis.

Introduction. Let @ be a domain of holomorphy in C" and let K be a
- holomorphically convex compact subset of Q. A classical result of Oka [28],

which extends earlier results of Weil [36], [37] and Oka himself [27], states
that every function which is holomorphic on a neighborhood of K can be
uniformly approximated on K by functions which are holomorphic on the
whole of Q. The Oka—Weil theorem, as this result is currently called, has
been generalized in various directions by different authors. Among them,
Noverraz [26] and Schottenloher [33] have obtained infinite-dimensional
versions of this theorem. Noverraz considered the case of Banach spaces with -
basis, whereas Schottenloher dealt with the case of Fréchet spaces with basis.
Schottenloher considered, moreover, the case of Riemann domains, whereas
Noverraz restricted himself to the case of one-sheeted domains.

In this paper we improve the above-mentioned results by giving a sharp
version of the Oka—Weil theorem for pseudoconvex Riemann domains over
Fréchet spaces with basis. We show the existence of an open set ¥ containing
K such that the given function can be uniformly approximated on compact
subsets of ¥ by a sequence of functions which are holomorphic on the whole
of Q. This is essentially the content of Theorem 5.1. The fact that we can
approximate by sequences, and not just by nets, is the crucial point, since the
open set ¥V is no longer hemicompact, as in the finite-dimensional case.
Furthermore, 1f we restrict ourselves to the case of Fréchet—Schwartz spaces
with basis, then we can get even uniform approximation on a suitable
neighborhood of K. This is the essential content of Theorem 7.5.

As an application of these approximation theorems, we show that the
compact-ported topology t,, introduced by Nachbin [24] coincides with the
compact-open topology t, on the space of all holomorphic functions on 2
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whenever Q is an arbitrary Riemann domain over a Fréchet—Schwartz space
with basis. This is the content of Theorem 8.2, which extends earlier results
of Barroso [3], Schottenloher [34], Barroso and Nachbin [4], Boland and
Dineen [7], Meise [18] and the author [22], [23]. Actually we use Theorem
7.5 to prove Theorem 8.2 for pseudoconvex Riemann domains, but then the
result for arbitrary Riemann domains follows easily by passing to the
envelope of holomorphy. Such an approach has already been followed by
Schottenloher [34] in his note on domains over CV. It is clear why it is
important to consider arbitrary Riemann domains, even if one is primarily
interested in one-sheeted domains.

Now we describe briefly the organization of this paper. In Section 1 we
fix some notation and terminology and collect a few results that will often be
used throughout the paper. The first important result is Theorem 24, a
global approximation theorem for Fréchet spaces with basis which will be
the key to the proof of Theorem 5.1. Sections 2 and 3 are devoted to the
proof of Theorem 2.4. In Section 2 the theorem is proved when the spaces
under consideration have a continuous norm, whereas in Section 3 the
theorem is proved for the spaces without a continuous norm. A result of
Matyszczyk [17] shows that these two cases are essentially different. The
main result in Section 4 is Theorem 4.1. This theorem shows the abundance
of certain special open sets and is the key link between Theorems 2.4 and 5.1.
In Section 5 we establish Theorem 5.1, a sharp theorem of the Oka-Weil
type which we have already mentioned. This theorem will play a key role in
the proof of Theorem 8.2. In Section 6 we collect a few results about spaces

of holomorphic germs which have been established elsewhere and which will -

be very useful in subsequent sections. In Section 7 we establish Theorem 7.5,
an even sharper theorem of Oka—Weil type, which we¢ have also mentioned
before. Theorem 7.5 is derived from Theorem 5.1 with the aid of a

topological lemma from Section 6. Theorem 7.5 is used to establish the -

identity of the topologies 7, and 1., for pseudoconvex Riemann domains over
Fréchet-Schwartz spaces with basis. In Theorem 8.2 the hypothesis of
pseudoconvexity is removed by passing to the envelope of holomorphy, as
we mentioned before. Finally, with the help of a result of Pelczyfiski [29], the
hypothesis’' of a basis may be replaced by the hypothesis' of the bounded
approximation property in each of our main results. We end the paper with
a few remarks indicating how “this can be accomplished.

I am grateful to the referee for correcting several mistakes in the original
version of this paper.

1. Notation and preliminaries. Let E denote a locally convex space, here
always assumed to be complex and Hausdorff. Let cs(E) denote the set of all
nontrivial continuous seminorms on E. Let ¥ (E) denote the set of all open,
convex, balanced neighborhoods of zero in E.
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Let (2, @) be a Riemann domain over E, ie. Q is a Hausdorff topological
space and ¢: Q — E is a local homeomorphism. For short, we often write Q
instead of (R, ¢). If (Z, ¥) is another Riemann domain over E, then a
morphism is a continuous mapping f: Q — X such that  of = ¢. A section of
Q is a continuous mapping o: 4 — Q, with A — E, such that p oo =id on A.
For X =Q and Ve (E) we write X+ V< Q if for each xe X there is a
section g: @(x)+V — Q such that cop(x)=x. Then we define x+a
=0o(@(x)+a) for every xe X and aeV,

A mapping f* Q@ — F, where F is a locally convex space, is said to be
holomorphic if for each xeQ there is a section ¢: @(x)+V—Q, with
Ve #7(E), such that foo is holomorphic on ¢(x)+ V. Let 5#(Q, F) denote the
vector space of all holomorphic mappings f/° @ — F. When F = C we write
#(Q) instead of #° (2, C). Let 7, denote the compact-open topology on
H (2, F). If (Z, Y) is a Riemann domain over F then a mapping f: Q- Z is
said to be holomorphic if Y ofe #(Q, F).

Let fe #°(Q). Then for each xe there are continuous n-homogeneous
polynomials P"f(x): E— C and Ve ¥ (E) such that x+VeQ and

5 P (@)

n=0

flx+a)=

uniformly for ae V. If we define P; f (x) = P"f (x) (a) for acE and xeQ then
Pife #(Q) for every neN and acE. If xeQ and Ve ¥ (E) are such that x
+V < Q then we have the Cauchy inequalities

[Paf () < sup {{f (x+4a): AeC, |4 <1},

For any X < Q we write Hf]lx—sup{lf(x)l xe X}. For any neN, X = Q
and A < E we write

I1P"flIx,a = sup {|Pef (X): xe X, ae A}.

A function f> @ — [ — o0, +00) is said to be plurisubharmonic if for each
xeQ there is a section ¢: ¢(x)+V — Q, with Ve ¥ (E), such that foo is
plurisubharmonic on ¢ (x)+ V. Let Ps(RQ) (resp. Psc(£2)) denote the collection
of all plurisubharmonic (resp. plurisubharmonic and continuous) functions
on Q. )

For X =« Q and & < #(Q) we define

Xy ={yeQ: [f() <|iflx for every fe #}.
Likewise, for X < Q and & < Ps(Q) we define

Xz ={yeQ: f(y) <supf(x) for every fe #}
xeX

Then X < Xpyo © Koy © Xy for every X = Q.
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Next we define the distance functions df:

Q2 — [0, +o0], for aecs(E),
and 8, @ xE —(0, +0], as follows: .

Bi(p(x), )~ Q
with ¢ o (x) = x}u {0},

d%(x) = sup {r > 0: there is a section o:

8q(x, @) = sup {r > 0: there is a section o: Dg{¢(x), a, ) - Q2
with o 0¢(x) = x},
where for &, aeE and r > 0 we write
Bi(¢, 1) =1{E4b: beE, a(b) <71},
Dg(&, a, 1) ={é+4a: AeC, A <r}.

d%(x) > 0 then for each re(0, d5(x)] there is a unique set B (x, r) = Q
contamlng x such that ¢: Bh(x, r)— Bg(¢@(x), 7) is a bijection. Likewise, for
each xeQ, acE and re(0, Bn(x, a)] there is a unique set Dy(x,a,r) =@
containing x such that ¢: Dg(x, a, r)— Dg(@(x), a, r) is a bijection. The
function d% is continuous, the function d, is lower semicontinuous, and they
are related by the formula

dy(x) =1inf {85(x, a): aeE, a(a) = 1}.

The domain (2, ¢) is said to be one-sheeted if the mapping ¢ is injective.
The domain  is said to be holomorphically separated if, given x, ye Q with
x 5 y, one can find fe #°(Q) such that f(x) # f(y). The domain Q is said to
be holomorphically convex if Kmn) ccQforevery Kcc@Q, where X ccY
means that X is relatively compact in ¥, The domain Q is said to be
metrically holomorphically convex if for each K — < Q there exists aecs(E)
such that d%(K,q) >0, where we define d%(X) = 1nf dj(x) for any set

X < Q. Finally, the domain € is said to be pseudoconvex if the function
—log 8, is plurisubharmonic on Q xE. The following useful result gives
several characterizations of pseuadoconvexity; cf. [25 Théoréme 2.4.8] or [32,
Satz 2.8].

1.1. ProposiTiON. For a Riemann domain (Q, @) over a locally convex
space E, the following conditions are equivalent:

(a) Q is pseudoconvex.

(b) d5(Xpyq) = d%(X) for every X < and aecs(E).

(c) For each K = = Q there exists accs(E) such that d%(Rpyg) > 0.

d Kps(w‘lw)) < @ (M) for each finite-dimensional subspace M of
E and each K < = ¢~ (M).

(€} 9~ *(M) is pseudoconvex for each finite-dimensional subspace
M of E.
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The following result will also be useful, and may be proved by adapting
the proof of [12, Proposition 1.G.2].

1.2. ProrosITION. Every connected Riemann domain over a separable
Fréchet space is second countable. _

Throughout this paper we shall often use several results from
Hormander’s book [13]." We restate these results here in a way more
convenient to us.

1.3. TaeoreM. Let (Q, ¢) be a pseudoconvex Riemann domain over C™.
Then:

(a) @ is holomorphically convex.

(b) @ is holomorphically separated.

(c) The equation % =g has a solution fe C*(Q) for every ge %, 1, (2Q)
with dg = 0.

(d) Let K be a compact subset of Q such that K s =K. Then each
Sunction which is holomorphic on a neighborhood of K can be uniformly
approximated on K by functions belonging to #(Q).

(e) Let U be an open subset of Q. Then st(n) < U for every K<<= U if
and only if U is pseudoconvex and 3#(Q) is dense in (#(U), to).
(0 Kpyoy = Koy = Koy for every K c = Q.

Proof. (a) follows from [13, Theorem 5.4.6]. Note that Hoérmander
assumes by definition that Riemann domains are holomorphically separated,
but he does not really use this assumption in the proof of [13, Theorem
5.4.6]. (b) follows from [13, Corollary 5.2.12]. (c) follows from [13, Theorem
5.1.6 and Corollary 5.2.6]. (d) follows from [13, Corollary 5.2.9]. To (e) the
proof of [13, Theorem 4.3.3] applies. Finally, to prove (f) we adapt the proof
of [13, Theorem 43.4]. Let U be an open neighborhood of Kpyn. By
[13, Theorem 5.1.6] there is a function uePsc(Q) such that {zeQ: u(z)
<c} c = Q for every ce R. Then the proof of [13, Theorem 2.6.11] yields
a strictly plurisubharmonic function ve ¢*(£2) such that v <0 on K, v >0
on Q\U and {zeQ: v(2) <c} ccQ for every ceR. Let Q, = {zeQ: v(2)
<0}. Then #(Q) is dense in (#(Q), o) by [13, Theorem 5.2.8]. On
the other hand, Q, is obviously pseudoconvex, and thus () implies that
K w2 = U. The inclusion K D cIfZPs(m follows and the proof is
complete.

We conclude this preliminary section with a few remarks on Schauder

' bases. A sequence (e,) in a Fréchet space E is said to be a Schauder basis if

WO
every xe E admits a unique representation as a series x = 3. &,(x)e,, where
n=1
the series converges in the ordinary sense for the topology of E. Let E,
denote the subspace generated by ey, ..., e, and let T,: E— E, denote the

canonical projection. Then it follows from the Open Mapping Theorem that
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the sequence (T;) is equicontinuous and converges to the identity uniformly
on compact sets, and that the space E has a fundamental sequence of
continuous seminorms a; which satisfy the conditions «; = sup ;0 T,,. This

was essentially known to Banach; see [2, Chapitre VII, § 3].

2. Global approximation in spaces with a continuous norm.

2.1. DeriniTIoN. Let (2, @) be a Riemann domain over a locally convex
space E. An open set U < Q is said to have the property (P) if

Koy = U

The open set U is said to have the finite property (P) if U n @~ (M) has the
property (P) (with respect to the domain @~ 1 (M) for each finite-dimensional
subspace M of E. Clearly the property (P) implies the finite property P).

2.2. ExampLes. Let (22, @) be a Riemann domain over a locally convex
space E.

(a) If Vis a convex open set in E then U = ¢~ ' (V) has the property (P).

(b) If f & Ps () then U, = {xeQ: f(x) < c} has the property (P) for every
ceR.

(c) More generally, let f: @ —[—co, +c0] be an upper semicontinuous
function which is the supremum of a family (f;) =Ps(@). Then U,
= {xeQ: f(x) <c} has the property (P) for every ceR.

(d) If  is pseudoconvex and oecs(E) then it follows from (¢) that
U, = {xeQ: d%(x) > &} has the property (P). for every &> 0.

(e) If an open set U is the intersection of a family of open sets each of

“which has the property (P), then U has the property (P) as well

for every K cc U.

2.3. Lemma. Let (Q, @) be a pseudoconvex Riemann domain over a locally
convex space E. Let U be an open subset of Q with the finite property (P).

(@) If M is any finite-dimensional subspace of E then
Kt(w“‘(M)) ccUne (M) forevery KccUne ' (M).
In particular, #(p~*(M)) is dense in (# (U no™* (M), To).
(b) U is pseudoconvex.

(c) The union of an arbitrary collection of components of U has the finite
property (P) as well.

Proof. (a) follows from Theorem 1.3 (a), (f) and (e). Statement (b} is
clear. To show (c) let V be the union of a collection of components of U, and
let M be a finite-dimensional subspace of E. By (a), # (¢~ *(M)) is dense in
(#(U no™' (M), 7o). But this obviously implies that # (¢~ ' (M)) is dense
in (##(V e~ 1(M)), 7o). Then Theorem 1.3 (e) implies that

R -t S V007 (M) forevery Ko< Ve (M)
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It follows that ¥ n ¢~ (M) has the property (P) with respect to ¢~ ! (M) and
the proof of the lemma is complete.

Now we come to one of the key results in this paper.

24. THeEOREM. Let (Q, @) be a pseudoconvex Riemann domain over a
Fréchet space E which has a Schauder basis. Let U be an open subset of Q
with the finite property (P). If E has a continuous norm, or if U has finitely
many components, then each ge o (U) is the limit in (# (U), to) of a sequence
(f,) © #(Q). Furthermore, there is an increasing sequence of open sets C,(U)

00

with U= ) Cy(U) such that, whenever ge # (U) is bounded on U, the
k=1

corresponding sequence (f,) < #(Q) can be taken uniformly bounded on each
ClU).

Let (&) denote the sequence of coordinate functionals on CN.
Matyszezyk [17, Theorem 2.7] has shown that if U is a polynomially convex
open set in CM with infinitely many components U, U,, ... (there are plenty
of such open sets), then the function ge #°(U) defined by g =& on U,
(k=1,2,...) is not the limit in (s#(U), 7o) of any sequence (f,) = #(C").
This shows that the hypotheses that E has a continuous norm and that
U has finitely many components cannot be deleted simultaneously in
Theorem 24.

The author [23, Theorem 2.1] has already established Theorem 2.4 in
the case where the domain £ is one-sheeted and the space E has a
continuous norm. As we shall see, the proof in the case of Riemann domains
is considerably more involved. An earlier result of Matyszczyk [17, Theorem
2.9] on polynomially convex domains may be regarded also as a special case
of Theorem 2.4; see also [20, Theorem 4.7] for a complement of this result of
Matyszezyk.

In this section we shall prove Theorem 2.4 under the assumption that E
has a continuous norm, whereas in Section 3 we shall prove the theorem
under the assumption that U has finitely many components.

Before proving the theorem for E with a continuous norm, we shall need
three auxiliary lemmas. Lemma 2.5 is due to Schottenloher [33, p. 227],
whereas Lemmas 2.6 and 2.7 are inspired by the ideas of Schottenloher [33]
and Gruman and Kiselman [11], respectively.

2.5. Lemma [33]. Let (2, ¢) be a Riemann domain over a Fréchet space E
which has a Schauder basis. Set Q, = ¢~ *(E,) for every n. Then there exist a
sequence of open sets A, = Q and a sequence of holomorphic mappings t,: A,
— Q, with the following properties:

(@ Q= U A4,, 4, < 4,41 and Q, = A, for every n.
n=1

(b) t,=id on Q,, pot,=T,00 on A, and 1,07, 1 =Ty4+1 0T, =1, ON
A, for every n.
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(c) For each K = =  and Ve ¥ (E) with K+V < Q there exists neN
such that K = A, and t(x)ex+V for every xeK and k> n.

(@) If Q is pseudoconvex then each A, has the property (P).

Proof. If U is any open subset of 2 then we consider the functions
nh: U [0, +oo] defined by

1t (x) = inf &y x, T,o9 ()~ (x)-
These functions were introduced by Schottenloher [33, p, 226], who proved
that they are strictly positive and lower semicontinuous on U. Thus the

functions —log n}, are plurisubharmonic on U whenever U is pseudoconvex.
If we define

Ay = {xeQ: mh(x) > 1},
7,(0) = (@D) T o T00(x) (xed,),
where ‘
Dx = DQ(X’ ’1;1 op (x)— (p(X), r’nﬂ(x))a
then the asseftions in the lemma can be readily verified.

2.6. LEMMa. Let (@, @) be a connected Riemann domain over a Fréchet
space E which has a Schauder basis and a continuous norm. Let (A,) and (z,)
be two sequences satisfying the conditions in Lemma 2.5. Then there are two
sequences of open sets C, = B, < A, and a sequence (V,) = ¥ (E) with the
following properties:

(@ Q= UIB,,= le C,, B,=B,,, and C,+V,=C,.y for every n.

(b) B,nQ2y c < A,n, for every n and k.
(c) 7 (C,) =« B, N2  whenever k > n.

(d) If Q is pseudoconvex then
(Ban,;);(,,k) ccA,nQ, for every n and k.

Proof. Let (x,) be a fundamental sequence of continuous norms on E
such that

®pq 2> 20, and a,=supo,0T; for every n,
k
Let us consider the following auxiliary open sets:

X, ={xed, df()>1), Y,={xeX, n§ (x)>1}.

0 Lol :
Certainly Q = L_)1 X, = U1 Y, and the sequences (X,) and (Y,) are increasing.
n= n=
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We also see that
7(Y) = X,nQ, whenever k>n,

and hence
,(Y)cX,nQ, =Y,nQ, for every n.
In particular, we see that
M) Do(x,a,1) = X,

implies  Dg(7,(x), Th(a@), 1) = Y,n 2,

for every n. By modifying an idea of Schottenloher [33, p. 227] we shall
construct a sequence of continuous functions 7,: ¥, — [0, + 0] such that

(2 ‘ (xe¥, 00, y(¥) <m} = Q,

for every n and m. Without loss of generality we may assume that Y; Ny is
nonvoid. Fix a point x; € ¥; nQ,. For each point xe ¥, let I',(x) denote the
set of all finite sequences (Xq, ..., X;+1) in ¥, with x,.; = x such that

D!Z(xn (p(xrﬁ-l)“q’(xr ) 1+Er) < Yn

for suitable &, > 0 and r = 1, ..., s. It is easy to see that I',(x) is nonempty if
and only if x belongs to the component of ¥, which contains x,. We define
Vi Y, [0, +00] by ‘

5o = if {3 1 (0 (e )= OO (X1 - Xer )T}
r=1

if I',(x) is nonempty, and y,(x) = + oo if I',(x) is empty. It is easy to see that
each y, is continuous. Indeed, if xe Y, with y,(x) < 4+ and d§ (x) > 1 for
some aecs(E), then

17a(0) =7 () < 21 (9 3)— @ (x)
Let us fix n and inductively define a sequence of sets K,, as follows:

Kpiy = Y,0 U {B3,(x, 3): xeKu}.

for every ye B, (x, %)

Kl = Yntaﬂ':,(xls %)7

In order to show (2) we shall prove (3) and (4) below for every me N and for
a suitable constant ¢, to be defined shortly.

@) Ky c=Q,
) {xeY, N2, p,(x) <mf(2c)} = K.

Let us show (3) by induction on m. Clearly, (3) is true for m = 1. If we
assume K,, « = Q, then we can find points yy, ..., ys€Kp such that

T s
K, < k_Jl By (., B,
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hence
s a
Km+1 < Ul B!I",,(yrn 1) < C‘Qn
=
and (3) is proved. To prove (4) let us choose a constant ¢ > 1 such that
o, < coy on E,. This is possible since oy and «, are norms. Let us prove (4)

by induction on m. Clearly (4) is true for m = 1. Let us assume that (4) is true
for some m and let xe Y, @, with :

S <nl) < -”%1
Choose (X, ..., X, 1)e ', (x) such that
ZS: oy (<P(xr+1);¢’(5€r)) <’nlil-
r=1 2c
In view of (1) we may assume that
5) Do(xs, (1) =0 (%), 1+8) = Y, N,

for every r =1, ..., 5, for otherwise we could replace each x, by ,(x,). Let
t < s be the first integer such that

Y o (006 e1)— 0 (%) = —2’-"5

r=1

Using the Intermediate Value Theorem we can then find a point y in the line
segment [x,, X, ;] such that

¥ o1 (0 (%4 = 9 (5)+ o1 (P D)= 0 (%) < 7,

r<t

oy (@ X+ 1) =@ )+ X o1 (@ (X 1) =0 (%) < 5%

Then y,,(y) < m((Zc), and since (5) implies that yeY, ~Q,, the induction

hypothesis 1mp11e.s that yeK,,. Since a,(p(x)~ () <% we conclude that

xe K+, and (4) is proved. Certainly (2) follows from (3) and (4). If we define
B, = {xeY,: y,(x) <n}

then (2) implies that B, N @, < = 2,. But this obviously implies that

B,nQyccA,nQ, for every n and Kk,

and (b) is proved. Then (d) follows from Lemmas 2.5 (d) and 2.3 (a). Clearly
Q=

) B,, and the sequence (B,) is increasing since y,., <y, on Y,. Finally,
n
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we define ‘
Z,={xeB,: nj,(x)>1}, C,={xeZ,; 7 (x) > 1}.

Then clearly
u(Co) =7 (Z,) =B,nQ, whenever k >n.

If we set V,={aeE: a,4;(a) <1} then, since o+, > 20, We see that

- C,+V, ©Cniy. The remaining assertions in the lemma are clear.

2.7. LemMa. Let (R, @) be a connected pseudoconvex Riemann domain
over a Fréchet space E which has a Schauder basis and a continuous norm.
Then, with the notation of Lemmas 2.5 and 2.6, for each f,e #(2,) and for
each ¢ > 0 there exists fe #(Q) such that

@ f=f, onQy;
) If—fuotilc, S &;
© ”f”cj < +o0 for every j.
Proof. Consider the sets
X=‘Qnu(Bann+l):f(.Q"+1)a Y= Qn—!—l\An'

Then X and Y are disjoint closed subsets of Q,.;. Let yre 6% (Q,4,) with

Y =1 on a neighborhood of X and y =0 on a neighborhood of Y. Let

ge 6®(Q,+,) be defined by :
g=y(friot) =l 00)u

where (¢;) denotes the sequence of coordinate functionals on E and where
ue %*(Q,.,) will be chosen so that 8 = 0 on @, ;. The equation 89 =0is
equivalent to the equation &u=v, where v =/(f,0T/ms1 o@)dy. Since
ve 6% 1y(Qp+1) is well defined and verifies @ = 0, Theorem 1.3 (c) guarantees
that the equation fu = v has a solution, and thus g e J# (@y.+1). Since du =0
on a neighborhood of the compact set (B,,mQ,,H);,mn +ps Theorem 13 (d)
yields a function he #(2,+,) such that

€
fih— u“B,,nQ,,.', S 2c’

where C =||¢,+1 005,04, I We define
for1 =g+ 00 h =Y (f01) +(Ens 1 09) (h—),
then clearly f,+; =f, on £, and
Ufyr 1 o0 Tlnyoanss < /25

and it follows that
“f;H- 10Tp+1 —f;l OthC,‘ < 8/21
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Proceeding inductively, we can find a sequence ( S)i%ne 1 with fie #2(Q ;) such
that f;,, =f; on Q; and _
1fi+10T541 “ijTj“cj g g/t
for every j > n. It follows easily that
' Ifon—=riotle, < o2/

whenever k >j>n, and thus the sequence ( fiot;) converges uniformly on
each C; to a function fe # (). Clearly, f = f; on Q; and

ILf=f O"j”cj < ef2imn

for every j > n. From this estimate we also conclude that fis bounded on
each C;, for -

(C) e BinQccQ,
Proof of Theorem 24 when E has a continuous norm. We

may assume that Q is connected. Let A4,(U) be open sets associated with
U as in Lemma 2.5 and let B,(U) and C,(U) be defined by

B,(U)={xeB,n4,(U): dtwy (x) > 1},
Co(U) = {x& C, 0B, (U): 7,0y (¥) > 1}.
Let ge s#(U) be given. By Lemmas 2.6 (b} and 2.3 (a),
(B.(U) ngn);’(ﬂn) ccUngQ,
and thus Theorem 1.3 (d) yields a sequence (k,), with h,€ #(R,), such that
0 h—gllsgwynn, < U
for every n. It follows that
1y 0T, g 0T lleyqoy < 1/

for every n. An application of Lemma 2.7 yields a° sequence (f,) in J#'(Q) such
that

”f;l - hn OT,,I ’C’,, < 1/"
and therefore

(1) ”fn"go‘tn”C,,(U) < 2/”

for every n. We claim that the sequence (f,) converges to g in (s (U), Tq)-
Indeed, let K «c= U and & > 0 be given. By the continuity of g we can easily
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find Ve ¥ (E) such that K+ V< U and

lg(—g(x)| <e for every xeK and yéx+V.
Uéing Lemma 2.5 (c), we can find ny > 1/¢ such that K < Cpy(U) and
@ lgotu—glx <s

for every n = ny. From (1) and (2) we conclude that I|fi—dllx < 3¢ for every
n 2z ny. From (1) we also see that the sequence (f,) is uniformly bounded on
each C,(U) if g is bounded on U. :

3. Global approximation in spaces without a continuous norm. In Section
2 we proved Theorem 2.4 when E is assumed to have a continuous norm. In
this section we shall prove the theorem when U is assumed to have finitely
many components. Before proving the theorem in this case we shall need two
more auxiliary lemmas, the first of which is due to Dineen [9, Example 2.4].

3.1. LeMMA [9]. Let E be a Fréchet space with a Schauder basis. Let o be
a continuous seminorm on E satisfying the condition

m

(%) a(x) = supa( ) E(x)e,) for every xe E.

If we set
Z*={neN: a(e,) =0}, E*={xeE: {,(x)=0 for every neZ’,

then E* has a Schauder basis and a continuous norm, and E is the topological
direct sum of E* and o~ '(0).

3.2. LEMMA. Let (2, @) be a connected pseudoconvex Riemann domain over
a Fréchet space E which has a Schauder basis. Let xoeQ and let o be a
continuous seminorm on E satisfying the condition (*) in Lemma 3.1 and such
that d5(xp) > 0. Let m,: E— E* denote the canonical projection and set QF
= ¢~ (E"). Then:

(a) There is a holomorphic mapping c,: Q — Q* such that 6, =id on Q*
and oo, =m0 on Q.

(b) Let U be any connected pseudoconvex open subset of Q such that
dy(yo) > 0 for some yoeU. Then U =07 (U N and fos, =f on U for
every f e A (U) which is bounded on an a-neighborhood of y,.

(c) For x,yeQ we have x =1y if and only if ¢(x)=¢@(y) and o,(x)
= 0,(y).

(d) For each ac E and te Q* with n,(a) = ¢ (t) there is a unigue xe Q such
that ¢(x) =a and o,(x) =t. :

(¢) 4 net (x;) in Q converges in Q if and only if (¢(x;)) converges in E and
(0,(x)) converges in Q.
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Proof. (a) If 0 <r < df(x,) then d,(x, a) = + co for every xe Bh(xo, 1)
and aea”!(0). Since Q is pseudoconvex and connected we conclude that
8o(x, @) = +oo for every xeQ and aea”'(0). If we define o,: Q— 2* by

0, (%) = (9|D) " o, 00 (x),
where

D, = Dy(x, 7,00 (x)— @ (x), + ),

then o, has the required properties.
(b) As in (a) we see that Sy(x, a) =
This implies that

+o0 for every xeU and aea™1(0).

Dy(x, m,00(x)—@(x), +0) = U  for every xeU,

and it follows that xe U if and only if 6,(x)e U. Thus U = o, * (U n Q%. To
prove the second assertion let fe 2#'(U) be bounded on some a-neighborhood
of yo, and define

Uj={xeU: [f(x) <j} forj=1,2,...
Fix ye U and choose j such that y,, y and o,(y) all lie in some component ¥,
oo
of U;. This is possible since U is pathwise connected and U = {J U;. Since
i=1

V; contains an a-neighborhood of y,, and since V; is pseudoconvex and

J
connected we conclude as before that 5V (x, @) = + oo for every xeV; and
aea”1(0). In particular, . .

D, = Doy, ;o) — @ (), +o0) < V.

Thus fis bounded on D, and hence constant there, by Liouville’s theorem. In
particular, f oo, (y) =1 (y).
(c) Suppose ¢ (x) = ¢(y) =a. Then

0. (%) = (¢IDx) "  ome (@) 0, (y) = (¢D))™ ' o7, (a),

where

D, = Dg(x, m,(Q)—a, +®), D, =Dgy(y, m,(a)—a, +0).

Since D, and D, are either disjoint or identical, we see that ,(x) = o, (y) if
and only if x =y.

(d) Let x = (¢|Dglt, a—m,(a), +oo))-1(a).

(e) Assume (@(x;)) converges to some a in E and (o, (x;)) converges to
some ¢ in @ Then =, (a) = ¢ (t) and by (d) there is a unique xe such that
¢(x)=a and o,(x) =t We claim that (x;) converges to x. Let Ve ¥ (E)
be such that x+V<Q, 6,(x)+V =Q and n,(V) < V. Choose i, such that

n p(x)eat+V=0()+V,
?2) g, (x)et+V =g, (x)+V
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for every i >i,. By (1) for each i > i, there is a unique y,ex+ V such that
@(y) = ¢(x;). Thus
@3) o, (y)eo, (x)+V,

4 $00.(y) =1, 00(y) = m,00(x;) = poa,(x)
for every i 2 ip. From (2), (3) and (4) we see that o,(y;) = o,(x;) and thus y;

= x; for every i = iy, by (c). Thus x; ex+ Vfor every i >
complete.

. Proof of Theorem 24 when U has finitely many components.
Without loss of generality we may assume that the domain @ is connected.
Let (A,(U)) denote a sequence of open sets associated with U as in
Lemma 2.5. Given ge #(U), it will be sufﬁ01ent to find a sequence (f) = #(Q)

io and the proof is

and anincreasing sequence of open sets C (U) c A4,(U)withU = U C,(U)such
that ”

o) I1fe— gOTn”c,,(U; 2/n

for then the proof may continue as in the case where E has a continuous
norm. Let Uy,..., U, denote the components of U. Choose points
xeUy, ..., x,eU, and a continuous seminorm o on E satisfying the
condition (*) in Lemma 3.1 and such that di(x;) > 0 and g is bounded on
an a-neighborhood of x;, for every i =1, ..., m. If 6,: Q- * denotes the
mapping given by Lemma 3.2 then it follows from Lemma 3.2 (b) that

() U=o; (UnD.
There is no guarantee that A,(U) =071 (A,,(U) A Q¥), but we can remedy this
as follows. Since U = U A,(

that xq, ..., x,e 4,(U) for every n. Then we define A4, (U) to be the union of
those components of A,(U) which contain some x;. Then it is clear that the
open sets

for every n,

(U) we may assume without loss of generality

AU cU

also have the properties stated in Lemma 2.5. Furthermore, Lemma 3.2 (b)
guarantees that

3 A,(U) = 07 (4,(V) n )
Let

and A, (U)nQ*cUn®

for every n.

C,(U N Q% < B, (U~ @) < A}, (U) A

* denote open sets associated with U nQ* as on page 118. Since U nQ* has

the finite property (P) with respect to Q% and since E* has a . continuous
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norm, we can find a sequence (f¥) in #° (2% such that
@ 15 =9 0%l nepy < 21
Define f, = f 0 g, #(Q) and C,(U) = o, YCy(U N ) for every n. Using
(2) we see that U= G C,(U), and using (3) we see that C,(U)
< 4, (U) = 4, (U) for evenr=yl n. Finally, from (4) it follows that

for every n.

lfi—g0t,00ullc,wy < 2/n for every n,

and since got,00, =got, on A,(U) by Lemma 3.2 (b), (1) follows. The
proof of Theorem 2.4 is now complete.

4. Convexity properties.

4.1. TueoreM. Let (Q, @) be a pseudoconvex Riemann domain over a
Fréchet space with a Schauder basis. Let K be a compact subset of Q with
Ky = K. Then for each open set U with K = U < Q there is an open set V
with K ¢ V< U such that V has the property (P) with respect to Q.

The conclusion of Theorem 4.1 is also valid for a psendoconvex open
subset Q of a quasi-complete locally convex space; see [23, Theorem 1.3].

Before proving Theorem 4.1 we need some preparation. Following
Schottenloher [31], we introduce the following definition adapted to our
purpose. A

4.2. DerINITION. Let (2, ¢) be a Riemann domain over a locally convex
- space E. A sequence ¢ = (C,) of open subsets of Q is said to be an admissible
covering of Q if Q = U C, and there is a sequence (V) < ¥ (E) such that C,
+V = C,yq for every n. The family

Ag={fe# ) Ifllc, < +oo for every n}

is called the regular class associated with the admissible covering . Then
Ag is a Fréchet algebra in a natural way.

The following result is essentially due to Schottenloher; cf. [31, Sitze 3.2
und 2.4].

4.3. LemMa [31]. Let (2, ¢) be a Riemann domain over a locally convex
space E. Let % be an admissible covering of Q. Then:

(@) Pife Ay for every fe Ay, neN and ack.

(b) Let X, Y= and Ve ¥ (E) be such that X+ V< Y and X, ,+ VeQ.
Then XA%,+VC };,‘

44. ExampLE. Let (2, ¢) be a connected Riemann domain over a
Fréchet space with a Schauder basis and with a continuous norm. Then the
sequence 4 = (C,) constructed in Lemma 2.6 is an admissible covering of Q.

icm

Holomorphic approximation 123

4.5. ExAMPLE. Let (Q, ¢) be a connected pseudoconvex Riemann domain
over a Fréchet space E which has a Schauder basis. Let o« be a continuous
seminorm on E satisfying the hypotheses in Lemmas 3.1 and 3.2. Then the
sequence 4* = (Cj) constructed in Lemma 2.6 is an admissible covering of
whereas the sequence % =(C,) defined by C, =0, *(C?% is an admissible
covering of Q.

4.6. LEMMA. Let (2, @) be a connected pseudoconvex Riemann domain
over a Fréchet space with a Schauder basis and with a continuous norm. Then,
wirhl the notation of Lemmas 2.5 and. 2.6 and Example 4.4, we have:

(a) (Co)a «N = (BN Qk);.mk) whenever k = n.
®) (g
© (CaytVa-r =Q for every n.

@ (C)ag+ Ve € (Corifi for every n.

N, ccQ, for every n and k.

Proof. To prove (a) let x&(C,)y, N and let f,e # () with k > n. By
Lemma 2.7, given ¢ >0 we can find fe A, such that f=f, on @, and
Il/~fotlc, <z Then

LGl =17 Gl < 1 flle,, < Lfeotlle, +& < || fills,ng, +2

and since ¢ > 0 is arbitrary, (a) follows. From (a) and Lemma 2.6 (d) we see
that (b) is true for k > n. But this obviously implies that (b) is true for n and
k arbitrary. To prove (c) let xe(C,,)Ag, Then a slight modification of the
proof of (a) shows that

T xe(B, 0 Q) o

for every k = n such that xe C,. An examination of the proof of Lemma 2.6
shows that the set B, is contained in the set

F,={xeQ: d2(x) =1}
and clearly (F,,);smk) =F,. It follows that
nxe(B,n Qk);’(n,‘) =(B,n ‘Qk);s(ﬂk) cF,

for all sufficiently large k. Letting k tend to infinity, we obtain (c). Finally,
since by Lemma 2.6, C,+V, < C,.., (d) follows from (c) and Lemma 4.3 (b).

47. LemMA. Let (Q, @) be a connected pseudoconvex Riemann domain
over a Fréchet space E which has a Schauder basis. Then, with the notation of

Example 4.5, the set
L= (K)n(Cplag

is compact for every compact set K < E and neN.

2 - Studia Mathematica, T, LXXXII
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Proof. We have C, = o, (C%, where a e cs(E) satisfies the conditions in
Lemmas 3.1 and 3.2, and where %*=(C% is a sequence of open sets
associated with Q* as in Lemma 2.6. Thus there is a sequence (V2) < ¥ (E%)
such that C5+ ¥} « Ciyy and it follows from Lemma 4.6 (d) that
(1) (Cﬁ),]w+ Vi =(Chs 1);%«'

Let (x;) be a net in L. Then (¢(x;)) = K and, after passing to a subnet if
necessary, we may assume that (¢(x;)) converges to a point ae K. The idea
now is to find a point re@2* with ¢ (1) = n,(a) such that a subnet of (04 (x,))
converges to . Then it will suffice to apply Lemma 3.2 (d) and (e).

Since (x;) =(C,)4,, it follows that
) (0ux) = (Cﬁ)fi,ﬁa
Since @(x;) — a, it follows that
©) P 0a,(x) =1 00(x)—m,(a),
and hence there is iy such that
4 poo,(x)—m,(a)etV® for every i i,.

Since | Ef is dense in E* there are ke N and beEf such that

k=1

(5) b—TEa(G)E%‘V:,

and by (4) it follows that
poa,(x)—be}V® for every i>i,.

Thus for each i > i there is a unique point y, with

(6 vieo,(x)+3V; and

Using (1) and (2), we see that
yie(Crs 1)‘;?“ N

By Lemma 4.6 (b) the last set is compact. Hence, after passing to a subnet if

necessary, we may assume that (y;) converges to a point ye Q%. From (6), (2
and (1) it follows that .

o) =b.

for .every i > ig.

yit+iVic @ for every i i,

and hence
™ y+HiViEc @

too. It is also clear that ¢(y) = b, and thus by (3) there is a unique point ¢
with

8) tey+4Vy and (1) = m,(a).
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We claim that o,(x;) — t. Indeed, there is i; = i, such that

yiey+iVe  for every i >,

and using (6) we see that

9 o, (x)ey+3V* for every i=i,.

By (3) and (8), ¢ oa,(x;) . @(t), and because of (8) and (9) we may conclude
that o,(x;) —t. The proof of the lemma is complete.

Proof of Theorem 4.1. Let E denote the Fréchet space with basis
under consideration. Without loss of generality we may assume that the
domain  is connected. Let % =(C,) denote the admissible covering of
Example 4.5. Choose n such that K = C,. If I'(p(K)) denotes the closed
convex hull of ¢(K) in E then by Lemma 4.7 the set

L= (I (p(K) n(Cag
is compact and contains K. Since Kp, o = K, for each point xe L\ U we can
find f,e Psc(Q) such that f,(x) >0 and sup f, <0. By the compactness of
K
L\U we can find f}, ..., f,,e Psc(Q) such that

supf; <0 for j=1,...,m,
K

L\WUc {J (xe®: f;,(x)>0}, ie. Ln () {xe: f(x)<0 cU.
ji=1 ji=1

Set f =sup{fi, ..., n} € Psc(®). Then

@ e (TP N(Clag M xeQ: f(x) <0} = U.
We claim there exists We ¥ (E) such that
2 o (T (@K)+W) N (Ca,n{xeQ: f() <0} cU.

Let (W) be a decreasing fundamental sequence in ¥#°(E) such that
Cy+ W, = Cyy, for every k. If there is no W satisfying (2) then for each k
> n there is a point x, such that

xiee ™ (F(@(K)+ W) N(Colg, N (xe Q: f(x) <ON\U.

For each k > n there is a point bye I (¢ (K)) such that ¢(x,)—b;e W,. Then
for each k= n there is a unique point y,ex,+ W; with ¢(y,) = b,. From
Lemma 4.3 (b) it follows that

Ih€(Coayg+Wo = (Cri1)ay
and hence
Y€ o™ (T (@(K))) N (Cps 1)y
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for every k > n. By Lemma 4.7 the last set is compact. Hence, after passing
to a subnet if necessary, we may assume that (y,) converges to a point y. But
then (x,) also converges to y and it follows that

yeo  (F(o(K) N (Ca, N {xeQ: £(x) <ON\T,

contradicting (1). This shows the existence of We ¥ (E) satisfying (2). Then
we define

V =" (T(e(K)+W)nint(C)y, N {xeQ: f(x) <0}

We claim that the set int (C,,);,‘, has the property (P). Indeed, given a
compact set J = int(C,),,, we choose W'e ¥ (E) such that J+ W' <(C,);
By Lemma 3.3 (b)

A

JugtW' =(Ca,

and therefore Jpyp = J 4, < int(C,);,. From Examples 2.2 we conclude that
V has the property (P) and the proof is complete.

Using Lemma 4.7, we may also rederive a result of Schottenloher [33,
Proposition 4.17.

4.8. THEOREM [33]. Let (Q, @) be a pseudoconvex Riemann domain over a
Fréchet space with . Schauder basis. Then every bounding set in Q is relatively
compact,

Proof. Let E denote the Fréchet space with basis under consideration.
Without loss of generality we may assume that the domain Q is connected.
Let B be a bounding set in Q. Then ¢(B) is a bounding set in E and is
therefore relatively compact there (see [10, Proposition 4.26]). Thus there is a
compact set K = E such that ¢(B) = K. Now let % =(C,) denote the
admissible covering of Example 4.5. Then the set {feAq: ||flls < 1} is a
barrel in A4, and hence a neighborhood of zero, since Ay is a Fréchet space.
Thus there are neN and ¢ > 0 such that ||f|ls < ¢||f|lc. for every fede.
Replacing f by f*, taking the kth root and letting k tend to + 00, we see that
Iflle < lifllc, for every fe Ag. Thus B < go“‘(K)m(C,,);% and it suffices to
apply Lemma 4.7.

49. CorovrLary [33]. Let (Q, ¢) be a pseudoconvex Riemann domain over
a Fréchet space with a Schauder basis. Then Q is holomorphically convex, i.e.

Ky =cQ  for every K c = Q.

5. Local approximation.

5.1. THEOREM. Let (Q, @) be a pseudoconvex Riemann domain over a
Fréchet space with a Schauder basis. Let K be a compact subset of Q with
Kpwiy = K. Then for each open set U with K c U < Q there is an open set V
with K < V < Q such that each ge #(U) is the -limit in (# V), 1) of a
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sequence (f,) = H#(Q). Furthermore, whenever ge # (U) is bounded on U, the
corresponding sequence (f,) < H#(Q) can be taken uniformly bounded on V.

Proof. By Theorem 4.1 there is an open set W with K « W< U such
that W has the finite property (P) with respect to Q. By Lemma 2.3 (c) we
may assume without loss of generality that W has only finitely many
components. Let (C,(W))®= ; be the corresponding sequence of open subsets
given by Theorem 24. Choose k, so large that K Gy, (W) and let
V = Cy,(W). Then all the conclusions follow from Theorem 24.

As already mentioned, Theorem 5.1 extends and sharpens the earlier
results of Noverraz [26, Theorem 2] and Schottenloher [33, Proposition 4.57.
Theorem 5.1 has already been established by the author [23, Theorem 3.17]
in the case of one-sheeted domains.

5.2. ProposiTION. Let (@, ¢) be a pseudoconvex Riemann domain over a
Fréchet space with a Schauder basis. Then

Kooy = Kpsety = Ky for every K c Q.

Proof. In view of Corollary 4.9 and Theorem 5.1, the proof of
[21, Theorem 11.1] can be easily adapted. :

5.3. ProposiTiON. Let (2, @) be a pseudoconvex Riemann domain over a
Fréchet space with a Schauder basis. Let U be an open subset of Q. Then the
following conditions are equivalent:

(a) ng, cU for every Kcc U.

(b) U has the property (P).

(¢) U has the finite property (P).

(d) U is pseudoconvex and #(Q) is dense in (#(U), o).

If E has a continuous norm, or if U has finitely many components, then
these conditions are also equivalent to:

() U is pseudoconvex and #(Q) is sequentially dense in (A (U), o).

Proof. In view of Corollary 4.9 and Theorems 2.4 and 5.1, the proof of
[13, Theorem 4.3.3] can be easily adapted.

6. Spaces of holomorphic germs. Let (2, ¢) be a Riemann domain over
a locally convex space E. For an open set U = Q, let 7, and t, denote
respectively the compact-open topology and the compact-ported topology on
H(U). We recall that a seminorm p on #(U) is said to be ported by a
compact set K = U if for each open set V with K =V < U there is a
constant ¢ > 0 such that p(f) < c||f]ly for every f e 5 (U). The topology t,,,
introduced by Nachbin [24], is generated by all those seminorms which are
ported by compact subsets of U.

For a compact set K < £ let #(K) denote the vector space of all germs
of holomorphic functions on K. By abuse of notation we also denote by 7,
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and 7, the locally convex inductive limit topologies on .# (K) which are
defined by

(#(K), 1) = ind (#(U), 7o)
UnK

and

(JY(K)’ Tm) = ind (rWY(U), Ta))'
UoK

One can readily see (cf. [19, Proposition 2.3]) that (#(K), 7,,) can also be
represented as an inductive limit of Banach spaces, namely

(# (K), 1) = ind #=(U),
UK

where # *(U) denotes the Banach space of all bounded holomorphic
functions on U with the supremum norm.

One can say very little about the spaces (#(K), 1o) and (# (K), t,,)
when E is an arbitrary locally convex space, but these spaces have very nice
properties when E is a Fréchet space; see the survey of Bierstedt and Meise
[6], the book of Dineen [10] and the recent article of the author [22].

Fix a compact set K = Q. If E is a Fréchet space then we fix a
decreasing fundamental sequence (V) in #"(E) with K+V; = for every j.
Consider the sets

Hy={feA°K+V): fllk+v; <]}

Then #; is equicontinuous and it follows from the Ascoli theorem that A
is a compact subset of (# (K + V), 1,). Hence 2; is also a compact subset of
(# (K), 7o), and the spaces (# (K + V), 1,) and (#(K), 7o) induce the same
topology on ;.

6.1. THEOREM [22]. Let (2, ¢) be a Riemann domain over a Fréchet space
E, and let K be a compact subset of Q. Then, with the preceding notation, a
subset % of (#(K), 7o) is open if and only if ¥ A is open in A for the
_ induced topology for every j.
In other words, the space (# (K), 7o) is the inductive limit of the

compact subsets .#’; in the category of all topological spaces. In particular,
(#(K), 15) is a k-space.

6.2. Tueorem [5], [22]. Let (Q, @) be a Riemann domain over g Fréchet—
S;hwartz space. Then (# (K), 1,,) is a (DFS)-space for each compact subset K
of Q.

Theorem 6.2 was established by Bierstedt and Meise [5, Theorem 7] in
the case of one-sheeted domains and their proof can be adapted to our more
general situation. However, for future convenience we have preferred in [22]
to derive Theorem 6.2 from the more precise Lemma 63 below.
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63. Lemma [22]. Let (R, ¢) be a Riemann domain over a Fréchet—
Schwartz. space E, and let K be a compact subset of Q. Let (V}) be a
fundamental sequence in ¥ (E) such that V;., =V, the canonical mapping
By, — Ey, is precompact, and K+V; = Q for every j. Then:

(@) The spaces (# (K+V), 1) and #*(K+V,.,) induce the same
topology on cA’; for every ¢ >0 and every j.

(b) The set A'; is compact in H*(K+V,.,) for every j.

(c) The spaces (#(K), 7o) and (#(K), t,,) induce the same topology on
each A;.

From Lemma 6.3 (c) and Theorem 6.1 the following theorem results at
once:

64. TuroreM [22]. Let (Q, @) be a Riemann domain over a Fréchet—
Schwartz space. Then the topologies ©o and <, coincide on #(K) for each
compact subset K of Q.

7. Spaces of holomorphic functions. Let (2, ¢) be a Riemann domain over
a locally convex space E. We would like to obtain information about # (£2)
using the information we have on the spaces #'(K). In particular, we would
like to use Theorem 6.4 to show that the topologies 7, and t,, coincide on
# (Q) for every Riemann domain Q over a Fréchet—Schwartz space. Now,
there is a canonical algebraic isomorphism

H(Q) = proj A (K)
K=

(cf. Bierstedt and Meise [6, Lemma 32]), and this isomorphism is clearly a
homeomorphism when each of the spaces involved is endowed with the
topology 1o, ie.

(%/ ), To) = proj (%’(K), ‘Co)-
Keo

However, it is an open problem whether a similar result holds for T in
general. Thus our original problem is reduced to the study of the topological
isomorphism

(X(Q)s Tw) = pl'oj ('}{(K), T(D)'
KeQ

Following [19], we introduce the following definition.

7.1. DeFINITION. Let (2, ¢) be a Riemann domain over a locally convex
space. For each compact subset K of Q we consider the following inductive
limits:

HX(Q) = ind (# (@ A=), | llo), Q) = [ijnd(nyf'(ﬂ)ﬂ%"”(U), Il 1)
U=K oK
where the closure is taken in # *®(U).
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Then one can easily get the following result (cf. Mujica [19, Lemmas 5.3
and 54] or Dineen [10, Proposition 6.12]).

7.2. ProPOSITION. Let (2, @) be a Riemann domain over a locally convex
space. Then we have the topological isomorphisms

(#(Q), 1,) = proj #*(Q) = proj X (Q).
K@ Kcn

Following Chae [8], we introduce the following definition.

7.3. DerFINITION. Let (2, @) be a Riemann domain over a locally convex
space.

(a) A compact set K < Q is said to be Q-Runge if for each open set U
with K = U = @ there is an open set V with K « V< U such that each
ge#*(U) is the uniform limit on V of a sequence ( ) <= # ()

(b) The domain @ is said to have the Runge property if each compact
subset of 2 is contained in another one which is Q-Runge.

In view of Proposition 7.2 the following result is clear (cf. Chae [8,
Proposition 6.5] or Mujica [19, Theorem 6.1]).

74. PROPOSITION. Let (Q, @) be a Riemann domain over a locally convex
space. :

(a) If a compact set K is Q-Runge then there is a topological isomorphism
H*(Q) = (#(K), ).

(b) If the domain Q has the Runge property then there is a topological

isomorphism
(4#(9), 7) = proj (#(K), t,,).
K

Since a balanced open set Q < E always has the Runge property, we
conclude at once from Proposition 7.4 and Theorem 6.4 that the topologies
7o and t,, coincide on #°(2) whenever Q is a balanced open subset of
a Fréchet-Schwartz space, a result already established by the author
{22, Proposition 5.7]. But if in addition we use Theorem 5.1 then we obtain
the following results.

7.5. THEOREM. Let (2, ¢) be a pseudoconvex Riemann domain over a
Fréchft—Schwartz space with a Schauder basis. Then each compact set K <
with Ky = K is Q-Runge, ie. for each open set U with K < U < Q there is
an open set V with K = V < U such that each ge #*(U) is the uniform limit
on V of a sequence (f,) = # ().

Proof. Apply Theorem 5.1 and Lemma 63 ().

7.6. ProrosTION. Let (2, @) be a pseudoconvex Riemann domain over a
Fréchet-Schwartz space with a Schauder basis. Then:

(a) Q has the Runge property.
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(b) The topologies T, and t,, coincide on #(RQ).

Proof. (a) follows from Theorem 7.5 and Corollary 4.9. Statement (b)
follows from (a), Proposition 7.4 and Theorem 6.4.

Proposition 7.6 (b) will be superseded by Theorem 8.2 in the next
section.

We remark that we have adopted here the original version of the Runge
property, introduced by Chae [8]. In [19] and [22] we adopted a slightly
different version. We refer to [19, Section 6] for a discussion on this matter.

8. The envelope of holomorphy. Let (2, ¢) be a Riemann domain over a
quasi-complete locally convex space E. Let £ denote the spectrum of the
topological algebra (# (), 7o), i.e. Z is the set of all continuous nonzero
algebra homomorphisms h: (#(Q), 7o) — C. Let §: xe 2~ Re X denote the
mapping defined by X(f)=f(x) for every f e A (Q). For each function
fe#(Q) let f: - C denote the function defined by f (k) = h(f) for every
heZ. The Mackey—Arens theorem yields a mapping ¥: X — E such that
p(¥(h) = h(no ) for every uckE'.

8.1. TuroreM. Under the preceding serting there is a Hausdorff topology
on X with the following properties:

(@) (X, ¥) is a Riemann domain over E.

(b) (Z, ¥) i5 holomorphically separated.

(©) (Z,¥) is metrically  holomorphically
pseudoconvex. .

(d) The mapping 6: Q — X is a morphism which is injective if and only if
Q is holomorphically separated.

(&) fe #(Z) for every feH#(R).

() The mapping 6*: ge #(X) — gode H# (Q) is continuous for o and for

convex, in  particular

(2) The mapping G: fe #(Q)—fe #(Z) is continuous for 4 and for ..

(h) 6*o0G(f)=f for every fe#(Q).

Theorem 8.1 is essentially due to Alexander [1; Sections 2 and 4] (see
also Matos [16] for the statements concerning t,), who adapted to the case
of Banach spaces a construction of Rossi [30] in the finite-dimensional case,
in an attempt to construct the envelope of holomorphy of £ as a subset of X.
Later on a counterexample of Josefson [14] showed that this is not possible
in general. Very recently Schottenloher [35] has proved that X is indeed the
envelope of holomorphy of @ when Q is a Riemann domain over a Fréchet
space with a Schauder basis. However, we do not need this deep result here.
With the help of Theorem 8.1 we can already improve Proposition 7.6 (bj as
follows: .

8.2, TuroreM. Let (2, @) be a Riemann domain over a Fréchet-Schwartz
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space with a Schauder basis. Then the topologies v, and t,, coincide on # Q).

Proof. Consider the following commutative diagram:

(2 E)z0) — Y (#(2)3,)

6 d*
(282, 50)— > (#(D)z,)

The \{ertigal mappings are continuous by Theorem 8.1. The upper horizontal
mapping 1s continuous by Proposition 7.6 (b). Hence the lower horizontal
. mapping is also continuous, and the proof is complete.

As we mentioned in the Introduction, Theorem 8.2 extends the earlier
results of Barroso [3, Theorem 22], Schottenloher [34, Proposition],
Barroso and Nachbin [4, Proposition 10], Meise [18, Proposition 6] and the
author [22, Proposition 5.7], [23, Corollary 4.5].

9. Final remarks. We shall say that a locally convex space E has the
bounded approximation property if there is an equicontinuous family .7 of
continuous linear operators of finite rank on E such that for each compact
set K < E and Ve ¥"(E) there is Te .7 such that Tx—xe V for every xe K.
By adapting the first part of the proof of [15, Theorem le. 13] one can easily
show that a separable Fréchet space has the bounded approximation
property if and only if there is a sequence of continuous linear operators of
finite rank which converges pointwise to the identity. Pelczyniski has shown
Fhat every separable Fréchet space with the bounded approximation property
is topologically isomorphic to a complemented subspace of a Fréchet space
with a Schauder basis; see the announcement in [29] or the detailed proof in
[17, Theorem 211]. Using Pelczysiski’s result, one can easily extend
Theorems 24 and 4.1 and Corollary 4.9 to the case of separable Fréchet
spaces with the bounded approximation property. But then it follows at once
that Theorems 5.1 and 7.5, Proposition 7.6 and Theorem 8.2 (taken in this

order) are also valid for separable Fréchet spaces with the bounded
approximation property.
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Interpolation of Banach lattices
by
PER NILSSON (Stockholm)*

Abstract. For couples of Banach lattices we describe the interpolation spaces generated by
the + method and by Ovchinnikov’s upper method in terms of the Calderén-Lozanovskii
spaces.

0. Introduction. In this paper we study the effect of certain interpolation
methods on (quasi-) Banach lattices. More specifically, we consider the “4-
method” (X, ¢> of Gustavsson—Peetre [10], Ovchinnikov’s upper method
{X»? (see [20]), as well as a variant (XD, of Ovchinnikov’s lower method.
Some results are also obtained for the complex method [X], of Calderén
[6]. In fact, we wish to put these interpolation methods in the case of a
couple X of quasi-Banach lattices in relation to the Calderén—Lozanovskii
constructions ¢ (X).

Not all of our results are new: closely related results may be found in
Ovchinnikov [21], [22] as well as in Berezhnoi [2]. However, in contrast to
[21], [22], the methods used here are elementary and are similar to those of
Gustavsson—Peetre .[10].

The plan of the paper is as follows. Section 1 contains definitions and a
technical Lemma. In Section 2 we study in the case of a couple X of quasi-
Banach lattices the connection between ¢(X), (XD, and <X, ¢). As an
application we obtain a new proof and an extension of the following theorem
of Pisier [25]: a Banach lattice X is p-convex and p’-concave, 1 <p <2, 1/p
+1/p=1, if and only if there exists a Banach lattice X, such that X
=[Xgo, L*]y, 0 =2/p. In Section 3 we then extend our considerations to
include ¢<X®, in the Banach case only. Section 4 is on the Gagliardo closure
of [XJe. Section 5 is concerned with various applications of the previous
results.

Finally, 1 acknowledge stimulating dicussions with J. Peetre on the
topics of this paper.

* This work was partially supported by the Swedish Natural Science Research Council,
contract no. F-FU 4537-101.
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