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On the splitting of twisted sums,
and the three space problem for local convexity

by
PAWEL DOMANSKI (Poznan)

Abstract. We characterize all pairs of topological vector spaces (tvs) (¥, Z) such that Yis
semimetrizable (resp. locally bounded) and for every relatively open and continuous map ¢q with
ker g > Y and im g ~ Z there is a section (resp. a homogeneous section) continuous at zero (ie.,
a map s with gos =id).

A twisted sum of two tvs Y and Z is a tvs X with a subspace Y, ~ ¥ such that X/¥, ~ Z.
All twisted sums of an arbitrary pair of tvs are described.

A tvs Z belongs to S(Y) (resp. to the class of TSC-spaces) iff every twisted sum of tvs ¥
and Z is a direct sum (resp. is locally convex whenever so is Y). We examine hereditary
properties of the classes S(Y) and TSC-spaces. As an application we get: (1) all locally convex
spaces (lcs) with a weak topology belong to S(Y) for the one-dimensional Y (i.., they are -
spaces [15]); (2) all nuclear Ics and all metrizable locally convex 2 -spaces are TSC-spaces. The
classes of TSC-spaces and locally psendoconvex spaces are closed under twisted sums.

We remove the assumption of local boundedness from the following results: (1) Kalton’s
[14] description of ali twisted sums of Ics; (2) p- and g-convexity of Yand Z resp. (0 <p # g < 1)
implies min (p, g)-convexity of their twisted sum.

0. Introduction, A twisted sum of two topological vector spaces (tvs) ¥
and Z is a diagram of tvs and linear relatively open continuous mappings:

(%) 0-Y5x5%7-0,

such that () is a short exact sequence, ie., j(Y) = ker ¢g. Sometimes we will
simply say that X itself is a twisted sum of Y and Z.

There are two main problems concerning twisted sums.

The first one is the so-called three space problem. We say that a
property (P) is a three space property if every twisted sum of Y and Z has (P)
whenever Y and Z have (P). Now, the question is: what properties are three
space properties.

We say that the twisted sum (*) splits if there is a continuous linear
mapping T: Z— X for which goT =id,;. The second main question
concerning twisted sums is the problem what pairs (Y, Z) of tvs have only
splitting twisted sums. There are numerous papers related to these problems:
[5], [6], [8]-[14], [16], [211, [25]-[32], [34], [37], [40] (the three space
problem) and [1], [2], [10], [13]-[15], [17]-[21], [24], [28], [29], [35],
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[36], [38], [39], [41] (the problem of splitting). Our paper is devoted to
both of them. ‘

In Section 1 we investigate the three space problem. First, we show that
local pseudoconvexity is a three space property. The three space problem
seems to be the most interesting for (P) = local convexity. Although it was
answered negatively in [13], [28], [29] (independently), it was shown by
Kalton in [13], [14] that every twisted sum of two normable spaces must
fulfil some convexity conditions. In Section 1 we prove a generalization of
this. Namely, it turns out that if Y is locally p-convex and Z is locally
g-convex, then their twisted sum is locally min(p, ¢)-convex whenever
O0<psg<1, and it is locally logconvex whenever p=g¢g =1 (for the
definition of local logconvexity see Section 1),

The basic tool in the next part of the paper is the so-called quasilinear
technigue. It was created and developed in [13], [16], [28] for locally
bounded F-spaces, in [14] for any pair of the one-dimensional space and an
arbitrary F-space and in [18] for nuclear spaces. The first purpose of the
paper is to describe it in a much more general form. We get the appropriate
extensions of the main results concerning this technique. For this description,
however, we need some facts (proved in Section 2) concerning sections
continuous at zero. A map s: Z— X is called a section for the twisted sum
(*) if gos=id; and 5(0)=0. Obviously (x) splits iff it has a linear
continuous section. )

In Section 2 we characterize precisely those pairs (Y, Z) of a
semimetrizable (resp. locally bounded) tvs Y and an arbitrary tvs Z for which
every twisted sum has a section (resp. a homogeneous section) continuous at
zero. Two counterexamples are given which show that this theorem cannot
be improved for an arbitrary Y. Incidentally, we give necessary conditions for
the pair (Y, Z) of tvs, where Y is semimetrizable, to have only splitting
twisted sums. These conditions will turn out to be sufficient for suitable
classes of tvs ¥, Z (comp. Proposition 4.3).

The results of Sectjon 2 are widely used in Section 3, which is devoted
to the developing of the quasilinear technique. We obtain all twisted sums
using quasilinear maps. The main theorem of this Section is Theorem 3.1.
We close Section 3 with results on “extensions™ and “restrictions” of twisted
sums,

Let Y be a tvs. Then S(Y) is the class of all tvs Z such that there are
only splitting twisted sums of Yand Z. A tvs Z is a J#-space [15] iff ZeS(Y)
for the one-dimensional tys Y.

The second purpose of the paper is to examine the classes S(Y) (Section
4). In particular, we investigate hereditary properties of such classes., The best
result in this direction is the following: if Y is a locally bounded F-space,
then S(Y) is closed under arbitrary products and reduced projective limits.
We show that, for every Y, S(Y) is closed under complemented subspaces
and finite products. The key fact of Section 4 is Theorem 4.3.
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The paper [13] suggests that a class which may be very interesting is the
class of all locally convex spaces (Ics) Z satisfying the condition that every
twisted sum of Yand Z is a lcs whenever so is Y. We call such spaces TSC-
spaces (Twisted Sum-Convex). It was pointed out by Kalton [13] that TSC-
spaces (which were not explicitly defined by him) are closely related to .-
spaces.

The third main purpose of the paper is to investigate the class of all
TSC-spaces (Section 5). In particular, we establish the relation between .4 -
spaces and TSC-spaces. The key result of Section 5 is Theorem 5.1 and its
strengthened version, Theorem 5.2. It implies that a metrizable lcs is a %~
space iff it is a TSC-space. Moreover, every reduced projective limit of
metrizable locally convex .#-spaces is a TSC-space. In particular, all nuclear
les (and les with a weak topology) are TSC-spaces. Also, we study hereditary
properties of TSC-spaces and .#-spaces; for example, “to be a TSC-space” is
a three space property. The lists of known TSC-spaces and .# -spaces are
given. It is rather surprising that we know of no locally convex .#-space
which is not a TSC-space.

Finally, we identify some clements of S(Y) for an injective Banach
space Y.

We close the introduction with some auxiliary notions and facts.

We will consider only vector topologies (not necessarily Hausdorff). Let
T be a topology on a vector space X. By “#, will be denoted the family of all
balanced O-neighbourhoods in (X, 7). ker = is the closure of {0} in (X, 7).
(X/ker v, t/ker 7) is called the Hausdor(f’ associated space of (X, ). Obviously
(X, ) = (ker 7, T nker ©1)@(X/ker 7, t/ker 7). By (X, 7) we will denote the
direct sum of (ker z, T nker t) and the completion of (X/ker t, t/ker 7). If
Jji X - Y. where X, Yare tvs, then J: X — ¥ is the natural extension. If Yis a
subspace of X, then 7Y and /Y are the induced topology on Y and the
quotient topology on X/Y, resp. If T: (X, 7)— (Y, 1) is a linear surjection,
then T(r) (resp. T~'(1)) is the finest topology on Y (resp. the coarsest
topology on X) such that Tis continuous. X =~ Y means that X and Y are
isomorphic. A continuous and relatively open linear mapping is called a
homomorphism. Y < Y, means, in fact, that there is a topological linear
embedding i: Y- Y;. Then for every map L: Z— Y(where Z is a tvs) we will
assume that L: Z— Y, (in fact, ioL: Z - Y)).

A tvs X is called an F-space iff it is a metrizable complete tvs. A map
[I]l: X — Ry is called a quasinorm if it satisfies the following conditions:

() Il =0 iff x=0;
(2) [exlf = [1]{|]]
3) [lx+yll < Clxl Iyl

The one-dimensional tvs and the scalar field (of real or complex numbers)
are denoted by K. For a tvs X we denote by X’ and X* the topological and

whenever ¢ is a scalar and xe X;

for all x, ye X and some constant C > 0.

s,
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the algebraic dual, resp. By o (X, Y) we denote the weak topology on X with
respect to the dual pair <X, Y).
Two twisted sums

0-v3x, 8250
and
0-73x,2250

are equivalent if there is an isomorphism T: X; — X, such that the following
diagram commutes:

0 | N 0
LdJ JT lid
- 0
0 r J2 % 92 Z

In fact, the twisted sum (*) splits iff it is equivalent to the direct sum
0-Y3 Y0z3 20, ‘

where j, () = (y, 0) ¢, (y, 2) = z for every yeVY, zeZ.
The Hausdorff associated twisted sum of the twisted sum

(4%) 0 (Y, 05 (X, )5 (Z,7) 0
is the following twisted sum:
0 - (Yker t, /ker 1) 3 (X/ker A, A/ker 1) 3 (Z/q (ker 2), 9/q (ker A))— 0,

where gx0j =j; 0qy, ;09 = g1 0qy, and gy: Y— Y/ker 1, g5: X — X/ker A,
. qz: Z— Z/q(ker 1) are the natural quotient maps. In general, the second
summand of the Hausdorff associated twisted sum may be non-Hausdorff!
The twisted sum (x) splits iff its Hausdorff associated twisted sum splits.

The procedure of obtaining Hausdorff associated twisted sums may be
divided into two parts. As a result of the first part we get the twisted sum

0 (%, 0 B (XX, X0 B (Z/g(Xy), va (X))~ 0,

where X; nj(Y) = {0}, q(Xy) = q(ker 4), j; =qx0j, 4,095 = gz0q for the
‘natural quotient maps gyx: X — X/X;, g5 Z—2Z/q(X,). Of course,
ker (A/X,) = j; (Y).

As a result of the second part of the procedure used for (#x) we get the
twisted sum

0 — (¥ker 7, t/ker 1) 3 (X/j (ker 1), Afj(ker ) 3 (Z, ) - 0,

where j,0qy =qy0j, q,0qx=q for the natural quotient maps gy: Y
— Yker 7, gx: X — X/j(ker 1).
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For other notions and notations see [33].
The following very useful fact is due to W. Roelcke (comp. [30] or [9],
Lemma 2.1).

LEMMA A. Let A, © be two vector topologies on a vector space X such that
A< 1. If there is a subspace Y of X for which AnY =tnY and }/Y =1/Y,
then A =r1. ‘
For the sake of completeness we give the proof.
Proof. Let
U,Ued., U+U,cU
and let

Ved;,, (V-V)nYcU,NY.

There is We, satisfying Wec V and We (U, nV)+Y. Thus we have
immediately
WU nV)+(Y n(W—(U W) c(U; 0 V)+(Y n(V=7))
cU+U, cU.
Hence Ue %, and this completes the proof.

The following lemma is well known, comp. [7].
Lemma B. Let (X, A) be an arbitrary tvs. If Y is a linear subspace of X,

" then:

(a) for every topology v < An'Yon Ythere is a unique topology A, < A on
X for which A, Y =t and A,/Y = A/Y;

(b) for every topology v = A/Y on X/Y there is a unique topology 4, > A on
X for which ;Y =AY and A,/Y=1.

Proof. The uniqueness is a consequence of Roelcke’s Lemma.

Now the families %, = {U+V: Ue%,, Ve %,} and %, = {U~g™*(V):
Ued,, Ved,} are the neighbourhood bases for A;, 4,, resp, where
q: X — X/Y is the natural quotient map.

1. Twisted sums of locally convex spaces. As has been pointed out, a
twisted sum of two locally convex spaces need not be locally convex. In this
section we will show that it must be “nearly” convex.

Let X be a tvs. A set U < X is pseudoconvex if there is a constant C > 0
such that U+U < DU for every D= C. A set U < X is p-convex for some
0<p<g1if, for all @, b >0 with a?+b? =1, aU+bU = U.

A balanced set U « X is logconvex if there is a constant C > 0 such

that, for every neN, a,, ..., 4,> 0,
YaUcC(L “1(1+1n(21 a/a)U.
i=1 i=1 J=
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A tvs X is locally pseudoconvex (p-comvex, logconvex) iff it has a O-
neighbourhood base containing only pseudoconvex (resp. p-convex,
logconvex) sets.

TueoreM 1.1. Local pseudoconvexity is a three space property. In
particular, a twisted sum of two les is locally pseudoconvex.

Proof. Let (X, A) be a tvs containing a locally pseudoconvex subspace
(Y, AN Y) with the locally pseudoconvex quotient (X/Y, 1/¥). The map ¢ is
the quotient map.

Let U be a 0-neighbourhood in (X, ). Of course, there exists a balanced
pseudoconvex U, e #;,.y satisfying U, +V < U for a fixed Ve #,. Now,
we can define a topology 4, <4 with a O-neighbourhood base #,
=4V+n"'U,: neN, Ve4,). Thus U is a O-neighbourhood in 4,; 4,/Y
= J/Y;and A, n Yis a locally bounded topology. We may choose a balanced
set We 4, with the following properties:

(1.1) ‘ W+WecU;

(1.2) q(W) is pseudoconvex in X/Y,

ie, q(W)+q(W) < Ag(W) for some A > 1;

(1.3) (W+ W+ W+W+W)n Y is bounded in (Y, A, nY),
ie, (W+W+W+W+W)nY <« B(WnY) for some B> 1.

We will prove that W+ W is a pseudoconvex set. Let xe W+ W+ W+ W,

obviously, by (1.2) we have

a(x)eq(W)+q(W)+q(W)+q(W) = 4> q(W).
Thus there is ye Y with x+ye A? W. Hence

ye A2 W+ W+ W+ W+ W < A2 (W+ W+ W+ W+ W).
But ye Y and using (1.3), we have
ye A (W+ W+ W+W+W)nY)c A2B(W N Y).
Finally,
xe A2W+A?B(W N Y) c A B(W+W).

We get the desired property W+ W+ W+W < A* B(W+ W).

The following proposition is obvious.

ProrosiTiON L1, For every tvs (X, t) containing a subspace (Y, T Y) und
ker © = Z, the space (X/Z,1/Z) is the twisted sum of (Y/Z, (1~ V)/Z) and
((X/Y)/ker(r/Y). (t/Y)/ker (x/Y)). In particular, if a tvs (X, t) is a twisted sum
of locally p- and q-convex spaces, then its Hausdorff associated tvs is a twisted
sum of Hausdorff locally p- and g-convex spaces.
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TurorEM 1.2. (a) For every 0 < p, g < 1, p # ¢, a locally bounded twisted
sum of a Hausdorff locally p-convex space Y and a Hausdorff’ locally ¢-convex
space Z is a locally min(p, g)-convex space.

(b) A locally bounded Hausdorff tvs is locally logconvex iff it is a
Hausdorff quotient of a subspace of a twisted sum of two normable spaces.

Proof. These facts are due to Kalton: for (a) see [13], Theorem 4.1,
143, Theorems 6.2, 6.4, 6.5; for (b) see [14], Theorem 7.2.

Now, we generalize Theorem 1.2.

Turorem 1.3, For every 0 <p, ¢ <1, p# 4, a twisted sum of a locally
p-convex space Y und a locally q-convex spuce Z is a locally min(p, ¢)-convex
spuce. If p =g =1, then it is locally logeonvex.

CoroLiLARY 1.1, Every rwisted sum of two locally convex spaces is locally
p-convex for every 0 < p <1,

Proof of Theorem 1.3. Let (X, 4) be a tvs containing a locally p-
convex subspace (Y, A n Y) with the locally g-convex quotient (X/Y, 1/Y). We
will denote by ¢ the natural quotient map. Now, for an arbitrary O-
neighbourhood U in (X, A), there are balanced O-neighbourhoods: p-convex
V in (Y, AnY), pseudoconvex U, in (X, 4) and g-convex V; in (X/Y, A/Y),
which satisfy the following properties:

V+V cUnY,
UnYecV, U+VaU,
Vi = q(Uy).

This may be established by Theorem 1.1 and the fact that every p-convex set
is pseudoconvex. The family

U= n"'((Uy ng~ (Vy)+V): neN}
contains only pseudoconvex balanced sets. Thus # is a 0-neighbourhood
base for a locally bounded vector topology A; (non-Hausdorff in general)

with 4, € A, and U is a O-neighbourhood in (X, 4;). 4; n Y and 4;/Y are p-
and g-convex, resp., because

g(Uing " (M) +V) =W,
Ve ((Ul AT ) HV)AY e Ve 2PV
By Proposition 1.1 and Theorem 1.2 (a), 4, is min(p, ¢)-convex. Similarly, if
p=gq=1, then, by Proposition 1.1 and Theorem 1.2 (b), 4, is locally
logconvex. Thus. U contains a min(p, g)-convex (resp. logconvex) 0-
neighbourhood in (X, A), and this completes the proof.

TheorEM 1.4, A tos is locally logeonvex iff it is a quotient of a subspuce of
a twisted sum of two locally convex spaces.
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Proof. Necessity. A locally logconvex tvs Z may be embedded into a
product [[Z}! of locally bounded Hausdorff locally logconvex tvs. By
iel
Proposition 1.2 (b), -
Zl = X/Y' ' for iel,

where X is a twisted sum of two normable tvs ¥; and Z;; ¥;! is a closed

subspace of X;. Thus

Z = [TX/ Y = [TXA] ¥

iel iel iel

It is enough to prove that [] X, is a twisted sum of two locally convex tvs.
But -

I_IXi/HYizH(Xi/K)zHZI

il el iel iel
and [[ ¥, J]Z; are locally convex.

ésilfficlielency is an immediate consequence of Theorem 1.3 because

every quotient and every subspace of a locally logconvex space are also
locally logconvex.

2. Sections for twisted sums. Of course, a twisted sum splits iff it has a
linear section continuous at zero (actually continuous). This section is
devoted to the study of sections continuous at zero (not necessarily linear).

It is easily seen that the existence of a section continuous at zero is
preserved by the equivalence relation of twisted sums. In fact, there is a
stronger result:

LemMMA 2.1. Let
@1) 0= (% )5 (X, 1)5(Z,9) -0
and
22) 0 (Y, )5 (X, 12) 5 (Z, 12)~ 0

be twisted sums, where 1, > 1,.

Let s5: (Z, y5) = (X, 15) be a section continuous at zero for the twisted sum
(2.2). Then s is such a section for (2.1) too.

Pr_oof. The ‘family of sets Ung~'(V), where U, V are O-neighbour-
hoods in t; and y,, resp., forms a O-neighbourhood base in (X, 7,) (comp.
Lemma B).

' Let g: X—Z be a continuous map; then we say that a O-
neighbourhood U in X has the line property with respect to g iff, for every
z0€Z, zo # 0, such that lin{z,} = g(U), there is xoeX, xoeq™(zo), for
which lin {x,} < U.
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Now , we will give a necessary condition for a twisted sum to have a
(homogeneous) section continuous at zero.

ProrosiTION 2.1. Let the following diagram be a twisted sum:
(2.3) 0—(Y, Hd(X,1)5(Z,9)~0.
(a) If (2.3) has a section continuous at zero, then
g(ker ) = ker y.

(b) I (2.3) has a homogeneous section continuous at zero, then there is a O-
neighbourhood base for © whose each element has the line property with respect
to .

Proof. (a); Let us assume that s: (Z, y) — (X, 1) is a section continuous
at zero. Of course, ¢ (ker 1) < ker y. Now, let z¢ g (ker 7); thus there exists a
0O-neighbourhood U in (X, t) such that s(z)¢ U. Hence z is not contained in
the O-neighbourhood s~ *(U) in (Z, y), ie., z¢ker 7.

(b): Let us assume that s: (Z, 9)— (X, 7) is a homogeneous section
continuous at zero. Let U be an arbitrary 0-neighbourhood in (X, 7). The
0-neighbourhood V= U ngq~*(s"*(U)) in (X, t) has the line property with
respect to g, because ¢(V)=s"'(U) and, for every z,#0, zyeZ,
lin {zo} =571 (U), we have lin {s(zo)} = V. Of course, Vis a 0-neighbourhood
in (X, 1) contained in U. This completes the proof.

The following lemma is a partial converse of Proposition 2.1 (for part (b)
comp. [14], proof of Theorem 10.1).

Lemma 22. (a) If in (23) Y is semimetrizable and there is a weaker
semimetrizable topology ©, on X such that

j_l('ﬂ'l mj(Y)) =4, q(t) =1,

then (2.3) has a section continuous at zero.
(b) If in (2.3) Y is locally bounded and there is a O-neighbourhood base of

g (ker t,) = ker vy,

" the topology t containing only sets with the line property with respect to g,

then (2.3) has a homogeneous section continuous at zero.
Proof. (a): By Lemma 2.1 it is enough to construct a section
continuous at zero for the twisted sum

(24) 0= (Y, )L (X, 1)5(Z, 7)) — 0.

Let {U,} be a O-neighbourhood base in (X, 7,), U,, =ker 7;, Uy = X, and
let n(z)=sup{neNu{w}): zeq(U,)} for every zeZ. Thus, by the
assumption, for every zeZ we can choose

5@)eUpyng ' (2)

with ze g (U,). Hence s: Z — X is the section continuous at zero for (2.4).
(b): Let #, be a O-neighbourhood base in (X, ) (consisting only of
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balanced sets) such that, for every Ue#,, U has the line property with
respect to ¢ and (U+U)n Y is bounded. )

Now, let Ue#,, Vye Uy, Vy+Vy <=q(U), and let Z; be an arbitrary
one-dimensional subspace Z, = Z. If Z; < Vy = q(U), then there is x for
which 0 # ¢(x) = zeZ, and lin{x} = U. If Z;\V, 5 @, then we can choose
ze(g(U\Vy)~Z, and xeq™'(z)n U. We may define

sy(z) = x,
and homogeneously extending s onto the whole space Z we get
solVy) = U.

Let U,, Uye#,, U +U;cU,cU, and let aekK, |4 <1, for which
a((U+U)ynYy= U,. We have

spla(Vy, " W) = (sy=su,) (a(Vy, N Vo)) +50, (Vy ) « Uy + Uy < U,
Thus sy is continuous at zero. This completes the proof.

It may be easily seen that if Y is complete, then in (2.3) j(¥) =j(Y)+
+ker 7= ¢ *(ker y). Thus in this case the assumption of part (a) of the
preceding lemma is satisfied. A similar fact is true for part (b).

Lemma 2.3. Let X, Z be tvs and q: X — Z be a surfective homomor phism
with a locally bounded and complete kernel. If U is a closed balanced
0-neighbourhood in X which satisfies the condition

(2.5) (U+U)nker g is a bounded set,

then U has the line property with respect to g.

Proof. Let 0sz,eZ and let lin{z,} be. contained in ¢(U). Then
(@ (zo) n(n" ' U))ey is a decreasing sequence of nonempty subsets in
g~ Y(zq). By (2.5), the family (n~'(U+U)ker g),y is & O-neighbourhood
base in ker ¢ and, on the other hand, if z,, z,e¢ ' (zo) N(n~ ' U), then z,
—z,en” Y (U+U). Thus (g7 (zg) (17! U))en is a closed Cauchy filter base
in the complete uniform space ¢~ ' (zo). Therefore this filter converges, ie., there

exists xo which belongs to N (¢~ *(zg) Ma™? U). Obviously lin {x,} < U.
neN

Now, we will give some auxiliary facts.

ProrosiTion 2.2 (V. P. Palamodov). Ler X be a complete tus containing a
metrizable subspace Y. Then X/Y is alse complete,

The proof of Proposition 2.2 is contained in [9], Corollary 2.6 or in
[32], Theorem 11.18.

CoroLLARY 2.1. Let Y be a semimetrizable tvs and let Z be a Hausdorff
s. If

0>V HX545250
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is a twisted sum, then so is .
0 Y—J—r)?iZ»»O.
Proof. By passing to the Hausdorff associated twisted sum, we can

assume that Yis a Hausdorff tvs. Let us consider the following commutative
diagram:
q

Y X
(2.6) i,,l lix
Y- X 5

where iy, iy are the respective topological embeddings. Of course, the rows
are twisted sums, and ker ¢ = ker ¢, 0iy. Now, we can define a linear
injection iy Z— X/¥ such that (2.6) with the additional map i, is
commutative. It can be easily verified that i, is a homomorphism and i,(Z)
is a dense subspace in X/¥. By Proposition 2.2, X/¥ is complete; it may be
identified with Z, and then ¢, may be identified with §. This completes the
proof.

We will denote by m(Z) the cardinal number inf dim(Z,/Z,), where inf
is taken over all pairs of subspaces Z, = Z; = Z such that there is no
weaker semimetrizable topology & on Z, such that ker & = Z,. Similarly, we
will denote by [(Z) the cardinal number inf dim(Z,/Z,), where inf is taken
over all pairs of subspaces Z, = Z, < Z such that for every 0-neighbourhood
U in Z there is a one-dimensional subspace Z; =« Z, nU and Z, ¢ Z,.

If there are no such Z,, Z, we will assume (in both cases) that
m(Z) (or 1(Z)) is equal to oo; this last value is assumed to be greater than
all cardinal numbers.

J

p4 0

- /7 0
7 /

1

ProprosITION 2.3. Let Z be a tvs.

(@) nm(2) = x iff Z has a weaker metrizable topology.

(b) {Z) = x ifff Z has a 0-neighbourhood which contains no line.

() If Z is not Hausdorff, then (Z) = m(Z) = 1.

Proof. (a): If Z has no weaker metrizable topology, then the pair of
subspaces Z, = Z, Z, = 0} has the required property. On the other hand, il
Z has a weaker metrizable topology 7, then, for every Z,«Z, = Z,
kerpyZ, =40] < Z,.

(b): The proof is quite similar.

(c): If Z, < Z has the trivial topology and Z, = {0}, dim Z, = 1, then
the pair Z,, Z, has the required property from the definition of 1(Z) and
n(Z).

The main theorem of the section is the following:
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TueoreM 2.1. Let Z be a tvs, and let Y be a semimetrizable tvs.
(a) Every twisted sum of Y and Z has a section continuous at zero iff

(2.7) codimy Y < m(Z).

(b) Let Y be locally bounded and Z be locally pseudoconvex. Then every
twisted sum of Y and Z has a homogeneous section continuous at zero iff

(2.8) codimy Y < 1(Z).

() If Y is locally bounded and complete, then every twisted sum of Y and
Z has a homogeneous section continuous at zero.

(d) If' Y is locally bounded and the pair (Y, Z) of tvs does not satisfy the
condition (2.8), then there is a twisted sum of Y and Z withour any
homogeneous section continuous ar zero. :

Remarks. Theorem 2.1 may be considered as a theorem on the
splitting of twisted sums. Of course, for appropriate tvs Y, Z, if Ze S(Y), then
they satisfy (2.7) or (2.8).

As is shown by the following counterexample, it seems that this theorem
cannot be strengthened.

E. Michael (see [4], Theorem IL7.1, [3], [22], I, Prop. 7.2) showed that,
in fact, every twisted sum of a locally convex F-space and an arbitrary

F-space has a continuous section, The first counterexample shows that this
section is not homogeneous in general.

CouNTEREXAMPLES. Let us consider the hnear spaces

X, = f(xu)e H Ii: lim Sup|x,]l =0},

i~ jeN

o0
X, =@,
=1
Let us define for every neN, & >0, (g)e [] (0, o),
i=1

Ui(n, ) = Xy, Uy(n (&) = X,,

Uin, &) = {(xy)e X;: |xyl <& for i > n,jeN, ¥ Ixy| <e for i <n},
J=1

Us(n, (Bi))v =

o0
{(xeX,: x| <g for i>n, jeN, T %l <& for i< n}.
j=1

Now, we will denote by t,, 1, the topologies generated by the O-neigh-
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bourhood bases

Ay = {U(n, &) neN, e >0},
oo
U, = {Uy(n, ()): neN, )el] O, o)}
i=1

in X,, X,, resp. It is easily seen that (X, t,), (X3, 7,) are complete tvs. The

maps
o0

(2 Xihews

Jj=1

Tt (Xy, 1) — KX, n((xu)x.jslv) =
k=1, 2, are homomorphisms (their kernels are obviously closed).

T, is a metrizable topology and thus, by Theorem 2.1, T; has a section
continuous at zero. But it has no homogeneous section continuous at zero.
This is implied by the fact that T, (X,) = KV and every O-neighbourhood in
KN contains a line but U, (s, &) contains no line for any neN, & > 0.

Similarly, we will prove that T, has no section continuous at zero. Let
us assume that s: T3 (X,) = K™ — X, is such a section, where K™ < KV is
the space of all finitely nonzero sequences. If e, =(1,0,0,..), e,
=(0,1,0,0,..), ..., then ¢, 0 and s(e,) — 0 as n— co. If s(e,) = (xf}) and
& =%sup(|xi)), then & >0 and s(e)¢ U, (L, (&) for ie N; a contradiction.

JjeN

Proof of Theorem 2.1, (a), the “only if” part and (d): Let us assume
that dim (Z,/Z,) < codimg Y for a pair of subspaces Z;, Z, of Z with the
required property. Let codimy, ¥ = dim(Z,/Z,) for Yo ¥, = ¥ Let ¥, be a
vector space for which dim Y = codim; Z, +dim Z, and let ¥, have the
trivial topology. Of course, there is an algebraic isomorphism

h Y,/ Y®Y, - Z

such that h™*(Z,) n(Y/Y) = {0}. Hence we have the following short exact
sequence:
(2.10) 0-YS Y, @Y, >Z -0,

for which j(y)=(y,0) is an injective homomorphism and g(y;, ys)
= h(g, (y1), y;) is & surjective homomorphism whenever Z has the trivial
topology: ¢: Y; — Y/Yis the natural quotient map. Now, using the proof of
Lemma B, we can define on ¥, @Y, a topology 4 with a O-neighbourhood
base consisting of all sets of the form Ung~!'(V), where U, V are O-
neighbourhoods in the original topologies on Y, @Y, and Z, resp. Then (2.10)
is a twisted sum of Y and Z which in either case (a) or case (d) has no
respective section. Indeed, by the definition of h, it is easily seen that

4 NZ) =YBY, < ¥, @Y,


GUEST


168 P. Domanski

for some Y, with ¥, nY; = {0}. Now, if s were a section for (2.10) with the
required property, then s|z,: Z, - ¥; @Y, would have the same property
whenever Y, has the original topology and Y, has the trivial topology.
The kernel of the topology on Y, @Y, is contained in YPY, and
()" (YOY,) c q(YBY,) = Z,

Thus in case (a) the vector topology ¢ induced on Z; from Y, @Y, by
sz, has the kernel Z; = Z,. Of course, it is weaker than the original
topology and semimetrizable because so is Y, @Y,.

In case (d) there is a bounded O-neighbourhood U in Y @Y, (Y, still
with the trivial topology). If a one-dimensional subspace Z; < Z is contained
in (slz,)”* (U), then it is contained in (s|;,)” ' (), where Y is the kernel of
the locally bounded topology on Y;@Y,. Finally, Z; < Z,; a contradiction.

(b), the “only if” part: This is an immediate consequence of part (d).

(c): This is an immediate consequence of Lemma 2.2 (b) and Lemma 2.3. °

(a) and (b), the “if” parts: Let

0= (% D5 (X, 0)5(Z,9)—0

be a twisted sum. We can assume that .kert <j(Y). If (Z, y) were not
Hausdorff, then codimyY <1 (see Proposition 2.3 (c)) and Y would be
complete. Thus (Z,y) is in fact Hausdorff and by Corollary 2.1 we get the
following twisted sum:

| 0= (%, I)—’» (X5, 13) 5(Z,9) -0,
for which ©; =TnX,, X; =§"1(2), ¢, ={lx,
Of course, for every semlmetrlzable (resp locally bounded) topology
7, < 1y for which [ (r; nJ(¥)) = we have
qs (ker 75) = ker v,

where y, = g, (1;). Now, we have dim (ker a/g (ker 7, N X)) < codimy, X
= codimy Y. By the assumption, there is a semimetrizable (resp. locally
bounded) topology y; <y on Z such that ker(y; nker y,) c g ker 7, N X).
Using the proof of Lemma B, we can define a topology 75 on X, such that
the following conditions hold:

F e nj(D) =1, q1(ta) = sup(yz, ya) = y4 < 7.
It is easily seen by the proof of Lemma B that the family of all sets of the

form U n g7 *(V), where Ued.,, Ve,,, is a O-neighbourhood base of 1.

Now, q(ker 731 X) cker y,. Let zeker y,; but ker y, = ker y, nker y,
g (ker 7, N X) and thus there is xe X such that q(x) =z and, for every

Ue,,, xe U. Obviously xeqy* (V) for every Ve ,,. Hence xeker 1;n X
and we get

(2.11)

T, €13 K Tq,

g (ker ;3 " X) =ker y,.
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In case (a) it is obvious that we can choose a semimetrizable topology
7, < 7, with the required properties. Thus the preceding construction can be
made. By Lemma 2.2 (a) this completes the proof.

In case (b), by Theorem 1.1, 7, is locally pseudoconvex. Thus for every 0-
neighbourhood U in (X, 1) there is a locally bounded topology 7, < 1, such
that U contains a bounded 0-neighbourhood in 7, n X. Finally, U contains a
bounded 0-neighbourhood W in 7~ X. Let us observe that if V is an
arbitrary bounded O-neighbourhood, then a one-dimensional subspace
Zy < Vill Z is contained in the kernel of the topology. By (2.11), W has the
line property with respect to ¢. This completes the proof by Lemma 2.2 (b).

It may be interesting to find m(Z) or [{Z) for some tvs Z.

Tueorem 2.2. Let Z he an infinite-dimensional tvs.

(a) For a semimetrizable tvs Z, Z)=1iff' Z has arbitrarily short lines
(i.e.. every O-neighbourhood contains a line).

(b) If, for every O-neighbourhood U in Z, the linear span of all subspaces
contained in U is equal to Z, then 1(Z )-—l For example, 1(Ly(0, 1)) = 1.

) UZ,o(Z, Z) =1 (if Z'# Z*) or =R, (iff Z'=2Z*).

Remark. It can be proved that if dim Z<dim KN‘O, then
m(Z,0(Z, Z%) = . On the other hand, if dim Z>dim K™°, then
m(Z,0(Z, Z%) is the cardinal number next to dim K¥o

Proof. (a): The “only if” part is a consequence of Proposition 2.3 (b). If
Z is not Hausdor{l our fact is a consequence of Proposition 2.3 (c). Let us
assume that Z is Hausdorfl and has arbitrarily short lines: Let Uy > U, o ...
be a O-neighbourhood base in Z. We can choose a sequence x,, X,, ... of
nonzero vectors in Z such that lin{x,) c U, for every neN. If
dim lin {x,: ne N} < N,, then there is a O-neighbourhood U in Z such
that U nlin{x,: ne N} contains no line (Z is a Hausdorff tvs). But U > U,
for some neN; a contradiction. Thus dim lin {x,: ne N} =¥,. We can
choose a subsequence ny <n, <... such that x,, x,,, ... are linearly

independent. Of course, there is a linear functional f: Z — K such that f (%)

=1 for every ie N. The pair of subspaces Z, = Z, Z, = ker f has the desired
property. In fact, if U is a O-neighbourhood in Z, then U > U, = lin {x,,} for
some ieN. But lin {x,} ¢ ker, f'

(b): This is obvious: Z; = Z, Z, is an arbitrary hyperplane.

(c): If Z' % Z*, then there is a dense hyperplane Z, < Z = Z,. If U were
a O-nelg,hbourhood in (Z, o(Z, Z") such that all lines contained in U were
contained in Z,, then Z, would contain a closed subspace (in the tvs Z) of
finite codimension; a contradiction, because Z, would also be closed in Z.

If Z' == Z* then every subspace Z, of finite (nonzero) codimension in
Zy = Z is of the form ker f; nker f, n...nker f, nZ; for some continuous
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linear functionals fi, ..., f, on Z and ne N. Let us denote U = {ze Z: | fi(z)|
<1,i=1,...,n}; thus for every one-dimensional subspace Z.3 < ZinU we
have Z; = Z,. We have proved that 1(Z) > ¥N,. Of course, if dim Z, = Nos
then every O-neighbourhood contains a line. Hence [(Z) < No.

3. The quasilinear technique. Let us define for a given mapping F: Z - ¥,
where Y, Z are tvs, two other mappings Ay ZxZ — Y, Jy: K xZ - Y such
that

Ar(x, y) = F(x+y)—F (x)—F(y),

for all x, ye Z, acK. We call F quasilinear (comp. [13] or [28] where the
definition is slightly different) if F(0) = 0, and Ay, J are continuous at zero
(ie., at the point (0, 0) in Z xZ and K x Z, resp.). We denote by Q(Z, ¥) the
linear space of all quasilinear maps from Z to Y and by Q(Z, Y, Y}), where
Y< V;, the linear subspace of Q(Z, Y;) containing only maps F which satisfy
the following condition: for every Ue %y, there is We %, satisfying

Jpla, x) = F(ax)—aF (x),

3.1 F"Y(Y+U) > W.
Of course, if ¥; — Y, are tvs, then we may assume that Q(Z, Y{) = Q(Z, Y,).
Similarly, for tvs YV, <Y, we have Q(g, Y, )< Q(Z, Y, Y,) and
0(Z,7, Y) =Q(Z,7, Y,). Obviously Q(Z, ¥, Y) = Q(Z, Y).
Let us introduce useful notations:

WU, V)= {(y,2)e YxZ: zeV, y—F(2)e U},

where V<= Z, U < Y;, and
CAUE = {WE (U, V): Ve, Uely,),

where FeQ(Z, Y, Y,), Yo Y,.If Y = Y|, then we will omit the superscript Y.
It can be easily seen that W (U, V) =YxZ W (U, V) for U < ¥y,
Vo Z.
ProrosiTiON 3.1. For every FeQ(Z, Y, Y,), %% is a O-neighbourhood base
Jor a unique linear topology t% on the space YxZ (we denote (Yx Z, tf) by
Y®rZ). The following diagram is a twisted sum;

(3.2) 0- Y Y@ Z 5 Z -0,

where j(y) = (v, 0), q(y, 2) =z for yeY, zeZ. If i: Y=Y, is the canonical
embedding, then the following diagram commutes:

0 Yt Y@ 7 —T> 7 0
zl l(xidz lldz
0 Ve Z 2 0
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where jo (y1) = (v, O go vy, 2) =z, i xidy (y, 2) = (i(3), 2) for all ye ¥, y, e ¥,
zeZ.

The following short lemma will be useful.
Lemma 3.1, F(az) >0 as a— 0 in K for all FeQ(Z, Y), zeZ.

Proof. For every Ue ¥y there is ¢ > 0 such that, for |a/c| sufficiently
small, F (az) —(a/c) F (cz)e U. Of course, (a/c)F(cz)— 0 as a — 0, and thus for
la| small we have

Flaz)e U+ U.
Proof of Proposition 3.1. It is easily seen that the unique tran-
slation-invariant topology ¥ generated on YxZ by %} is equal to T
YxZ, where 1, is the translation-invariant topology on Y; xZ generated by

. This proves the last part of the proposition and allows us to prove the
linearity of the topology t, only. ‘

By Lemma 3.1, the family #, contains only radial sets. We can prove
very easily that for every Ue %, there are b> 0 and Ve Uy for which

V4V U
and, for every aeK, |a <b,
aVeaU.

So %y is a neighbourhood base at zero for a vector topology.
Now, by (3.1),

Vo (WU, V)W, (WU, V)Aj(Y)=UnY

for every U €Uy, Ve Uy and We Uy satisfying (3.1). This shows that (3.2) is
a twisted sum.

Remark. As has been shown, the condition (3.1) is equivalent to the
fact that ¢: Y, Z — Z is open for the given FeQ(Z, Y;).

It turns out that there exists a very useful characterization of splitting
twisted sums of the form Y@pZ.

ProrostmioN 3.2, The twisted sums Y®pZ, Y®gZ for FeQ(Z, Y, Y)),
GeQ(Z, Y, Y,), where Y Y, and Y Yy, are equivalent iff there exists a
linear mapping L: Z — Y such that for every U 2€ WUy, there are Vie Uy and
Uiely, satisflying

(3.3) Uy+G(z) 2 (U +LE@)+F@)NY for every z6V,.
Of course, 0eQ(Z, ¥, Y;) and it generates the twisted sum Y®Z.
CoroLLARY 3.1. Let Y Yy, Z be tvs and FeQ(Z, Y, Y,). Then YOr 2

5 — Studin Mathematicn, T, LXXXII
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splits iff there is a linear mapping L: Z — Y such that
F—-L: Z-Y,
is continuous ar zero.

Proof of Proposition 3.2. Equivalence of the twisted sums Y@y Z,
Y@, Z means (by definition) the commutativity of the following diagram:

i i

0—— Y Y G 7 —> 0
ldI TT ILd
- Z z 0
o] Y % Y@ @

for a suitable topological isomorphism T. The mappings Jji, Jja. 41, 42 are
defined as in Proposition 3.1. By Lemma A, T'is a topological isomorphism
iff it is a bijective continuous linear map. The above diagram is commutative
iff there is a linear map L: Z - Y such that

T(y, z) = (y+L(2), z)

for all ye Y, ze Z. But it is easily seen that the continuity of such a map T is

equivalent to (3.3).
The following lemma establishes precisely the relation between the

results of Sections 2 and 3.

~ Lemma 3.2. The following conditions are equivalent:
(a) There exists a section (resp. a homogeneous section) continuous at zero
for: the twisted sum ().
(b) There exists a mapping FeQ(Z, Y) (resp. a horm)geneouv mapping -
FeQ(Z, Y)) such that the twisted sums Y®pZ and (x) are equivalent.

Proof. ( )a(a) This is obvious by Lemma 2.1, because the mapping

s: Z~>Y®PrZ
s(z) = (F(2), 2)

for every zeZ and FeQ(Z, Y), is a section for ¥ @y Z, continuous at zero.
(a) = (b): Let us examine the following diagram:

0—-»Y.*§;X§;Z—>0,
q

where s is a given section continuous at zero and the linear map p satisfies
the condition poj =idy. The desired map is F = pos. Of course, F is
homogeneous iff so is s.

At first we will show that FeQ(Z, Y). Let z,, z,€Z and aeK; let us
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notice that

s$(zy+22)—s(z)~s(z)€j(Y),  s(az))—as(z)ej(Y)

because
q(s(z1+22)=5(21) =5(22) = 0 = g (s(az,) — as(zy)).
Hence
Ap(zy, 23) =" (s(z, +23)=5(z)) —5(z,))
and

Je(ay zy) =j " (s(uzy)~as (2,)).
1.

Of course, j': j(Y)— Y is continuous and therefore A,v and J, are
continuous at zero.

It is casily seen that the following diagram commutes:

Y Y : x—i z 0
ldl ir lld
¥ e Y
Ji K B z 0

where j; (¥) = (y, 0), ¢, (y, 2) = z, T(x)
Let us notice that

T Ny, 2) =T (y=F(2), 0+ T~ (F(2), 2)
=T (y=F(2), 0+ T ! (pos(z), 2)
=j(y—F(2))+s(2).

NQ\IN it Vey, €Uy, Vagilly, j(V})<V, s(Vy) =V, then obviously
T™Y(Wp(Vi, V3)) = V+ V. Hence T~! is continuous and, by Lemma A, T is
a topological isomorphism.

Let (Y, 7) be a tvs and let (r, <), be an arbitrary directed family of
semimetrizable topologies on Y such that supt, =t. Then the. space
fal

H (Y, w)~ is called a standard product extension (SPE) of (Y, 7). We call the

space ]I(Y/ker T, t/ker 7)™ a reduced standard product extension (RSPE) of

= (p(x), ¢(x)) for all ye Y, zeZ, xeX.

(Y, 7). lL is well known that if ¥ is a SPE of ¥, then Y < Y;; the same fact is

true if Yis Hausdorff and Y, is a RSPE of Y. Actually, Y is isomorphic to the

diagonal of the product ﬂ(Y 7)< H(Y )"~ (or [T (Yker 1, t/ker ), resp.).
el

Of course, if Y is semlmetm?ablc, then ¥ is a SPE of Y and the associated
Hausdorff space ¥; of ¥ is a RSPE of Y.
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Now, we can prove our main theorem (for particular cases see [16],
Theorem 2.4; [14], Theorem 10.1; [18], Theorem 2.5).

TueoreM 3.1. For every tvs Y, Z and every SPE Y, of Y the twisted sum
(%) is equivalent to Y@rZ for some FeQ(Z,Y, Y1)

If Y is locally pseudoconvex, then F may be chosen homogeneous (for SPE
which are products of locally bounded tvs).

If the pair (Y, Z) satisfies the appropriate conditions from Theorem 2.1,
then F may be chosen from Q(Z, Y). ’

Remarks. 1. As is shown by the counterexample in Section 2 and
Lemma 3.2, it seems that this theorem cannot be improved.

2. Tt is shown (implicitly) in [18], Theorem 2.5, that if Y and Z are
nuclear Fréchet spaces and Z has a basis, then F may be chosen linear (for
SPE which are products of Banach spaces).

3. In fact, Theorem 3.1 shows that every twisted sum of two tys Y and Z
may be “extended” in the first summand to the twisted sum of an arbitrary
SPE Y; of Y and Z. Moreover, this extended twisted sum has a section
continuous at zero.

4. Changing the proof, we can show that if Y is Hausdorff then “SPE”
in the text of the theorem may be replaced by “RSPE”.

Proof. The last part of our theorem is an obvious consequence of
Theorem 2.1 and Lemma 3.2.

Now, we will prove our theorem for Y semimetrizable and ¥; = ¥ We
need only consider the twisted sums '

| 0~ (Y, A5 (X, 95 (2Z,9) 0,
where 1 is semimetrizable and ker T = j(Y). The following diagram is also a
twisted sum:

0 (¥, 29) 35 (X, 1) = (Z/ker y, y/ker 1) =0,

where (Y, 4;) zﬁ?) (X, 7). The map j; is the corresponding embedding
and g4 = go0q, where go: Z— Z/ker y is the natural quotient map. By
Corollary 2.1, we get the twisted sum
~ T q
0 (%, ) B (X1, 72) 3 (Z/ker y, y/ker )= 0,

where X, =37 !(Z/ker y) and q; = filx,. But (%, 7)) =(%, 7, J, =] and
(Z/ker v, y/ket ) = (Z,, yn Zy) for every aigebraic complement Z; of ker 7.
We can define a linear continuous projection p,: Z — Z; with the kernel
equal to ker y. Thus we have the next twisted sum:

(34 0~ (% D2, 1) 3@,z -0

By Theorem 2.1 and Lemma 3.2, there is F;eQ(Z,, ¥) such that (3.4) is
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equivalent to
F o .
0~ (% D= Yor, 2, 3(2,, 9, nZ,) 0,

w}}ere Jr (_)f) =(y,0), gr(y, 2) =z for all ye ¥, zeZ,. This implies that there
exists an isomorphism

T X~ )7®p121

which makes the following diagram commutative:

0 ({7 R LG YL LN Y PV p—

T

0 (,A44) A Ferz % (2,,#nZ}) ——>-0

where j, = jely, ¢3 = q,,<|y@plz. Now, let p,: Z,— ¥ be a linear section for
the quotient map goj;: Y— Z, « Z. Thus the map p = (idy—p, 0q0j,): ¥
— Y is a projection onto Y.

We define an algebraic isomorphism (we can assume that p,: Z — ¥,

p:i(Z1) = {0})

To: Y&r, 21~ Y®6Z, To(, 2 =(p(y), 40j,(9)+2),
where Ge Q(Z, ¥), G(2) = F, 0py(z)—p, (2). For all Ue Uy, Ve U, we have:

Wi (U, VnZy) ‘
={(y, 2)e YxZ: y—F,0py(z)eU, ze V}

{0, e Y= Zy: p()+p104oji()~F1ope(2)eU, ze V}
{0, € ¥xZ;: p()+(Fy0po~p1)lgojs () +2)eU, ze V}
(0, e YxZ;: To(y, 2e W (U, V)} = Ty (We (U, V).

Thus Ty is a topological isomorphism.

. Obviously jgoid = TyoToj, because ply =idy. Thus the following
diagram commutes:

i

i

0 (¥, A) = (X 7) T (2,9) 0
d e e
¥
0 . @
(14) ——pm Y 82— (27) 0

Yvhere To oT is an isomorphism and s is an appropriately chosen
1soxporphxsm. Hence Y®pZ with F=GoseQ(Z, ¥) is a twisted sum
equivalent to the given one. Of course, if F; is homogeneous, then so is Gos.
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Hencf: for Y locally bounded F may be chosen homogeneous. This completes
the proof of the semimetrizable case.

Now, we will prove our theorem in the general case. Let (75, <) be
an arbitrary directed family of semimetrizable topologies on Y such' that
sup 7; = 7. By the first part of the proof, we can construct a family of
ciiasilinear maps {F()eQ(Z, (Y, )"): iel} such that the topology ¥
generated by %Y is equal to the unique topology (see Lemxpa B) on X
which satisfies y; nj(Y) =j(z), q(3) =4 y <y. It-can be easily seen that
(¥, <)ior is a directed family of topologies. Thus

(3.5) supy; Nj(Y) = supj(w) =j(v), ‘1(5.‘1}’ n =4
iel ig

iel
Of course, supy; <7 and, by Lemma A, supy; = 7. Let us define the map
iel el .

F:Z-[[(Y, )" =1,

iel

F(z) = (F () (@))er-

Obviously FeQ(Z, ¥;) and the topology of Y@y Z is the supremum of the
topologies of (Y, 1)@y Z. This fact shows that Y&, Z and (%) are
equivalent twisted sums.

By the remark after the proof of Proposition 3.1 and by (3.5)
FeQ(Z, Y, Y)). If Y is locally pseudoconvex, then t; may be chosen locally
bounded and, by the first part of the proof, F(i) are homogeneous. Finally, F
is also homogeneous. This completes the proof of our Theorem.

The following theorem will be very useful in Section 4.

TuporeM 3.2. Let ¥, o Y, Yo Y, Z,, Z be tvs, FeQ(Zy, Y, Y). Then for
all continuous linear mappings T Yo7V, S: Z-2Z,, T(Y)cY,, the
following commutative diagram contains only continuous mappings:

o Y s ver, 2, d Z 0
TT [sz , WS
0 Y YO I > Z 0

where T = Tly, (TxS)(y, 2) = (Ty, 82), ye Y, ze Z. If T, S are relatively open,
then so is TxS.
Proof. For all Ue #y,, Ve %, the following assertion holds:
Whs(THU), 7 (V)
=y, 2)eYxZ: y—FoS(z)e T 1), ze S~ (V)]
=(Tx8) (v, z2)e Yy xZy: yy~ToF(z,)eU, z;eV})
=(Tx )™ (Wide (U, V).
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If T, S are relativclyg open, tAhen for all Uewuy, Ve, there exist U, €Uy,
Vielly, satistying T(U) = T(Y)n Uy, S(V) > S(Z)n V,. Hence
(Tx S){(Ws(U, V))
. =(TxS)({(y, 2)e YxZ: y~FoS(z)eU, ze V})
2y z)e Yy xZy: y—~ToF(z)eU,, 2,6 W) N (T(Y)yx$(2))
=(T(Y)x8(2) " Wi (U, Vy).
This completes the proof.

Remark. For the proof of the openness of Tx S the extended version of
Lemma A may be used.

LimmA 3.3, For all tos (Y, A), (Z, ¥) and every contimuous linear map
T: (Y, 2) =~ (£, ) there is a puir of tvs ¥, Z which are SPE of Y, Z, resp., such
that there is a continuous linear extension T: Y~ 2 of T.

Remark. If Y and Z are Hausdorff, then “SPE” may be replaced by
“RSPE™.

Proof. Let (y, <), be a directed family of semimetrizable topologies
on Z such that sup y; =7 Of course, T '(y,) = 4, is semimetrizable and

iel
(A4 S)er I8 a directed family. This family may be extended to a directed
family of semimetrizable topologies (4;, <);or such that for every jeJ\I there
is i;el such that i,is,/lj and supd; =4 Let us define i;=; for jel.
‘ J

Je
Obviously T: (Y, 4) = (Z, v, 1) is continuous and sup Yy = 9. Finally, we have
Je

N
the following continuous extension of T to the corresponding SPE:
T I1 A)~ =T1Z )~ TOe) = (GO
Jel Jel

where Ty = T: (Y, 1)~ —(Z, N, jel.
We can easily show the following results, using Theorem 3.1 and
Theorem 3.2 for suitably chosen SPE (Lemma 3.3) and maps T, S.
CoroLLARY 3.2. Suppose that in the following diagrams — denotes given
continuous linear mappings and all columns and rows form twisted sums. Then,
in each of the cases (a)-(d), we can define continuous linear mappings denoted

by = — ~vand a tos Xo such that the diagrams commute. Then new colunins
and rows are ulso twisted sums. By id we denote identity.
() 0 Y X z 0
G’l {‘71 lld
Qe e B Y] e -a»y{o ------- o o >0

where g, q, are surjective homomorphisms.
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0 Y- X 4 0
(b) X
id |4 J
|
|
0= —==mn—- 3 Y e 3 X e >0

where j, j; are injective homomorphisms.

© ° ]
O=—m—== =2 Yym = e Xy e Xy 3 )
id
[0 Yy Xy y4 0
0 0
0 0
(d :
|
|
|
Y
0 Y Xy Zy 0
id
O3 X Xo -2, >0
id
>0,
0 0

4. Splitting twisted sums. A tvs Z belongs to the class S(Y) iff every
twisted sum of the tvs Yand Z splits. If Ze S(K), then Z is called a .# -space
(comp. Kalton and Peck [15]). In this section we will study the classes S(Y)
for suitable tvs Y. By ¥ we will denote an arbitrary SPE of a tvs Y.

The first obvious fact is
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PROPOSITION 4.1. For all tvs Y, Z we have (Z, ©)e S(Y), where T is the

finest linear topology on Z.

It turns out that every class S(Y) has some interesting hereditary
properties.

Lemma 4.1, Let ZeS(Y) for given tvs Y, Z, If Z, < Z is a subspace
satisfying the property that every continuous linear operator T: Z{ — Y may be
extended onto the whole space Z, then also Z/Z,eS(Y).

Remark. A similar method of proof was used independently in [17] for
a particular case of Lemma 4.1,

Proof. By Theorem 3.1, we can consider only twisted sums of the form
YOr(Z/Z;) for FeQ(Z/Z,,Y,¥). It can be easily scen that Fog
=Q(Z, Y, V) q: Z-2/Z, denotes the natural quotient map.

Now, by Corollary 3.1, there exists a linear map L: Z — Y such that for
every Ue “y there is Ve, salislying

(Fog—-L)(V)<=U.

But Fogl,, =0, and thus Lz : Z; — Yis continuous and may be extended
to a linear continuous operator L;: Z - Y. Hence there is a linear map
Ly: Z/Z,~ Y for which L=L;+L,0q Let U be an arbitrary 0-
neighbourhood in ¥, Then for a suitably chosen Ve U, we have
(Fog~Lyog)(V)=((Foq—L)+L,)(V) < U.

Thus (F~L,){4(V)) = U; this completes the proof by Corollary 3.1.

TueoreM 4.1, If Y is an arbitrary tvs, then S(Y) is closed under:

(a) complemented subspaces,

(b) finite products.

Prool. (a): This s an immediate consequence of Lemma 4.1.

(b): Let tvs Z,, Z,e S(Y); we will show that also Z = Z, @Z,eS(Y).
We denote by P: Z — Z, the projection for which ker P = Z,. By Theorem
31, we need only prove our theorem for twisted sums Y@FZ with

FeQ(Z, Y, ¥). Now, by Corollary 3.1, there are linear mappings L: Z,
=Y, Ly Zy~Y such that Fl —Li: Z =¥ Fly—Ly: Z,-» ¥ are

continuous at zero. Mence for ze Z
(F—LyoP—Lyo(l~P)(z)
= 4y (P(2), I = P)(2))+(F ~ L) 0 P(2)+(F = Ly) o (I ~ P) (2),
and thus
F—LioP—Lyo(I—P): Z~ ¥
is continuous at zero, This completes the proof by Corollary 3.1.
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LemMMa 4.2. A nontrivial vector space Z with the trivial topology belongs
to S(Y) iff Y is complete.

Proof. The completion ¥ of Y is a twisted sum of ¥ and a tvs with the
trivial topology.

ProrosiTION 4.2. Let Y be a complete tvs.

(a) ZeS(Y) iff the Hausdorff tvs associated with Z belongs to S(Y).

(b) A dense subspace Z, of Z belongs to S(Y) itf ZeS(Y), whenever Y is
semimetrizable.

Proof. This is an immediate consequence of Lemma 4.2 and Theorem
41 (part (a), and the definition of the class S(Y) (part (b)). The
semimetrizability of Y is used only for the “if” part, comp. Corollary 2.1,

We get some more interesting hereditary properties of the class S(Y)
when we restrict our considerations to locally bounded F-spaces Y.

TreOREM 4.2. Let Y be a locally bounded tvs and ler Y, Z be a pair of tvs
having only twisted sums with a homogeneous section continyous at zero (for
example, let Y be a locally bounded F-space and let Z be an arbitrary tvs —
comp. Theorem 2.1 (c)). If a tvs (Z,7) satisfies the following condition: for
every Ue W, there is a vector topology y(U) <1 Jor which Ue W yy, and

(2/ker y(U), y(U)/ker y(U))eS(Y),
then (Z, t)e S(Y).
Remarks. Comp. [14], Proof of Theorem 10.2. A very similar fact is
true for semimetrizable spaces Y. By Lemma 4.1, if (Z, (U )eS(Y), then also
(Z/ker y(U), y(U)/ker y(U))eS(Y).

Proof. By Lemma 3.2, we may consider only twisted sums of the form
Y@y Z for a homogeneous FeQ(Z, Y). Let ||| be an arbitrary quasinorm
generating the given topology on Y. Then there is Ue 4. satisfying

@1 IF(x+y)—FE)-Fy)l <1
Let y=p(U) and let p: Z —ker y(U) be a projection. Then Fl,, may be

for every x, yeU.

considered an element of Q((Z/ker y, y/ker y), Y) because (ker p, y nker p) is’

naturally isomorphic to (Z/ker y, y/ker 7). By Corollary 3.1, there is a linear
mapping f: ker p— Y for which F|,.,—f is y-continuous at zero. Thus
(F—Fo(id—p)—Fop)+(F—f)olid—p) = F~folid—p)~Fop

is p-continuous at zero and hence t-continuous at zero.

On the other hand, (4.1) implies the linearity of Fl,,: kery— Y. Of

- course, f o(id~p)+Fop: Z— Y is also linear. Using again Corollary 3.1, we

conclude that Y@, (Z, r) splits. ‘

Let (4, <) be a directed family. The projective limit of a family of tvs
(X.a)aea With respect to a family of continuous mappings (Fapluser Jan: Xp
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- X, is defined as the space

lirn.qah Xb = qu)e [I Xa: .‘/uh(xh) = Xy for every a < bEA}
L aed
The projective limit is reduced iff

Pa(l({l:fl‘;ufy X:bi =X,

where p,: || X, X, is the natural projection.
aeel

Tukorem 4.3, For every locally bounded F-space Y the cluss S(Y) is
closed under;

(a) reduced projective limits,

" (b) arbitrary products.

Remark. This theorem cannot be proved for every F-space Y because,
by the Counterexample (Section 2), there are an F-space Y and a twisted
sum of Y and K with no homogeneous section continuous at zero.

Proof. (a) is an immediate consequence of Theorem 4.2 and Proposition
4.2 (b).

(b): Every product is the reduced projective limit of its finite
subproducts (comp. [33], Ch. I, p.53); thus our fact is a consequence of
Theorem 4.3 (a) and Theorem 4.1 (b).

A tvs X admits Ly-structure iff for every Ue Wy there is a finite
topological decomposition X = X, @...@X, for which X, cU for i
=1, ..., n For example, Ly (0, 1) admits Lg-structure.

Prorosimion 4.3, For every locally bounded tvs Y the following spaces
belony to S(Y) iff 'Y is complete:

(@) (2, 0(Z,2"), 2" # 2%

(b) Z = K™ for every cardinal number m 2 Nos

(¢) tos Z admitting Lg-structure,

Similarly:

(d) (Z, a(Z, Z*)eS(Y), where Y is locally bounded, iff codimy ¥ < Ry.

Remark. The “if” part of (c) was proved, in another way, in the form
restricted to F-spaces Z by Kalton and Peck [15), Theorem 3.6.

Proof. The “only il part is an immediate consequence of Theorem 2.1
(d) and Theorem 2.2 (¢} and (b) (for part (c) of our theorem). Thus it is
enough Lo prove the “if" part,

(a): A tvs with a weak topology is dense in some reduced projective
limit of finite-dimensional tvs; apply Theorem 4.3 and Proposition 4.2.

(b): The topology on K™ is a weak topology.

(¢): By passing to the Hausdorff associated twisted sum, we can assume
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that Y is Hausdorff. By Theorem 3.1, every twisted sum of Y and Z is of
the form Y@y Z for some homogeneous FeQ(Z, Y). There are Ue %, and
a bounded set Ve %y for which
A (UxU) V.

Let Z, ®...®Z,=Z and Z; U for i=1,...,n It is easily seen that
Ap(Z;xZ;) = {0}, and hence Flz;: Z;~ Y is linear for i =1, ..., n. Thus we
can construct a linear mapping L: Z — Y with F—Ljz =0 for i=1,...,n
Finally,

" i-1
F-L)) =Y, Ap( Y, Py(x), Pi(x),
=2 J=1

where P, is a continuous projection on Z;, is continuous at zero. By
Corollary 3.1, Y®rZ splits.

(d): By Theorem 2.1 (b) and 2.2 (c) the pair of tvs ¥, Z has only twisted
sums with a homogeneous section continuous at zero. Of course, every 0-
neighbourhood U in Z contains a convex O-neighbourhood of the form V
={zeZ: |fi(z) <1,i=1,..., n}, where f; are continuous functionals. The
set V generates the topology y(U) which satisfies the assumptions of Theorem
4.2. By Theorem 4.2, part (d) is proved.

Besides these positive results Kalton and Peck [16] showed the
following.

TuroreM 4.4. Let Y be a locally bounded F-space with an unconditional
basis not containing a subsequence equivalent to the natural Schauder basis in
Co. Then Y¢S(Y).

Remark. Kalton and Roberts [17] showed that coe S (¢o) and [, S(l,)
(comp. Theorem 5.5 (b), Proposition 5.4 (a)).

There are some results on splitting and nonsplitting twisted sums of
nuclear Fréchet spaces with bases Y and Z ([39], [18]). In particular, [18]
gives some sufficient conditions for ZeS(Y).

Now, we should describe the class S (K) (i.e. S -spaces); but this class is
closely related to the class of TSC-spaces and to the three space problem for
local convexity. In fact, a locally convex space X eS(K) iff every twisted sum
of K and X is locally convex. Hence we will study locally convex twisted
sums.

5. Locally convex twisted sums and .¢-spaces. It is a known fact (comp.
[131, [28], [29]) that there exist nomnlocally convex twisted sums of two
locally convex spaces (for example, of K and ;). A tvs Z will be called a
TSC-space iff for every locally convex tvs Y every twisted sum of Y and Z is
also locally convex.

Remark. Tvs Y with the trivial topology are the only tvs which have
only locally convex twisted sums with an arbitrary locally convex tvs Z (in
fact, for locally convex Y= Y, @K and nonlocally convex X > K such that
X/K ~1,, Y, ®@X is a nonlocally convex twisted sum of Y and ;).
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of course, every TSC-space belongs to §(K). It is rather surprising that
the converse is also true for metrizable tvs. I do not know if it is true in
general.

Tuporem 5.1, Let (Z,7) be a les which has, for every Ue,, a
semimetrizable vector topology y(U) <1, Ue W ,y,, such that (Z, y(U)eS(K).
Then Z is u TSC-spuce.

CorOLLARY 5.1. 4 metrizable locally convex space is a A -space iff it is a
TSC-space. .

In the proof we will use the following proposition due to Kalton [13],
Theorem 4.10 (comp. Proposition 4.2):

Provosrrion 5.1. A semimetrizable les Z is a A-space if for every
semimetrizable les Y every twisted sum of Y and Z is locally convex.

Proof of Theorem 5.1. Let

0> (Y, (X, )5 (Z,1)~0

be a twisted sum. Let U be an arbitrary O-neighbourhood in (X, A). First, let
us define on X a semimetrizable vector topology A, < 4 such that Ue %,
and A; N j(Y), ¢(4,) are locally convex. A O-neighbourhood base of 1, will bé
{U,} defined inductively as follows:

Uo = U.:
U1t Uspiy = Uy
UZM' 2 + U2n~I- 2 & U2n+ 1»

U2n+ 1€ U//Av

Uani 26,

Ujypr 1. NJj(Y) is convex;

q(Upzn+z) 18 convex.

For example, U,,.,=Wng ' (W), where Wed,, W+W < U,,., and
Wied,, W, < q(W), W, is convex.

Now, we can define on X another semimetrizable topology A, satisfying
the assumptions of Theorem 4.2 such that i; <A, <A Let us define
inductively a sequence (A,),ey Of families of O-neighbourhoods in (X, 1),
Ay = {U,}. For every Be A, there is V(B)e %, such that V(B) < q(B) and
V(B) is absolutely convex. Let N(B) be a countable 0-neighbourhood base of
7(V(B)). Then

k
y— {‘{'\1 Vi Vied,ulqg ' (V) VeN(B), Bed,}fori, ke N}.

The family A = () A, is a countable 0-neighbourhood base for the vector

neN
topology ;. Of course, for (Z, ¢(4,)) we can use Theorem 4.2 and (Z, g(4,))
is a #-space. Thus (X, A;) is a semimetrizable twisted sum of semimetrizable
spaces (Y, '(/(Y)nA,)) and (Z, q(A;)). By Proposition 5.1, A, is locally
convex. Hence U contains a convex O-neighbourhood in (X, A). This
completes the proof because U has been chosen arbitrarily in %;.

The last proposition may be strengthened in the following manner.
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THEOREM 5.2. Let (Z, t) be a tvs which, for every semimetrizable topology
A<, has a topology y(A) with 2 < y(A) <t such that (Z,y(A) is a TSC-
space. Then (Z,7) is also a TSC-space.

Proof. Let (X, r;) be a tvs containing a locally convex subspace Y for
which X/Y~ (Z, 1), and let g: X — Z be the quotient map. In a very similar
way as in the proof of Theorem 5.1 for every Ue #;, we can define on X a
semimetrizable vector topology 1, < t; for which Ue %, and 1, " Y, g(ty)
are locally convex. Of course, if

sup(t2, ¢~ ((q (z2))) = 73,
then (X, t4) is a twisted sum of (¥, 7, " Y) and (z, v(4 (r2)). Hence 7, is
locally convex and Ue“,,. This completes the proof because U has been
chosen arbitrarily in %, and 73 <7;.

Now, we will consider hereditary properties of the class of all TSC-
spaces.

TuroreM 5.3. The class of all TSC-spaces is closed under:

(a) twisted sums,

(b) finite products,

(c) quotients,

(d) complemented subspaces.

Remark. I do not know whether part (b) can be strengthened to the
countgble case. If we knew this, we could prove our theorem for arbitrary
products (by Theorem 5.2) (*).

Proof. (a): Let ¥, Z be TSC-spaces. Let us consider the following
diagram of tvs, in which the column and the row are twisted sums and Y, is
a lcs: 0

q

i

0

(*) This problem is solved in the affirmative by the author; see P. Domanski, Local
conwvexity of twisted sums, Suppl. Rend. Circ. Mat. Palermo, Serie II, 5 (1984), Proc. XII Winter
School on Abstract Analysis, Srni 1984, 13— 31,
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™ v * Y g 1
By (plo'llary 3.2 (b), we can produce a new diagram in which the new
column is also a twisted sum and Jf3 is an injective homomorphism:

0 0
0 > Y- d X g 7 0
] q
Xn“”'&““"’)ﬁ
Je Iy
Yty

Let 43 Xy X/]3(Xo); then ker(goqy) =ker g3 and X/j;(X,) ~ Z. Thus
Xy is a twisted sum of the space X, and the TSC-space Z. But Xo is a lcs
because it is a twisted sum of the lcs ¥, and the TSC-space Y. Hence X, is
also locally convex. l
(b) is an immediate consequence of (a).
{¢): Let us consider the following diagram:

Zy

b

b4

I

X 2z, 0

0 Y
a

where Z is a TSC-space, Y is a lcs, the row is a twisted sum and ¢ (resp. j) is
‘Fhe nuturs:u quotient map (resp. embedding). By part (c) of Corollary 3.2, X is
isomorphic to a quotient of a space X, which is a twisted sum of ¥ and Z.
But then X, is a lcs, and so is X,

(d) is an obvious consequence of (c). :

By Theorem 5.1 and Corollary 5.1, we obviously get the following fact,

:TI“IE()RI*‘.M 54. Every reduced projective limit and every product of
metrizable TSC-spaces is @ TSC-space.

Now, let us give a short review of known TSC-spaces.
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THEOREM 5.5. The following tvs are TSC-spaces:

(a) B-convex normed spaces, in particular uniformly convex Banach spaces
(for example, 1,, L,(0, 1) for 1 <p < o0);

(b) &£ -Banach spaces (for example, l,, ¢o, C(X) for every Hausdorff

compact X);

(c) nuclear spaces, in particular tvs with a weak topology ( for example, K™
for every cardinal number m).

Remark. For the definition of B-convexity and .%,-spaces see [13],
[21], resp.

Proof. (a) and (b) are immediate consequences of [13], Theorem 4.3 (iii)
and [17], Theorem 6.2, resp. (comp. Corollary 5.1).

(c): Every nuclear tvs has the topology generated by a family of
prehilbertian seminorms (comp. {33], IMI. 7.3, Corollary 2). Thus (c) is a
consequence of Theorem 5.4, since by Theorem 5.5 and Proposition 1.1 every
tvs with prehilbertian seminorm is a ¥ -space.

On the other hand, no space which contains uniformly complemented
copies of I for n=1, 2, ... is a A "-space (or a TSC-space). This fact is due
to Kalton [137], Theorem 4.7. In particular, no %, -spaces, e.g. I; (comp. [13],
Theorem 4.6; [28], Theorem 1; [29]), are #-spaces or TSC-spaces. A
subspace of a TSC-space (of a locally convex .#-space) need not be a TSC-
space (a A -space): take eg. l; = C(0, 1).

ProsLEM. Is the class of all TSC-spaces equal to the class of all locally
convex 4 -spaces?

Of course, for A -spaces Theorems 4.1, 4.3 and Proposition 4.3 remain
true.

A tvs Y < X has HBEP (Hahn—Banach Extension Property) in a tvs X
iff every continuous functional on Y can be extended onto the whole space X.
By Lemma 4.1, we obviously get:

PRrOPOSITION 5.2. The quotient X/Yis a A -space if X is a A'-space and Y '

has HBEP in X. In particular, every guotient of a locally convex A4 -space is a
A -space.

Remark. This result is due to Kalton and Peck [15], where the
converse theorem is also proved.

ProposiTiON 5.3. Every twisted sum of a A -space and a TSC-space (in
particular, a metrizable locally convex #'-space) is a A -space.

This can be proved. in the same way as Theorem 5.3 (a). We use the fact
that metrizable locally convex . -spaces are TSC-spaces.

As was pointed out above, the list of known locally convex .#-spaces is
given in Theorem 5.5. Other #'-spaces are listed in Proposition 4.3. The
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following result is contained in [13], Theorem 3.6 (even in a more general
form for Orlicz spaces).
TuroreM 5.6. 1, and L,(0,1) for 0 <p <1 are A -spaces.

Remark. There are other interesting results for Orlicz spaces [13],
Theorem 3.6, [14], Theorem 9.3; and K&the spaces [14], Theorem 10.3.

We close Section 5 with some additional results on splitting twisted
sums. A Banach space X is called injective if, for every normed space Y
containing an isomorphic copy of X, this copy is complemented. It is well
known that [, is injective and ¢, is “injective” for separable Banach spaces.

ProrosirionN 5.4. (a) For every injective Y, every reduced projective limit Z
of normed A'-spaces belongs to S(Y). In particular, 1,e8(l,,) (comp. Theorem
4.4 and Theorem 5.5). The same holds for nuclear spaces Z and for Z with a
weak topology.

(b) Every reduced projective limit of separable normed X -spaces belongs
to S(co)

Proof. The proofs are very similar and we will prove onmly part (a).
A twisted sum of Y and a normed .#-space is a locally convex locally
bounded space (see [13], Theorem 1.1). Thus it splits. This completes the
prool by Theorem 4.3. For nuclear spaces we should use Theorem 4.2 instead
of Theorem 4.3.

Added in proof. The author proved in [42] a stronger version of Proposition 4.3; namely,
every twisted sum .of an arbitrary Banach space and a nuclear lcs splits.
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