ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
XVIII, 4 (1985), p.577-595

M. WILCZYNSKI (Wroclaw)

MINIMAX SEQUENTIAL ESTIMATION FOR THE MULTINOMIAL
AND GAMMA PROCESSES

Introduction. In this paper we consider the problem of minimax
Sequential estimation of the parameters of the multinomial and gamma
Processes. The loss incurred by the statistician is due not only to the error of
Cstimation but also to the cost of observation. We prove Theorem 1 and
Dext, we give some examples of its application in which the fixed-time plans
and the inverse plans are minimax.

1. Preliminaries. In this section we introduce the notation which is used
In the sequel and recall some basic definitions. Next, we prove Theorem 1
Which is a slight modification of that used by Dvoretzky, Kiefer and
Wolfowitz [1], Rézaniski [3] and Trybuta [5].

Suppose X (1) = (X,(t), ..., X,(?)), te T, T=[0,0) or T<{0,1,...} is
4 stochastic process defined on the probability space

(Qa gb.’ {yt}teT7 Pﬂ),

Where Q is the space of r-dimensional, vector valued, right continuous
fullctions o = x(*): T— R" for which left side limits exist, & is the least o-
algebra with respect to (w.r.t.) which all x(t) are measurable for te T, #, is
the least g-algebra w.r.t. which all x(s) are measurable for s <t, P, is the
Probability measure defined on # and dependent on the parameter ¢
=, ..., 0,,) which takes its values in an open set & < R™.

DEFINITION 1. The random variable 7: Q —» T is called a stopping time
WL AF er i

{w: 1(w)<t}eF, foreach teT,

Pylw: 0<t(w) <o} =1, foreach 6.
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Let Py, be the restriction of the measure P, to the g-algebra #,. Let us
suppose that for each 0e ® and each te T the measure Py, is absolutely
continuous w.r.t. the measure P, , and that the density function takes the
form

dP,,

dPgo,, = g(t’ Z((D, t)a 0, 00)’

where Z(w, t): 2 xR' is an %, measurable and right continuous mapping
wr.t. t, Py almost surely and g(-, -, 6, 6,) is a continuous function. Denote
by %y the o-algebra of Borel subsets of U = TxR'. On (U, %,) we define
the measure m, in the following way:

my(B) = P, {cu: (r(w), Z(w, T(w)))e B} for all Be #y.

By the modification of Sudakov’s lemma (see [3]) the measure m, is
absolutely continuous w.r.t. my, and

d my

(l) = g(t, z, 0, 00)’

dmg,
where ¢ and z are the values of t(w) and Z(w, t(w)), respectively.

Suppose h is a function from @ into R

DEerINITION 2. The %y measurable mapping d: Tx R' — R* is called an
estimator of h. ]

DerFiNITION 3. By a sequential plan we mean any pair 6 =(t, d)
consisting of a stopping time t and an estimator d of h.

Denote by L(d, 0) the loss function determining the loss incurred by the
statistician if 6 is the true value of the parameter and d is the chosen
estimator. Let c(t, z), c(-, -): TxR'—> [0, o0), be the cost function which
represents the cost to the statistician of observing the sample path up to the
time ¢.

Denote by R(, 6) the risk function, i.e.

R(5, 6) = [[L(d(t, 2), 0)+c(t, 2)] mg(dt, dz)
v

= Eo[L(d(, Z(7)), 0)+c(z, Z(v))],

where we write 7 and Z(z) for the functions v - Z (v, t(®)) and o — t(®)>
respectively. In the sequel we assume that R(S, ) < oo for each e @. We
denote the class of all sequential plans satisfying this condition by 2.

DEerINITION 4. A sequential plan &, = (7, do) is said to be minimax if
sup R(d¢, 0) = inf sup R(4, 0).

0e® ocd 0cO

Let © be the prior distribution of the parameter 6 on the space (€, Be)
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(86 is the o-algebra of Borel subsets of @). Then assuming that R, 0) is
%6 measurable function of the variable 6 we define the Bayes risk by

r(8, @) = [R(5, 6)n(do).
o

DEerFINITION 5. A sequential plan 5 = (1, d) is called Bayes for n if
r(6, ) = inf r(8, n).

1152

DEFINITION 6. By the posterior risk corresponding to = and an estimator
d we mean

r, (TC('IT = t, Z(T) = Z), d) = I[L(d(t, 2)7 0)]71'(d0|‘[ =1, Z(T) = Z),
e
Where n(-|t = t, Z (1) = z) denotes the posterior distribution of 0 given 7 = ¢,
Z(r) = 2. ‘
DEeriNITION 7. An estimator d,, is called (¢, z)-Bayes for = if

r(z(lt =t Z@x)=2), d;) =i51fr1(1t(-|r =t, Z(1) = z), d)

for all (¢, z)e Tx R

X Remark 1. Note that for each sequential plan é = (7, d) and each n we
ave

@, m = [ {[[L(d(, 2), 8)+c(t, 2)] my(dt, dz)} m(dD)

]
U
(f[Ld(, 2), 0)+c(t, 2] n(df]z = ¢, Z(x) = 2)} m(dr, dz)
]

=]
U
> [c(t, 2)m(dt, d2)+ [ {[ L(dy(t, 2), O)n(dBlz = t, Z (1) = z)} m(dt, dz)
U U 6
= [{r(x(t =1, Z() = 2), &) +c(t, 2)} m(dt, d2),

U

Where

m(B) = [ mg(B)n(df) for each Be 2y.
e

In the sequel we use the following theorem:
THEOREM 1. Let f(t, z) be a measurable mapping from U = TxR' into
»and let c(t, z) = c(f (t, z)). Suppose that there exists a sequence |m,}% | of
Prior distributions of the parameter 0c @ such that
lim inf r, (z,(-|z =1, Z@) = 2), ;) = K(f(t, 2))  for each (, 2)eU
{ O some real-valued measurable function K defined on R'. Moreover, suppose
' K(y)+c(y) attains its minimum over A at a point yoe A, where A is the
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range of the function v: Q x T — R* defined by v(w, t) =f(t, Z(t, ). If the
random variable

1,, = inf {te T: f(t, Z(t, ®)) = yo}

is a stopping time for each 0e®, and if there exists an estimator d,
=d, (t,,> Z(t,,)) such that
sup R(3,,, 0) < K(yo)+c(yo),

6O

where 6, = (1, d,), then the sequential plan 4, is minimax in the class of all
sequential plans & = (, d(t, Z(1)))e 2.
Proof. Let § =(r, d) be a sequential plan. By Remark 1
sup R(3, 6) > r(5, m,)

0cO®

> [{r(ma(-lt =1, Z(r) = 2), d, ) +c(f (¢, 2))} m(dt, dz)

U
for each n> 1.

But, by Fatou’s lemma and by the assumptions of Theorem 1, we have

sup R(, 6) > lim inf r (8, m,) = [ {K(f (¢, 2))+c(f (t, 2))} m(dt, dz)
i

6cO® n—o

2 K(yo)+c(yo) = sup R(9,,, 0)

which completes the proof of Theorem 1.

2. In this section we consider for the multinomial and gamma processes
a few examples of minimax sequential estimation in the case when the cost
function does not depend on the state of the process, ie. if c(t, z) = c(t) for
each (¢, z)e U, and the obtained minimax plans are the fixed-time ones.

Suppose Y(f) =(Y;(?), ..., Y,(t)), teT={1,2,...}, is a sequence of
independent random variables having the multinomial distribution with
parameter peP={p=(py,....p): p;>0,i=1,...,r,pi+ ... +p, =1}, ie

P,{Y(t)y=¢}=p;, foreachteT andi=1,...,r,

where e, =(1,0,...,0),...,¢,=(0,...,0,1). Denote X;(t)=Y/(1)+.--
...+ Y(t). The process X(t) =(X,(?), ..., X,(t)) is called the multinomial
process with parameter p. It is well known that for each pe P

t! x

1 X, 4 —
. 'x'pl EERR A lfxl+-"+xr‘t’
R

!
PP{X(I)=x=(x1,...,x,)}= X xe Tu (O},

0, otherwise,
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and
Q)  E,X.(0=tp, DZXi(t)=tp(1-p), Cov{X;(t), X;(t)} = —tp;p;,

Lj=1,..,ri%].
Moreover, for each p, p,e P holds

X,(1)
dpP,, (P1 )le (Pr) ! X1 X,(0)
(2L SR A2 =g(t, X(®), po)P1" -...°D."
dP,,, \p} pr

(in the case of the multinomial process we have Z (1) = X (1), § = p) and thus,
by (1), for each stopping time 7 is
dm,
dm

Po
Where t and x are the values of T and X (r), respectively.

ExampLE 1. Let

Xp

=g(t, X, Po) Py - Dy

r

L(d, p) = (d— _i a; Pi)2 [i a} Pi_( z a; Pi)z]_l and  c(t, x) = c(1),

=
r
Where q,, ..., a, are real numbers for which Y (a;—a;)> > 0 (since for each

i=1
Pe P holds

Yatp—(Y ap)P =% Y (@#+a}—2aa)pip;= Y (ai—a)’pip; >0,
i=1 i=1 ij=1 iLj=1
the loss function is well defined).
Define for each ¢ > 0 the prior distribution #, of the parameter p given

by the density

' 2p — 3 . p.)? . . e—1 :
9:(P)={C£[,-=Zl a; Di (i;I azPu)](Pl D), if peP,

0, if P,
Where pé

r

Col=f..[[X a?pi—(X ap)fl(py--..-pY " dpy-...7dp,- ;.
peP. i=1 i=1
In what follows we make use of the Liouville identity (see [2], p. 331):
Or each y, >0, ..., y,_; >0 and each ¢: R' > R' we have

(3) f--;j(p(pﬁ---+p,-1)p§‘—l'~--'pf""1dp1'---'dp,-1
Pe.
1

Ty - T (1)

- F(y,+...+y,-1)
0

+..+y,_1-1
eu’” 7 du,

1
Provided flo@ ™" =17 du exists,
0
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In view of (3) we have

C 1= (F (8))r S (z‘;l a—ia)z}
¢ _F(ra+1){ra+1i§1ai8— 1+re |

The density of the posterior distribution #, ([t = t, X (r) = x) of p takes the
form
g.(plt =1, X (1) = x)

_{Du[Za.-’pi—(Zap.)z]p"‘”1----pf'+"’, if peP,
- i=1

> if p¢P,
where
. +¢))?
C Fetre+l) e+l t+r£-+-1 '

The (r, x)-Bayes estimator d, = d; fulfils the equation

r

I I( (t, x)— Zap.)p’f‘“ LeeprT T ldpy ... dp_, =0,

i=1

Using (3) we obtain

r

dy(t, x) =) ax;+e)(t+re)”'.

i=1
The posterior risk for this estimator is
ry(m (vt =t, X(¢) = x), d})

r

=D, J' j'd(t x)— Z p)pt T g dpy L dp,

r r ,
_F(x, +¢&)....-T'(x,+¢) {i___zl a‘(x‘+£)— [I_zzl ai(xi+8)]
e I(t+re+1) t+re+1  (t+re)(t+re+1)
1 1
T t+re W;

Let us consider the fixed-time plan (i.c. the sequential plan for which the
stopping time is equal to some constant with probability 1) §, = (t, d,) where

d, =(i a; X;(0)t~ 1. By (2) we have

E,(d,~ ‘gr:l a;p) = [,-:2'1 a? p; —('Zr:l ap)]et.
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Hence
RS, p) =t +c(1).

Taking f(t, z) =t for each (t,z)eU and K(t) =t"! for each te T, we
deduce by Theorem 1 that if there exists foe T such that

4 to 1 +c(to) = min {r~ 1 +¢(1)},
teT
then the fixed-time plan 5,0 = (to, d,o) is minimax in the class 2.
ExaMPLE 2. Let

r

L, p) = [ z': cij(di_pi)(dj—pj)] [; Cii Di— Z cipipi]™t  clt, x) =c(r),

i,j= 1 i,j=l

r
Where the matrix C =||c;llij=, 1is positive definite (since ) c;p,—
i=1

- Z Cij Di Dj =3 Z (cii+cjj—2ci) pi p; > 0 for each pe P, the loss function
i,j=1 i,j=1

is well defined).
Let for each ¢ > O the prior distribution 7, of p has the density

C. rC.-.-p.-— aipip)py-----py~', if peP,
ga(p)=% (.-; 2 cubip)(py

i,j=1
0, if pé¢P,
Where
C.!'= IJ'( CiDi— Z C.'jPin)(Pl o p¥ T ldpy .. dp, .
peP i=1 ij=1
Thus

ge(plt =1t, X (1) = x)

r

{De'(zcﬁpi— Zcijpipj)(pl""'pr)s_l, if peP,
= i=1

= ij=1
0, if pé¢P,
Where by (3)

r

s JJ(Z Cii i — Z CijP.'Pj)Pflﬂ—l'---'P:'H—ldpl Teetdp,-y
pep i=1 i,j=1
T(xy+e)...-T(x,+¢) & 4
= ci(t+re)(x;+¢)— Cij{x; +e)(x;+¢)y.
I'(t+re+2) l.;1 ( ) ) i.jz=1 i oeta)



584 M. Wilczynski

Suppose d; =(d;,, ..., d;,) is a (t, x)-Bayes estimator for m,. Then for
each 1 <i<ris

.‘..f Z ci.i(d;j(ta x)_Pj)P,lrlﬂ_l’---'P:'ﬂ_ldpl'---'dPr—1 =0.

peP i,j=1
Solving this system of equations we get
d;(t, x) =(x;+¢e)(t+re)”! foreach 1 <i<r.

Further we obtain

J J(d;.-(t, xX)—py)(dy; (e, ) —p)pst T T dpy - dp, -

peP
_F(x1+e)-...-l"(x,+s)X%(x,-+e)(t+re)—(x,-+s)2, if i=j,
T (t+re) I (t+re+2) —(x;+e)(x;+¢), if i#j.
Thus
ry(m (-t =t, X(1) = x), de)
-», J Jz 26 9= p) (6 )—p) x
peP Rt
xppt T dp - dp,
_I'(x+¢)...- T'(x,+¢)
T T(t+re+2)(t+re) ¢
x{Y cilx;+e)(t+re)— Y ci(x;+e)(x;+¢)}
i=1 i,j=1
__1 1
Titre 01

On the other hand for the fixed-time plan §, = (t, d,), d, = (d,,, ..., dn)>
WIth dl't = X!(t)/t, l= 1, ceey Iy we have

pi(1—p) i=j

j t H H
Ep l(dit_pi)(djr_pj)} =

T/

t '

Thus

r

R(,, p) = Ep[ Z Cij(dn—Pi)(dj:—Pj)][Z Cii Di— Z CijPin]_l'*'C(t)
i=1

hi=1 hj=1

= 1/t +c(1).
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Therefore, all the assumptions of Theorem 1 are fulfilled and we
conclude that if there exists toe T for which

to 1 +c(to) =min {t™' +c (1)},
teT

then the fixed-time plan 0, = (to, ;) 1s minimax in the class 2.

ExampLe 3. The problem of minimax sequential estimation of the
parameter p of the multinomial process w.r.t. the loss function

L, p) = "—21 (di_pi)z/pi

and the cost function c¢(t, x) = c(t) was considered in [5].

The author limited himself to finding a minimax plan in the class
2y = 2 of all sequential plans 6 = (1, d), d =(d,, ..., d,), for which d, + ...
... +d, = 1. The minimax one was the fixed-time plan

_ Xi(to)

to — ’

6t0 = (IOa d10)9 di to

and t, fulfilling the following equality:

r—1 i r—1
c(to)+ =min<c(t)+—).
to teT t

Now we solve the same problem rejecting the condition d; + ... +d, = 1.
Let us define for each ¢ > 0 the density of the prior distribution =, of p, as
follows:

I (re) -1 ;
—(py...'p)" ", if  peP,
(5) 6.(p) = {[r(an (P
0, if pe¢P.
Then
g.(plt =1t, X(v) = x)
F(t+r8) xy+e—1 x,+e—1 .
el g 3
=%F(x1+s)-...-1"(x,+e)pl Pr boopE
0, if p¢P,

and the (¢, x)-Bayes estimators d;, i =1, ..., r, fulfil the equations

Lo {0 —p) o 3 g dpy e dp =0, =
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Remark 2. By (3) we have

' ' 1 x,te— 1
j jp' 'leﬂ <" Dy dpl""'dpr—l

peP
1
_ TI(x;+9)-...-T(x,+¢) '(l—u)x"ﬂdlu""i“’"”“ldu i=1 r
T+ T (t—x+(r—1)e) 1-u ’ o

0

x;te—2 t x;+(r—1)—1

provided j(l—) du exists and is finite. The last

assumptlon is fulfilled if x;+e—2> —1 and t—x;+(r—1)e—1 > —1, so we
have to put ¢ > 1.
Now for each ¢ > 1 we obtain

xi+e—1

dui (£, x) = t+re—1

and

r(r (1t =t, X(¢) = x), d))

= JJ Z (d;i(ta x)—Pi)ZPi'ge(Plf =t, X(1) = x)dpl “o.odp_y

peP
_i(x,-+s xi+e—1)  r—1 r—1
_-=1 t+re t+re—1) t+re—1 “"lrt+r—1'
X;(t
Let 8, = (t, d), d, = (dy ..., dy), d t+"1 1, ....7, be the fixed-

time plan. In view of (2) we have

2
R(9,, p) = Ep{ ) ( "pp') +C(t)}

i=1 i
_ 4 tpi(l—Pi)+(r_1)2pi+c(t)=

t
) pi(t+r—1)>2 t+r—1+c()

™

and it is easy to deduce that if there exists toe T for which

r—1 +elte) . { r—1
—+c = min
to+r—1 0 ter (t+r—1

+c(t)}

then the fixed-time plan §,, = (to, ;) is minimax in 2. -
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ExaMpPLE 4. Suppose that

r di_ i2
L, p =3 1_’,’,,’

i=1 i

and c(t, x) = c(1).

First we find a minimax pIan in the class 9, defined in Example 3. The
(t, x)-Bayes estimator d; =(d;, ..., d;,) w.r.t. the prior distribution =, of p
defined by (5) is a solution of the equations

J...J[d;;(t’ X)_ 4t x)]gg_(plt =t, X(v)=x)dp,*...-dp,_, =0,
- 1-pn

peP
i=1,...,r.

Remark 3. Note that

J--.J(l—p.-)"pf‘”_l°---'pf’+‘°'_1dp1'---'dp,_l
peP
1
F(xl +g)1"(x,+s) J‘(l_u)xl-+s-1u_lut—xi+(r—1)e—ldu’

- F(x+e)T(t—x;+(r—1)e¢)
0

i=1,...,r,
Provided x;+e—1> —1 and t—x;+(r—1)e—2> —1, so we have to put
€> 1/r—1). Since d,; + ... +d,, =1 we obtain for each ¢ > 1/(r—1) that
_(A=n[t=x+(r—1)e-1]

it = = rr—Dye—r

, i=1,...,r,

and

ri(m(-lt =t, X(x) = x), d;)

) J j[(d;‘(tl’—_")p__l)i+2(d;,.(t, H—1)+(1 —p,.)]x

i=1
peP

xge(plr =1, X(t) = x)dpl.“'.dpr—l

t+re—1 t—x;+(r—1)e
2(d;; -1
t—x,-+(r—1)e—1+ (e, )= 1)+ t+re ]

. (1=r)(t+re—1)
1(d“(t’ x)_l)(r—l)t+r(r—1)a—r

= r—1 1

r~1t+r@r—1)e—r ==~

M-

= l:(d;,-(t, x)—1)?

[}

1

=

™~

+2(1—-r)+(r—1)

]

6 2.
astosowania Mat. 18/4
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From the other side for the fixed-time plan 6, = (¢, d,), d

., r, we obtain

1 = (dln LR} drt)
2 r
R@, p) = E,{ Zl( ‘l‘_z'_) +c(t)} -

Z pl(l _pi)

1
+c(t)=—-+c(t
i=1 t(1—p) ® t ()
and if there exists toe T such that
1 .1
—+c(ty) = mm{—+c(t)}
to teT t
then 6,, = (to, d,;) is mi

) is minimax in the class 2,.
Now we find a solution of our problem in the class 2

For the prior distribution n, of p given by the density (5) we obtain
j fd;i(t’ X)—p;i

— g(plt =t, X(x)=x)dp,-...dp,_, =0, i=1,..,r,
peP ’
.. _ X%ite .
dei_(t1 X)_t+r8—-1, l—l,...,r,
ry(m (1t =t, X(2) —x) d;)
dm t9x_ |'2

xX;+¢€

g [ —(x;+¢) (x;+&)(x;+e+1)

t+re— x—s—l.t+rs—1 (t+re— x—s—l)(t+r£)]
r X;+¢ 1

1
St+re—1)(t+re) t+re—1 -0 4 r—1)”
For the fixed-time plan 6, = (¢, d,), d, = (dy,, ..., d,;), with

X @) +r-17!

= =1,...,r,
(14 t+(r_l)_1 ] l ’ r
we have
’, (d p.)2
= _— t).
R(., p) {i; +e =gt
Thus, if there exists toe T for which

: 1
e~ o)

then 4, = (to, d,)) is minimax in the class 9
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Remark 4. Let us note that in Examples 3 and 4 the plans which are
minimax in the class 2 are better (i.e. have smaller risk functions) than the
plans which are minimax in the class 2, although p;+... +p, = 1.

Let us now consider a problem of minimax sequential estimation for the
gamma process.

ExaMPLE 5. Let X (r), t = 0 be the gamma process, i.e. the homogeneous
Stochastic process with independent increments for which for each 0 ©
= (0, o0) holds

Py{X(0)=0}=1, EoX*(t)<o, >0,

t—1

dPg, . {A—t)-exp{—t Inf—x-0"1}, if x>0,t>0,

da 0, otherwise,

Where A is the Lebesgue measure.
It'is easy to deduce that for each 6, 6, ©® holds

dPy, fexp{—t(ln 8—In0)—x(0"'-65")}, if x>0,1>0,
P, |0, otherwise.
Then, by (1)

dmg,  |g(t, x,00)-exp{—tIn6-x0""}, if x>0,t>0,
o0, otherwise,

dmoo‘r

Where t and x are the values of t and X (1), g(t, x, 6,) = exp {t In 0y +
+x05 11, '

Let
(6) Ld,0)=(d—69*0"2 and c(t, x) = c(t).

The problem of minimax sequential estimation for the gamma process
and the loss function (6) for « = 1 was considered in [1].

For each ¢ > 0 and x, > 0 we define the prior distribution =, of 8 with
the density

I'(¢)

X0 -

—— 07" Dexp{—x,0"1}, 6>0,
%@={ o0

0, 6 <O.

Since for each ¢ > 0 and x, > 0 is

Y fO D exp{—x,071}dO = fur*t-exp{—xou}u?du = I'(eo)/xo,
0 0
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the density of the posterior distribution of 6 takes the form

i. —-(T+1), f -1
gc(9|T=t,X(r)=x)=%r(n 0 exp{—x; 07"}, 6>0,
0. 6<0,

where x; = xo+x, T =t+e¢.
The (t, x)-Bayes estimator d; is a solution of the equation

Oty 8

(d;(t, x)—6%)-0~T*1*2expf—x,-07'}dO = 0.

Using (7) we calculate

o LD
) = FTag
(e =t X (@ = ), d)

r’(t+a+e) 3 I*(t+a)
T T(t+2a+e) T(t+8) "% T@+20)T(t)

Let us consider the fixed-time plan

_I+a)

6, =(t, d), 4, = T+ 20 X*(t).

Since for each o« > 0 holds

r
EW[XOF = 0

we obtain
I*(t+a)
rrt+2a

Finally, let us note that inf sup(d—6%%6-2*>1.
deR! 6c0

Thus, if there exists ty > 0 such that

. {1_ r’*(t+a)
e T T OT(+22)

then the fixed-time plan 6, = (o, d,;) is minimax in the class 2.

R(6,, 0) = Eo{(d,—09*-0"**+c(1)} =1 +c(1).

_ Fz (t0+a)
Tt T (to+ 22)

+c(t)} =1 +c(ty) < 1+¢(0),

3. Using Theorem 1 we solve in this section one problem of minima»
sequential estimation in the case when c(t, z) = c(z) for each (¢, z)e U.
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Let X(1), teT=1{1,2,...}, be the multinomial process with the
parameter p and let

Y aipi+b (Z1 b; p))’ ,
8 Ld,p=]|d-=* = : , X) = b; x;),
8) (d, p) Z,: - 20 c(t, x) C(a; x;)

where

z(p) = {(; b; Pi)(g,l a? P.')—z(zr: a; b; Pi)(iz:\i‘_,1 a; Pi+b)+

i=1

r

+() a;pi+b)>—b2- _i

i=1

We assume throughout the rest of this section that by, ..., b,, ay, ..., q,,
b are the real numbers such that b; is equal to either Qor 1,i=1, ..., r, and
one of the following condition is fulfilled:

9) a;b; =0 foreach 1 <i<r,b arbitrary,
(10) if b, =0 then a; =0 foreach 1 <i<r,b=0.
The case b, =b,=...=b,=1 has been considered in the previous

r
section () x; =t). Hence we assume that there exists iy, 1 <io<r, for
i=1
which b;, = 0. Without loss of generality we put b, = 0. Moreover, since p;
+...+p, =1, we may suppose that q, =0.

Let us define for each ye T the random variable

r—1
=inf{te ' Y b, Xi(t) = y}.

i=1

By the result obtained in [4] it follows that 7, Is a stopping time for each
r—1

yeT and peP, = {peP: ) b;p;, >0} and
i=1

-1
(11) Epty=y.(z bipl')_13 E X(T,V)-p' p Y’
i=1

r—1 r—1

(12 DZ() a; X;(r)+bt,) = yz(p)(z:1 bip)” 2.
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Now let us define the sequential plans (the inverse plans)

r—-1

oy =(t,,d;) where d)=() aX;(xr)+b(r,+1)-(y+1)7 !,
i=1

r—1
02 =(t,,d?) where d2=() a;X;(1,)y!
i=1

Making use of (11) and (12) we get

r-1
r—1 Z a;p;+b.,
R(a;,p)=(y+1)-2E,{.zl aixi(ry)+b(ry+1)—(y+1)fi:_—l—_} N
- b; p;
iZ':l P

(L oof
o+ B e X biXits)}

z(p)

LT

_m D (Z a; X; (Ty)+b1.' )+c(y)+

[5(5, 8:8)~(E, ap+H)F

* ZP+1)?

r—1

(5(X bin)~(3 aptb)]?

i=1 i=1

z(p)(y+1)*

=GOt

Note that if (9) holds then

r—1

[b(:g:: b; p;)—( Z a; p; +b)]2-—z(p)

i=1
r-1

=0(3 bn-2(3 8,8)(T an+0)- (3, @ p)(E, bip) +0* (T in)

r—1 r—1

= ('il b; P.') {Z (bz bi_bz_zbai—aiz)pi_bz(l - .gl Pi)}

(Z b; p,){z (b? b;—b?—2ba; —az)p,}

Gf b; =1 then a; = 0 and b*b;—b?—2ba;—a? =0, if a, = O then b; = 0 and
bzbl—b2—2ba,—a,2 = 0—(b+a‘)2 S 0)
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Thus

(13) R, p) < Y y+1)+c(y), for each peP,.

In the same way we can check that under (10) we have
R(6%, p) < l/y+c(y), for each peP,.

We prove the following

LemMMma 1. Suppose that the loss function and the cost function are given

by (8).

(14)

Under (9) if there exists y,e T such that

1/y1 +D+c(y,) = min {1y +1)+c ()},

yeT

then the sequential plan 6; = (t,,,d, ) is minimax in 9.

then the sequential plan 6,?2 =(t

Under (10) if there exists y,e T such that
1/y2+¢(yz) = min {Uy+c)},
ye

yys dy,) IS minimax in 9.

Proof. To prove the first part of Lemma 1 we define for each ¢ > 0 the

prior distribution n, of p given by the density

()< CE@@op) T peP,
gﬁp 0, if p¢P’
where
C.l=[...{z(p(py"...-p) " 'dpy-...-dp,_;.
peP
Thus
_ o (Dez@p T, i peP,
ge(PIT—t,X(T)—x)—{O’ if p¢P,

where

- xqte—1 X, te—
D£1=J\...J‘Z(p)pll+ '...'pr+ ldpl'...'dpr_l

peP

_T(xy+8)... . T(x,+8) ¢
B T(t+re+2) {[igl ai('xi+8)+b(t+r8+ NP+

r—1 r—1
+[ Y @ (xi+e)—=b*(t+re+1)][ Y bi(x;+e)+1]}.
i=1 i=1
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Recalling Definition 7 we see that the (¢, x)-Bayes estimator 4 (t, x)
= d.(t, x) fulfils the equation

r—1
. . Z a,-pi+b 1
J”J(d;(t, x)_irl—l_——)(z b pl)z xy+e— l . .p:r"'ﬂ—ldpl.“-dp'_l =0.
peP Z b'pi =t

Solving this equation we obtain

&t (S bilx +s))('i: by (3, +)+ 1)}
i=1 i=

r-1 r-1 r-1
= Y ab(x+e)+( Y alx+e) (X bi(xi+e)+
i=1 i=1 i=1
r-1
+b(t+re+1)(‘z bi (x; +¢)).
Hence =

Y ai(x;+e)+b(t+re+1)
dy(t, x) ==

r—1 ’

2 bilxi+e)+1

provided (9) holds.
The posterior risk is

ry(m (Tt =1¢, X(1) = x), d})

r—1
Z a;pi+b (Z b; p;)?
=D, J Jd(t x)— ) Flz-(p) z(p) x

i

1 xr+z-l
xpit T dpl'---'dp,-l}

r—1 r—1

(Y a?(x;+e)=b*(t+re+1))( Y bi(x;+¢e)+1)
=Da'{i=l r—1 = +
Y bi(xi+e)+1
i=1
r—1 r—1
~[X @+ +b(t+re+ D] [T bilxi+9)]
pi=1 — i=1 +

Y bi(x;+e)+1
i=1
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r-1 r—1
2
+[.-§1 b,-(x,-+s)+1][i§1 a;(x;+)+b(t+re+1)] }F(x1+s)-...-1“(x,+s)
'il by +6)+ 1 I'(t+re+2)
i=1
1 1
= e=0 71 :
Y bi(x;+e)+1 Y bix;+1
i=1 i=1

By Theorem 1, (13) and (14) the rest of the proof is now straightforward.
Using the same sequence 7,, ¢ > 0, of the prior distributions of p we
obtain that under (10)

r—1
Y a;(x;+¢)
d;(t, x) =175 :
Y bi(x;+¢)
i=1
_ 1 1
r(m(lt =1t, X(x) = x), d;) = — —

r—1 °
Z b; (x; +¢) Z b; x;
i=1 i=1

By the arguments used to prove the first part of Lemma 1 we obtain the

required results concerning the plan é,, = (z,,, d;,).
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