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Functional equations of delay type in L' spaces

by Rosanna VILLELLA-BREssaN (Padova, Italy)

Abstract. The functional equation x(t) = F(x,), xo = ¢, where ¢ belongs to L'(—r, 0; X),
X a Banach space, is related to the semigroups generated by the operator A¢ = —¢/,
D, = {peW"(-r, 0; X), ¢(0) = F(¢)}. From the properties of the semigroup, regularity and
asymptotic results for the solutions are deduced.

1. Introduction. In this paper we consider the functional equation of
delay type

(FE) x(®)=F(x), t=0, xo=0,

with initial data ¢ in L'(—r, 0; X). Here X is a real Banach space, r, 0 <r
"< 400, is the delay and x,e L'(—r, 0; X) is the history of x(¢) at time ¢,

1 %(8)=x(t+9 ae. Equation (FE) is studied by associating with it the
operator in L'(—r, 0; X)

(1) Ap=—¢, D, ={peW"!(-r,0;X), ¢(0) = F(9)}.

We prove that if F is Lipschitz continuous, then A generates a semi-
group T(t). By relating T(t) to the semigroup generated in C(—r, 0; X) by
solutions with continuous initial data, we prove that T(tf)¢ gives the
segments of solutions of (FE). From the properties of the semigroup we then
deduce regularity and asymptotic results for the solutions.

The semigroup approach to (FE) in the case of continuous initial
data has been discussed in [3] and [8]. In [6] the particular case F(¢)
=H(p(-7), H: X > X, was cgnsidered in L? spaces. In [9] and [10] the

nonautonomous case F(t, 9) = | g(—9, ¢(9))d9.was studied as a semigroup
-t

of operators in the product space L? x X. Our results are also related to the
semigroup approach to age dependent population problems ([11]).
We suppose that

(H F: L'(-r,0; X)-» X is Lipschitz continuous with constant [FJ;

we associate with (FE) the operator A and prove the following theorem:
THEOREM 1. ::Let F satisfy (H). Then A+|F|1 is m-accretive in

B
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L'(—r, 0; X) and therefore generates a semigroup of operators, T(t). T(t) o is
continuous in 1—t, 0] and if we set

(1), -r<t<0,
x(t) = {F(cp), t=0,
T(1) (0), t>0;

x(t) is the unique solution of (FE). Such a solution is continuous for t > 0 and
continuous from the right at t = 0.

To obtain information on the behaviour of solution we consider then
the weighted spaces L, = L'(—r, 0; e~ °%; X) and prove that if |F|r <e!,
then there exist w < 0 and o€ R such that 44wl is m-accretive in L.; more
precisely, we can choose w =_____1+lorg IFir and ¢ = w—1/r. Note that from
Theorem 1 we have that, if t > r, T(¢) ¢ is continuous and the behaviour of
solutions is known for all ¢ L' if it is known for continuous initial data. We
deduce, using results in [3], that if |F|r <1 then there exists a unique
“equilibrium” solution of (FE) and this solution is exponentially asymptotic-
ally stable.

Theorem 1 says, in particular, that the sets M = jpeC(—r, 0; X), ¢(0)
=F(¢)! and M, = !p: [—r, 0] > X, ¢ is piecewise continuous} are flow-
invariant, that is, T(t) M ¢ M and T(t) M, = M,. The following sets which
extend D, are also flow-invariant ‘

—(I -1
DA,,={¢eL‘(—r,0;X), fim 12—+ "ol +°o}_

1-0 yAd

We shall see that
il | 0
Do ={peLl (=1, 0; X): [ lp(t+9)—0(9)ldS+ [ |0(9)Id3 < 1°K,},
-r bt §

and hence the sets D, , do not depend on F. This is the crucial difference
between the cases of initial data in C(—r, 0; X) and L'(—r, 0; X); and so
in the L! spaces it is possible to use the Crandall-Pazy theory on nonlinear
semigroups to study the non-autonomous version of (FE). This will be done
in a join paper with G. F. Webb.

2. The semigroup associated with (FE). In this section we study the
equation

(FE) x()=F(x), t>0, xo=0,

where F: L' = L'(—r,0; X)> X and ¢elL', by relating the semigroup
associated with (FE) in L' to the semigroup generated in C(—r, 0; X) by
solutions with continuous initial data.
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We denote by || the norm in X and by ||-|| the usual norm in L!.
We consider the operator

Ap=~¢, Dy={peW"!(-r,0;X); ¢(0) = F(p)}
and prove that
ProprosiTioN 1. Let F satisfy (H). Then A+|F|I is m-accretive in L'.
Moreover, D, = L'.
Proof. Let ¢,, ¢,eD, and set Y, =(I+1A) @, = ¢;—Agp;, i=1, 2,
¢=¢,—¢; and ¥ =y, —y,. Then

0
ol = |le¥* @ (0)+ | (°~*/2) Y (s) ds|
L]

0
<l O 1e*| +||f (e~ "*/2) ¥ (s)ds||
3

< |F(@p)—F(e)l(1—e "™ A+ |yl (1—e" "%
< |F]-llell A+l
hence, if [F|A <1,

1
s [
ol < =77 W

and A +|F]I is accretive.
In order to prove that A+|F|I is m-accretive, choose A > 0 such that
A(1—e "¥|F| <1 and define, for a given Y€ Y,

H: X-X, Hx= F(e"”‘x+} (e®~V2/2) ¢ (s) ds).
We have ’
|H (x1)— H (xz)l < |Flle®* (x; —xa)l} = |FIA(1—e™ ") ]x; — x,l 5
hence H is a contraction, and if X is the unique fixed point of H, the func-
tion @(x)=e"*x +§(e“’"”‘/&)nﬁ(s)ds belongs to D, and is such that

U+14)G = y.
That D, = L' is consequence of the following lemma.

LemmMma 1. For all y el
lim (I+44) 'y = y.
-0

Proof. Let A, be the operator
A0¢= _(p” DA0={(per'l(_r, 0; X), ¢(O)=0}.
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We have .
I —(I+24)" "yl = Iy (9)—e** (I +14)" y (0)— £ (@A) Y (s)dsl|
< |e¥* (T +24)7 Y (O)l + Il — (1 + 240) ™ * ¥l
=I+24)" WO A1 —e™ ")+ —(I +140) ' I
S(FW)+IFllly —(I+i4)" "yl A(1—e” ")+
+I — (I +440)" Y.
Hence, for A small,

1
W= +24)" "yl <

1—A(1—e""}|F|

(AQ—e ") IF )+

+l = +140) " yl])
and the right part tends to zero as 4 —0.
It follows in particular that
LemMma 2. For all yeL!, |(I+AA)" 'y (0) is bounded as A — 0.
Proof. We have
lm (I+44)" 'y (0) = im F(I+4A4) '¢y)=F¥)

1-0 1-0
as F is continuous. And so lim |[(I+AA4)~ 'y (0) = |F(¥)l.

A-0
From Proposition 1 it follows that- A generates a semigroup of

operators, T(f), in L. '
Let C, denote the space of continuous functions in [ —r, 0] with values
in X endowed with the norm |||¢|l|, = sup e “*|¢(9)]. We prove that if

-r<3<0

we consider the restrictions of F and A to C and define the operator
Ap=—¢, Dz={peC'(~r,0;X), ¢(0)=F(9)},

then A generates a semigroup of operators, T(f), in C,, for some
weR, which can be identified with the restriction of T(¢f) to the set

M = {¢eC, ¢(0) = F(¢)}.
We first prove that

PropoSITION 2. Let F: L' — X satisfy (H). Then there exist we R such
that Fic: C,— X is Lipschitz continuous with constant y, < 1.

Proof. Let 0 < p <r such that |F|-p < 1. Then if ¢, y€C,

0
(F(p)—FW) <|F| | lp(9)—y(9)d9

. 0
= |F| _f le(D—¥ (N dS+IF| [ |o(9H—y(9)Nd9

i 4

<|Flr—p) sup {@()—-¥DI+IFl-plle—llo

-r<8<-p
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and the result follows from Proposition 2 of [8]. Note that any
> max{o, 1 log Fltr—p) } would do.
p ~ 1-|Flp .
It follows from Theorems 4 and 5 of [3] that A+ w/! is m-accretive in C.
Let T(t) be the semigroup generated by A; then set

i(t)={‘p(t)’ —r<t<0’
T(H¢(0), t20,

we have that %, = T(t)¢ and %(¢) is the unique solution of x(1) = F(x,),
Xo = ¢, eC, ¢(0) = F(¢). Hence if T(t) is the semigroup generated by the
solutions of (FE), it must be T(t)¢ = T(t)p for all peC such that ¢(0)
= F(¢). And, in fact, we prove that

PROPOEITION 3. Let T(t) and T (t) be the semigroups generated respectively
by A and A. Then, for all peDz = {peC, ¢(0) = F(¢)}, T(t) ¢ is continuous
and Ty =T()ep, YVt = 0.

Proof. For all peD; we have (I+44) ' ¢ =(I+4AA4)" !¢, and hence
T(t)o = (C)— lim (1+£ Z) ¢ = (L')— lim (1+5 A) o=TWo,
now n "o n
as y, <>y implies y, <> y.
Since D, = D; from Proposition 1, it follows that, given e L!, there

— 1 1
exists ¢, Dz such that ¢, L3N ¢; hence T(t)o, LN T(t)¢ for all ¢t > 0.
For all fixed r > 0 we can suppose that

Pa(9) = 0 (D) ae. —r<9<0,

2 TH)@,(9) > T()e(3 ae. t+38 > 0.
We know that

@a(t+9), t+9 <0,

T(t)(l’n(‘g): {F(T(t"’s)(pn)’ t+9>0;

hence from Proposition 3,

_ Jeoat+9), t+9 <0,
T = {F(T(t+3)(p,,), t+82>0,
and so
. o(t+9) ae, t+39<0,
lim T 9 =
g a9 {F(T(l+3)(p), t+9 >0,

7 - Annales Polonici Mathematici XLV.1
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and from (2)

o(t+9 ae, t+39<0,
(3) T(t)‘p('?) = {F(T(I-FS) (P) ae., t+93>0.
Set
x(t)={qo(t), —-r<t<o,
F(T(t) o), t>0;

then x(o,+ o IS continuous as T(f) ¢ is continuous in ¢t and F is continuous.
Moreover, from (3) we have

x(N=x{t+H=TH) (9 ae, -r<I<o,

that is, x, = T(t)¢e. It follows that T(f)¢ is continuous if t>r, and
continuous in ]—t, 0] if t <r and that x(t) can also be defined as

(1) a.e., te[—r, O[,
x(t) = %F(tp), t=0,
T(t) ¢(0), t>0,

and is a solution of (FE)'.

Any solution x(t) of (FE) which is L. (—r, o0; X) is continuous
for t >0 if F: L' - X is continuous, as t — x,, [0, co[ = L! is continuous.
Moreover, if F is Lipschitz continuous, then the solution is unique: let x(z)
and X(t) be solutions of (FE). Then for 0 <t <r

Ix (&) =X < |F|||l%—X,|| = |F| g |x(s)—X(s)i ds

and from Gronwall's lemma, x(t) = X(t) for 0 < <r. In the same way one
can prove that x(f) = X(t) for r <t < 2r, and so on. And Theorem 1 is
proved.

3. Asymptotic results. The semigroup generated by A in L' is of type
|F|, that is,

@) IT®e—TOVYI <e¥o—yll, o, yell,

and as |F| >0, the information on the behaviour of solutions given by

(4) is not in general satisfactory. Hence we consider the weighted space L!

=L'(—r,0;e7%; X), that is, the space L'(—r, 0; X) endowed with the
0

norm |l@ll, = | e~ %|p(9)|d9, and we prove that if |F| is small enough,

then there exist < 0 and ¢ such that A+l is m-accretive in L! and:
therefore the semigroup generated by 4 in L} is of type w < 0. We prove
first

ProrosiTiON 4. Let F satisfy condition (H). If |Flr<e™, then A is
m-accretive in L} for all ¢ such that e’ < —|F).
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Proof. We have
|F (¢1)—F(92)l < |Flllo, —@all

(1)
=|F| | e®e g, (9)— 02 (9)d9

< |Flmax {1, e” "} |l@, — @2ll,-

Hence if ¢ <0, then |F|, <|F|le™ ™, where |F|, is the Lipschitz constant of
F: L} > X.
Let (pl'EDA’ WE = (Pi—"l'(plf’ i= l’ 25 =0~ 92, W = ',’l—'l’l‘ Then

0
le(9e™** < o) e P24 [ e= |y (s)] (¢! ~VPC=I/ By ds
3
and so

(1]
4 ol < IFl,llpll, | ¥ d9+

0

+ e“""lw(s)l(j" (e VG922 d9)ds

-r

A
s lFlo"(p"a m(l -e“"""(")/‘).;_

1
(1 ==y
gl 7 (1 )

We have

_AMFly G ea-na 1 _ 1= aA(—r)A

(6) 1 _l—al(l e ) = l_M(l e )
provided ¢+|F|, <0. Hence if o+|F|, <0, that is, if oe” < —|F|, then
lloll, < |l¥ll, and A is accretive in L.. Note that the minimum of ce” is
—(e-r)"!; hence such a o exists only if —(e-r)"! < —|F], ie. |F|'r<e™ .
If |[F|]'r =e~! there is only one o which satisfies Proposition 4, ¢ =
—1/r. If |F|-r <e™ ' we can sharpen the result of Proposition 4, that is,

we can choose w < 0 such that 4+ wl is m-accretive in L!.

141 F
ProposITION 5. Let F satisfy (H) and let |F|'r <e™'. If o = 1tlogrit org riF|

and 6 = w—1/r, then A+l is m-accretive in L}.
Proof. We have to prove that if ¢,, ¢,€D, and ¢ = ¢, — ¢@,, then

) loll, < ﬁuq,-wu, for 1> 0 small.



100 R. Villella-Bressan

From (5) we have to verify, instead of (6), the following

AlF|,

1_l—c:rA

(1 —el -a;.)(—rm) > 1 -l (1 —elt —al)(—r)/).),

that is,
AIF),+1—wA) e ~ DR > J (6 —w +|F|,),
which is satisfied if 6—w+|F|, < 0. And
6—w+|Fl,<oc—w+|Fle " =c—w+|Fle e 9" =0
if 6o—w= —1/r and [Fle " =(r-e)” .
Note that for all ¢, yeC
|F(@)—F W)l < [Fllle—yll < IFl-rlllo—illo,

that is, Fic: C — X is Lipschitz continuous with constant |F|-r. Let |F|-r
< 1; then Fy is a contraction and therefore has a unique fixed point ¢,.
And ¢, (f) = @o, t 2 —r, is the unique constant solution of (FE). Moreover,

as it is proved in [3], we can choose @ < 0 such that 4+ wl is m-accretive in
C, and from Proposition 3 it follows that, for t > r, ¢elL’,

Ty o =T @olll, = T =r) T(r) o= Tt =1 @olll,
< eI T(r) @ — @olllo-

Hence if x(t) is the solution of (FE) with initial data ¢, we have

|x(£) — @ol < e eIl T(r) @ — @olllo
and ¢, is exponentially asymptotically stable.

4. Flow-invariant sets. Regularity results. In Section 2 it is implicitly
proved that the sets M = {¢eC, ¢(0) = F(p)} and M, = {¢: [-r,0] = X,
is piecewise continuous} are flow-invariant in the sense that T(t) M < M and
T(t)M, =« M, for all t > 0. The following sets which extend D, are clearly
flow-invariant

T(t
@) D, {(peLl ”—“’-t—()‘fﬂ +oo}, 0<o<l,
I'-’O .
and so are the sets
T(t
) D; {qoeM fim 2= t()(p“l°<+oo}, 0<o<1,
t—0

as follows from the results of Section 2. It is easy to prove ([7]) that

Dz, = {@eC is Holder continuous with exponent o, (p(O) = F (o)}
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for 0 <o <1 and that
Dz, = {peC is Lipschitz continuous, ¢(0) = F(¢p)},

and so if inital data are in M and are Lipschitz or Holder continuous, then
solutions are respectively Lipschitz or Holder continuous on bounded sets.
The following proposition characterizes the sets D, ,.

ProprosiTION 6. For all 6, 0 <o <1, we have

-t 0
DA.a' = DAo,a = {(peLl’ I l(p(t+'g)_¢(3)| d3+ _“ "p('g)l d'g < K¢t¢}9

where K depends on ¢ and o.
Proof. Let yeD,,, sO that

— W= +149) Y]

=K< 4+
1-0 A°
([1], [5]). Set @ =(I+AA)" 'y ; we have
— 1 1
||!l/lc¢|| < A—alle""qo(O)H "')?||'//—(I'|'/1Ao)_l yll

1
=A"(1—e "I +14)" ql:(0)|+/1—,,lhl/—(l+'1Ao)‘l il

From Lemma 2 it follows that

im Vel gk for0<o <t
‘."‘0 Aﬂ
and
im V=l kLR,

and hence yeD,,.
Vice versa, let y €D, ,; then

=T +440)" ' Yll < W = +A4) " Yl +] ¥ o (O)]

and, using again Lemma 2, we have that yeD, ,.
We have to verify that D, , coincides with the set

~1 0
E,={peL!, | lop(t+N—0Nd3+ | lp(9dS < K,t"}.

The semigroup, T,(¢), generated by A, is such that

o(t+3) ae, t+3<0,

72.(:)¢(9)={0, e
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and so if O<t<r

0 -t 0
170 (2) @ — ol =_I IT(t)¢(-9)—<P(3)Id9=_I lo(t+9)—(9d3+ | lo(3)d3;

hence D, , = E,.

Note that Dz, depends on F. It follows that it is not possible to use the
Crandall-Pazy theory on nonlinear semigroups to study the non-
autonomous version of (FE) in spaces of continuous functions. This is
possible in L' spaces as, from Proposition 6, it follows that the set D,,
does not depend on F. We will discuss the non-autonomous equation
x(t) = F(t, x,) in another paper.

5. An Example. We show now how the problem

Du(t,a)=g(u(t, )a, O0<t<r,a>0,

(P) u(t, 0 =f(u(,), 0<t<r,
u(0, a) =uy(a), a>0,
is related to (FE).
Here

Du(t, a) = lim u(t+h,a+h)—ult, a),
h-ot h

g: L'(0, r; X)— L' (0, r; X),

fi L'O,r; X)»X and uy,eL'(0, r; X).
If X =R" and we take

g(9)(@ = —u(a, | o(b)db)p(a) and f(@)= | B(a, ¢(a), | @(b)db)da,
0 0 0
then problem (P) is the Gurtin-Mac-Camy model of age-dependent popu-

lation problems (see [4], [11]).
We consider first the case where g =0, and so (P) becomes

Du(t,a) =0, 0<t<r,a>0,
(PY u(t, ) =f(u, ), O0<t<r,
u(0, a) = uq(a), a>0.
Suppose that
(HY f: L}0,r; X)—> X is Lipschitz continuous with constant |f].

We set h: L'(—r,0; X)>L'(0, r; X), (ho)(9) =@(—9) and F =foh;
clearly, F: L'(—r, 0; X) = X is Lipschitz continuous with constant |F| = |f].
Hence

Ap=—¢, D,p={peW"'(=r,0;X), 9(0) =(foh) e},
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generates a semigroup T(f) in L'(—r, 0; X) which satisfies Theorem 1. It
follows that, setting

ug(a—1t) ae, . t<a,

©) ut, a) = %(h T()h™ ! ug)(a), t>a,

u(t, @) is the unique solution of (P)’; moreover, u,, 4 ={(t,a), 0<a<r,
t > a}, is continuous. In fact, from (3) we have

uo(—t+a) ae, t—a<0,

(6) T(O)(h™ ' ug)(—a) = %T(t—a)(h'l 10)(0), t—a>0,

and
(7 TO* *u)(—a) = F(Tt—a)h~tug) =f (hT(t—a)h ' ug), t>a.
And so from (5) and (6) we have
(8) u(t+h,a+h—u(t,a)=0 ae, h>0
and from (7)
u(t, 0) = (hT(1) h™ o) (0) = (T(D) h ™" ug) (0) = f (AT () ™ ug) = £ (u(t, ))-

Hence u(t, a) is a solution of (P).
Vice versa, if u(t, a) is a solution of (P), then set

uO(_t)’ t<0,
©) x(t) = {u(t, N

x(t) is a solution of (FE). In fact, from (8) and (9) it follows that, if
t>0, u(t,)=hx, and so x()=u(t,0)=f(u(t, )=F(x). If f(o)

= { B(a, @(a), | ¢(b)db)da, then problem (P) is equivalent to the integral
(1] V]

equation

x(f) = } B(a, x(t—a), ix(t—b)db+} uo(b—t)db)da+
] 1] t

r

+J B(a, up(a—1), } x(t‘—b)db+} uo(b—t)db)da.
] ¢

t

Note that hT(r)h~* is the semigroup generated in L' (0, r; X) by the m-
accretive operator Bo = @', Dy = {pe W' (0,r; X), ¢(0)=f(¢)}. If g is
sufficiently smooth, for example if is Lipschitz continuous, then B—g is m-
accretive in L'(0, r; X) and generates a semigroup which gives the solutions
of (P).
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