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1. Introduction

The inviscid theory of the stability of parallel shear flows is of immense
importance to the understanding of a large class of fluid motions of scientific
interest and has in consequence been the subject of very many papers during
the last 100 years. It plays a central role in meteorology, oceanography and
geophysics, to name a few of the more obvious applications. Naturally the
linear theory has received most attention and it may be claimed that it is
now in a fairly complete form, the student of any particular shear flow
problem having at his disposal a sufficient number of theorems and special
solutions to enable him to form a good understanding of the stability
characteristics. An excellent review has been written some time ago by
Drazin and Howard (1966) which provides an important background for this
survey.

If the shear flow is unstable there is in general little that can be done
beyond this stage, for non-linear terms assume importance on a relatively
short time scale and the fluid motion might be expected to lose coherence
quite soon with a band of unstable frequencies interacting and growing in a
way which would defy, at the present time, even a numerical study.

The marginally stable flow appears to be more tractable in that the time
scale of non-linear effects is long, due to the slow growth rate of any unstable
linear disturbances. Hence it is possible to examine their importance com-
pared with other effects such as initial conditions and viscosity. Further, one
may study the possibility of the evolution of coherent structures or of
catastrophic breakdown of the flow in fairly simple terms.

* Material used in this article first appeared in the IMA Journal of Applied Mathematics,
Vol. 27 No 2, and is reproduced wilh permission. Copyright by Academic Press Inc. London
Ltd.
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2. Rayleigh’s equation

2.1. General comments. Let us begin by recalling some of the chief
properties of lincar stability theory. Define a Cartesian co-ordinate system
Oxyz in which the fluid velocity is w*, the density ¢ of the fluid is constant
and the pressure is p*. Then the governing equations are

3 1
2.1) A W V) = PP diver =0

We suppose that the fluid is confined between two rigid planes y =y, y,.
either or both of which may be at infinity, and the basic flow is a shear in
which u* = u where uj has components (U(y), 0, 0) along the co-ordinate
axes, and the pressure may be taken to be zero. Moreover, U(y) is taken to
be a smooth function of y, an assumption of crucial importance to the theory
to be developed here, where the evolution of disturbances under non-linear and
viscous forces is being considered. Thus piecewise continuous shears, which
have been extensively studied during the last hundred years, are excluded
from our discussion. In linear stability theory we make a small perturbation
in the velocity so that ¥* = u§+u where u=(u, v, w), 1s sufficiently small
that quadratic terms maybe neglected. Encouraged by Squire’s theorem (%)
on the relation between two- and three-dimensional disturbances, we as-
sume all dependent variables are independent of z, whence
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The corresponding boundary conditions for rigid walls are

(2.3) v=0 at y=y,,y;.

For the stability problem we write

(24) w= ()N = o (y) e
where a i1s real, ¢ has to be found, and

(2.5 (U=’ —a®)=U" =0,  (y)=y¢(y)=0.

This equation is known as Rayleigh’s equation and the condition for

(!) Landhal (1980) has recently pointed out some special features of three-dimensional
disturbances.
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instability of the basic low to a disturbance of the form (2.4) 1s that a¢; > 0
where ¢ = ¢, +ic;.

Howard’'s semicircle theorem (1961) asserts that the possible values of
the eigenvalues of this equation lie inside the circle

(26) [Cr _%(Umux + (Jmin):l2 + Ciz = [Jf(Umax - Urmin)._] 2':

and, of course, the complex conjugate of ¢ i1s also an eigenvalue. If ¢; =0
then the perturbation (2.4) is neutrally stable and Rayleigh’s equation has a
regular singularity in y; <y <y, at y =y, where U (y.) = c,. There are now
two alternatives. If U”"(y.) = 0 then the singularity is removable and  is a
smooth function of y near y.. The mode (2.4) of oscillation is known as a
regular neutral mode. On the other hand, if U”(y,) # 0 the general solution
for ¢ is of the form

Y (,y°)—'kf(y—yc)[logl_v—_vcl +iC ]+ ..,

U'(v.)
near y = y,, where C . are constants appropriate to 1 = y.” and need not be
equal. This mode i1s a singular neutral mode. The assumption of small
disturbances now breaks down in the neighbourhood of y = y, and for this
reason this point, at which the phase velocity of the disturbance is equal to
the basic fluid velocity, is known as a critical level and its neighbourhood as
the critical layer. The discontinuity (', —C_. 1is usually referred to as the
phase jump but we shall see that in certain important interpretations it is a
function of x and t, and so we shall describe it as a velocity jump. Since it
implies a discontinuity, in the x-component of the perturbation velocity,
across the critical level the new description has physical significance. In order
to find an appropriate function  when ¢; =0, some assumption must be
made about this velocity jump or the theory must be imbedded in a more
comprehensive theory in which initial conditions, non-lincar effects and
viscosity are all taken into account.

To fix matters let us suppose that U’(y)<0 in y, <y <y,. Then
Rayleigh’s criterion tells us that there are no solutions of (2.5) with ¢; # 0
and hence if there are any solutions they must have at least one critical level
and possibly two. Further, the mode must be singular at one of these levels.
There are three ways in which we can fix the conditions ¢ must satisfy
across the critical layer, where linear theory, as presented so far, does not
hold. One i1s to invoke both non-linear eflects and viscosity in the critical
layer. Benney and Bergeron (1969) have then shown thak in certain circum-
stances which we shall discuss in detail later, we may set

(2.8) C,=C_,

(2.7) Y.+

and now there is no difficulty about completing the solution of Rayleigh’s
equation for any «. As an illustration consider the plane Poiseuille profile
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U(y) = 1—y* with y, = =1, y, = +1 for which U” = —2. The variation of
¢, with a for symmetric modes (y(0) = 0) is shown in Figure 1 and we see
that ¢, =0 when a =0 and ¢, — 1 as a — c0. Secondly, we may regard (2.5)
as associated with the Laplace transform of the stream function which
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Fig. 1. Neutral curve for even disturbances for Poiseuille low: U(y) =1—y% |y < 1. C, =C._
{Benney and Bergeron (1969))

describes the evolution of the perturbation with increasing time after an
initial perturbation proportional to exp(izx). Again we shall discuss this
approach in more detail later but the matching condition across y = y, can
be obtained by taking ¢, > 0 and letting ¢; — 0. It then follows that

2.9) C, =C_+nsgn{U'(y)),
or, if we define the Reynolds stress
(2.10) t = fia (' —¢' ) —uv,

the tilde denoting the complex conjugate, the jump in t across the critical layer
1s

an U” (v’
2 UG

Now dz/dy = 0 elsewhere in y, <y <y, and 7 must vanish on the bound-
aries. A contradiction follows whether there is one critical level or two (the
maximum), since the right-hand side of (2.11) is negative. We conclude that
there are no solutions of (2.5) regarded as the limit of an initial value
problems if U”(y) does not change sign. The third possibility is to regard
as a function of a complex variable y which is then analytic in the finite
y-plane except for a branch point at y. which may now be complex. We
determine the eigenvalue ¢ by taking a path from y, to y, in the complex
plane of y passing below y.. Having found ¢ by this means we then appeal to
Cauchy’s theorem to conclude that the same result would hold if the contour
were deformed back to the real axis of y, provided that y. > 0. This method
works well for unstable modes of inflexional profiles (Gill and Davey (1969);

(2.11) [t]* =




MARGINALLY STABLE INVISCID FLOWS 683

see also Lessen, Singh and Paillet (1974)), but for monotonic stable shear
flows it leads to values of ¢ which contradict the requirement Im y. > 0. No
doubt if the contour were taken above y. we should then find that Im y, > 0.
Thus the solution of the Rayleigh equation pertinent to these stable flows
must always have a cut at some point on the real axis across which ¥ and/or
oy /dy i1s discontinuous. It appears therefore that these solutions are quite
irrelevant to the inviscid stability problem (') but we shall now show that the
value of ¢ obtained by taking the contour of integration below the real axis
of y is the limit of an eigenvalue of the Orr—Sommerfeld equation for viscous
flow as is the eigensolution except for a finite stretch of the real y-axis.

2.2. Viscous effects in shear flows. In general, the inclusion of viscous
effects in shear flow studies leads to an immediate contradiction with the
assumption of parallel flow for the basic velocity profile does not satisfy the
Navier—Stokes equations of motion. Notable among the few exceptions are
Poiseuille flow, in which U =1—)?, |y < 1, Couette flow in which U =y,
and Ekman boundary layers (Lilly (1966)) of which the last example is
outside the scope of this review since the direction of the fluid velocity varies
with y. The common practice, which we follow, is to ignore this contradic-
tion and then after making assumptions equivalent to (2.4), we find that
satisfies

(2.12) " =22y " +a* ) —iaR[(U—c) (¢ —a?§)-U"y] =0
where R is a representative Reynolds number of the flow and

YD) =¥ )=y =v¥'(y2) =0

This equation is the famous Orr-Sommerfeld equation of fluid dynamical
instability and we see that formally Rayleigh’s equation is obtained in the
limit R — oc. Some brief remarks on the general properties of solutions of
(2.12) are in order before we discuss their limiting behaviour as R — oo. If the
range y, <y <y, of the solution is finite, there are an infinite number of
solutions of (2.12) at any Reynolds number and the evolution of any initial
disturbance 1s representable by a combination of these eigensolutions. On the
other hand, if the range is infinite there is no guarantee that at a particular
value of R there are any solutions of (2.12) at all (Murdock and Stewartson
(1977)). It seems that the central role in describing the evolution of an initial
disturbance is provided by the continuous spectrum in which ¢ oscillates
finitely as y — oo and corresponds to a set of eigenfunctions obtained by
a different method of separating variables (assuming that the dependent

(') Some writers (e.g, Landahl (1980)) think otherwise but such discontinuities violate the
principle conservation of mass and/or momentum. It has not proved possible to smear them out
with solutions drawn from the continuous spectrum (see Section 2.4, below).
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variables are products of functions of x, of r, and of y/\ﬁ instead of
functions of x, t and of y). In addition, as R increases, a set of solutions of
(2.12) springing off [rom this continuous spectrum at discrete values of R is
obtained. The phenomenon is clearly shown in Figure 2, taken from Mack’s
(1976) extensive computations at a = 0,179 for Blasius flow.
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Fig. 2. Effect of Reynolds number on ¢, and ¢; of the first 15 modes of Blasius flow at
a = 0.179, INV dcnotes eigenvalues according to inviscid theory but deforming the contour
(Mack (1976)) :

The study of the limiting form of a solution of (2.12) as R — o has been
carried out chiefly in two cases. For Poiseuille flow Grosch and Salwen
(1968) have carried out a study ol a considerable number of the eigenvalues
at « = 1 up to values of R = 10000 and found that ¢ i1s either approaching
zero or unity (Fig. 3). Davey (1973) has extended these calculations for one
particular mode in plane Poiseuille flow and has verified the asymptotic
formula

1 w1/
(2.13) ¢ ~ (6.56—1.68i) (ﬁ) as R—-
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Fig. 3. a) Real parts of the first eight eigenvalues versus R for a = 2.0. Note that ordering of

the eigenvalues 1s by the magnitude of the eigenvalue at low R. b) Imaginary parts of the first

cight cigenvalues versus R for & = 2.0. Note that the crossings do not represent degeneracies

since the real parts of the eigenvalues are not equal at the points where the imaginary parts
are, and vice versa (Grosch and Salwen (1968))

in this case. Table 1 gives a set of the results he obtained, and we see that
the approach to the limit is slow. The existence of a finite range of R for
which ¢; > 0, implying that this is an unstable basic flow, is interesting since
Rayleigh’s criterion establishes that the flow is stable to inviscid disturbances.
Rayleigh’s equation in fact does not have any solutions with 0 < ¢, < I; the
limit solution of Davey’s calculation as R — o¢ would have critical layers
occurring on the boundaries.

The investigation of the solution of (2.12) for a Blasius flow in the range
0 <y < o is especially interesting because it turns out that the “critical
level” occurs in the interior of the flow field. As usual the shear flow and the
Reynolds number are scaled by the displacement thickness. In Table 2 we
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Table 1

Principal eigenvalue ¢ for plane

Poiseuille flow at various R
(Davey (1973)

Poiseuille

10%
25-10¢
5-10%
10°
108

0.2375 +0.0037i
0.2012 + 0.0020i
0.1753 —0.0083i
0.1459 - 0.0150i
0.0666 —0.0140{

give the values of ¢ as computed from (2.12) at R =10000 and those
computed from (2.5) by deforming the path of integration in the complex
y-plane below the real axis of y (courtesy Davey (1978)). It is seen that where
both sets of solution exist the two sets of values are very close, and since

Table

2

Values of ¢ computed from Rayleigh's equation and the Orr—Sommer-
feld equation at R = 10 000 for Blasius flow (Davey (1978))

Rayleigh Orr—Sommerfeld
0.1 0.219—-0.010i 0.222 +0.008 i
0.2 0.343-0.046i 0.246-0.042;
0.3 0424 -0.094 0425-0.091
04 0.483-0.147i 0483 -0.145i
05 0.530—-0.203 unobtainable
0.8 0.672—-0.398 | unobtainable
1.0 0.831-0519§ unobtainable
1.3 1.088 - 0.598 i unobtainable

¢; <0 the y-plane must be cut across the real axis in the solution to
Rayleigh’s equation. We note that even though 0 < U < 1, it is possible for
¢, >1 and this does not contradict Howard’s semicircle theorem which
depends on ¥ being smooth. Further, no solutions of the Orr-Sommerfeld
equation were found for « > 048 but the reason is not known.

The nature of the solutions when R » 1 was broadly discussed by Lin
(1955) (see also Tatsumi and Gotoh (1969)) but it is appropriate to go into a
little more detail about their features. Let us suppose that ¢; is small, but
finite, when R is large, and attempt to set up a uniformly valid leading term
of the expansion of the solution in powers of c¢; for large R. We may
reasonably expect that except in the neighbourhood of y = y,, where U (y,)
=¢,, this is provided by Rayleigh’s equation. Thus as y — y 0.

2.14 ~A,
219 v -[w'(yc))z

Uly)

(U(y)—c) {log(U (y)—c)+B. }}
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where A, B, are constants differing on the two sides of y = y,. Now if B,
are suitably related we may pass through y = y. smoothly without need to
invoke viscosity and the eigenfunction ol Rayleigh's equation is the limit of
the eigenfunction of the Orr-Sommerfeld equation. This condition is

C:
(2.19) B.,—B_ =mis n( — )+0(1)
" P\
where ¢; < 1. However, there are other constraints on B, due to the
conditions on ¢ at y = y,, y, and as we have seen it may not be possible to
satisfy (2.15). Viscous effects must then be invoked in the neighbourhood of
y =y, where we write

aRa*
a= U’(.Vc)’ b= — U”(yc)s .uz = [E s

(2.16)

bc; a
= - = - Y,
B=— Y=Yty
and without loss of generality we take a >0, b > 0.
On expanding the various coefficients in (2.12) in powers of Y and
retaining only the leading terms we have

d*y d*y

2.17
(217) dy* dy?

—iu[(Y—Hﬁ) +|1/J=0

and we are interested in the solution of (2.17) when Y = O(f) in the limit
u— o (Wasow (1948)). One solution can be excluded on the grounds of
exponential growth as Y — o0 and two others reduce to solutions of
Rayleigh’s equation as u— co. The additional solution may be written as

; 3
(2.18) s = Lizds exp{T'—i(YHﬁ)s—}—;—Z}
c

where C is a contour in the s-plane beginning at s = 0, moving along the
positive imaginary axis of s and then swinging round to end at infinity along
the positive real axis of s. The value of ¥, when pu > 1 is dominated by the
contribution from the saddle at s = —ui(Y + if), with Res > 0, provided it
is exponentially large.

Let us first suppose f > 0. Then the contribution from the saddle is
exponentially large if |Y| < ,B\/§ and

nl/Z

2 .
(2.19) Vi ~ Gy exP[i”(ﬂ_'Y)SIZJ’

whereas if |Y| > ﬂ\/i we may neglect the contribution from the saddle and
replace the path of integration by one along the positive imaginary axis if
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Y > 0 and denoted by C, in Figure 4, while if Y < 0 we may use one which
swings round to end along the negative imaginary axis (with Re s = 0+) and
denoted by C, in Figure 4. The values of the resulting integrals when u = o

A
G
Y> g3
C2
E ‘Res
Saddk
= i< 33
y<-gv3
G

Fig. 4. Contours for the integral in equation (2.18)

are similar to (2.14) when p <|Y!| <1 but the sign of B, —B_ in (2.15) is
changed. We thus have the flexibility to satisfy the requirement on B,, B_
provided by the conditions at y,, ),. Hence the solution of the Orr-
Sommerfeld equation, when R » 1 and f is small, is smooth il

/3G
(2.20) ly—y > —/3 won

and 1s violently oscillatory otherwise. An example is provided in Figure 5.
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Fig. 5. Blasius eigenfunction for 2 = 0.179 and R = 10% ¢ = 0.32165—0.03629 i (Davey (1978)
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Further, we may see the reason that the deformation of the contour in the
complex y-plane below the real axis of y, in obtaining the solution of
Rayleigh's equation, yields the correct limiting value of ¢ as R — = for the
Orr-Sommerfeld equation. Once Imy < —f (2.19) becomes exponentially
small and the acceptable solutions of the Orr—Sommerfeld equation become
identical with those of the Rayleigh equation.

On the other hand, if |f] < O the solution (2.19) is exponentially small

when Y is real and |Y| < f8 \/5 so that ¥, remains smooth for all Y. Further
the sign of B, —B_ for this solution is the same as in (2.15); hence the
difficulty mentioned above in connection with the Rayleigh solution of (2.12)
cannot be eliminated. We recall that the difficulty must exists otherwise
Rayleigh’s equation would have an acceptable solution when U”(y) <0 in y,
<y < y,. The conclusion is that if the limit, as R — oc, of the eigenvalue c,
computed from (2.12), 1s the same as that computed [rom (2.5) by contour
deformation then

(2.21) ¢, < 0.

Thus if U” does not change sign a direct integration of Rayleigh’s equation
does not yield a value to ¢ (expect by invoking non-linear effects as in the
Benney—Bergeron theory which we shall consider later) but the value ob-
tained after deforming the contour is the correct limit of the corresponding
viscous problem as R — x provided that ¢; < 0. The two eigenfunctions are
different, the one containing a discontinuity on the real axis of y and the
other a finite range yy < y < y, in which ¥ oscillates infinitely. This range is
specified accurately by (2.20) if ¢; is small. In general Foote and Lin (1950)
find that if y, is the point in the complex plane of y at which U(y) = ¢, then
V3. V4 are defined by the requirement that the real parts of

¥3.94
(2.22) } LW —=c))'?dy

Y0
are zero.

As Mack's computations in Figure 2 show, the conclusion ¢; < 0 in the
limit R — o¢ does not imply that the shear flow is necessarily stable for all
R > 0 but in the case of circular Poiseuille flow this appears to be the case. If
the flow is unstable at finite values of R, the instability can persist for
arbitrarily large values of R manifesting itself in modes of increasingly long
wave-length (x — 0). There is an extensive literature on this subject, an
important recent paper being due to Lakin, Ng and Reid (1978).

2.3. Unstable Flows. The violation of Rayleigh’s criterion does not
necessarily imply that the flow is unstable. For example if U =siny, U”
changes sign at y =0, but the flow is stable if yv,—y, <=x (Drazin and
Howard (1966), p. 35). Let us consider a class of shear profiles U(y:y) where

44 — Buanach Center Publications 15
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¥ is some parameter characterizing the low and such that U"” changes sign
only if ¥ > 0. Then one may expect that instability occurs for ¥ > y. where g,
is positive or zero. Once it scis in there is a range of values of a, |2| < a, such
that Rayleigh’s equation has non -trivial solutions for some ¢. If we were to
admit non-smooth profiles (which we explicitly shall not) it would be difficult
to conjecture any general properties of ¢ and x,, but for smooth profiles it is
quite possible that x, is bounded and the number of values of ¢ for each
admissible « is limited. For example, if U = sech?y (— o0 < y < =) a sinuous
mode has been found. in which  is symmetric, if |x| < 1, and essentially one
corresponding value of ¢ (another is its complex conjugate). In addition if
|| < 2 there i1s a varicose mode, in which ¥ is antisymmetric, and a different
corresponding value of ¢. Each class of mode is terminated by a smooth
solution in which ¢ is real and U’ = 0 when U” = c¢. Indeed, the Reynolds’
stress criterion (2.11) prevents ¢ from having a logarithmic singularity at
U = c. It is conjectured that for all smooth monotonic profiles, or monotonic
apart from a symmetry requirement, non-trivial } exist for a finite range of x
only and at 2 =a,, ¢ is real and ¥ is smooth. The number of classes of
solution may well be equal to the number of points of inflexion of the basic
profile (Howard (1964)).

For other classes ol smooth profiles a, also appears to be bounded but
it 1s less clear that the limit solution at a« = «, is smooth. For example, if U
= sech?y tanhy, two classes of solution have been found, one with ¢, # 0
and known as a propagating mode, in which ¢; = 0 if a ~ 1 with a singula-
rity at the critical level. The reason is that for this profile there are two
critical values of y at which Reynolds stress jumps occur but cancel. There is
another, standing, mode 1n which ¢, = 0 and ¢; vanishes if x = 5. We identify
this with a, and note that the corresponding solution is smooth (Drazin and
Howard (1966), p. 40). Another example is U =e *siny, 0 <y < oc for
which solutions have been computed if 0 <a < (078, the solution [or
a = (.78 appearing to have a logarithmic singularity at the (two) critical
layer(s) (Gill and Davey (1969)). There may, however, be another class of
solutions terminating smoothly at a different value of a. No acceptable
solutions have been reported for a > 0.78. Formally solutions may be looked
for by deforming the path of integration below the real axis of y in the
manner described by Lin (1955) and as carried out explicitly for a more
complicated equation by Lessen, Singh and Paillet (1974). For the profile U
=" [y] < oo, McKay (1979) has found values of ¢ at larger values of «
than that for which ¢ is real. However, the sign of ¢; implies that when the
contour is deformed back to the real axis of y, ¥ then is discontinuous at
some value of y, due to the presence of a cut across this real axis. Were we
considering the Rayleigh equation as a possible limit of the Orr-Sommerfeld
equation as the Reynolds number R — 20, the associated limit solution would
be a solution of the Rayleigh equation except in a finite range of values of y.
In this range Y would oscillate infinitely.



MARGINALLY STABLE INVISCID FLOWS 691

Returning to consideration of the parameter y, we examine the nature of
the perturbation in a state of marginal instability when y—y, is small and
positive. This situation is attractive to study, from an evolutionary stand-
point, since the instability develops sufficiently slowly that the effects of non-
linearity, viscosity and other physical parameters may be discussed in an
orderly way. For larger values of y the instability develops too rapidly to
enable us to keep track of its properties at present. In marginal stability the
critical mode has a = 0 for a wide class of shear flows. For if such a mode
exists with « # 0 and U"AU —c¢) does not change sign for this mode then
(Howard and Drazin (1966)) there are unstable modes at smaller values of «.
Lin (1945) has given a formula for calculating the growth .rates of neigh-
bouring modes. On the other hand, the critical mode may well have a # 0 in
specific tnstances. Howard and Drazin (1964) have given such an example in
the closely related problem of Rossby waves. In all examples of marginal
stability known to the author the critical mode has a smooth eigenfunction
and it is quite likely that singular modes can occur only if the basic flow is
definitely unstable.

2.4. The initial-value problem. The discussion of stability ol plane
parallel lows has so {ar been based on (2.4), i.e, on the assumption that a
simple seperation-of-variable argument is adequate. A more satisfactory
approach, in which (2.4) can be embedded, is to consider a small initial
disturbance to the basic Aow and examine how it evolves with time.
Instability may thus be defined as a solution in which the disturbance does
not remain small for all time. The procedure now is to solve (2.2) using a
Fourier transform with respect to x, and a Laplace transform with respect to
t, whereupon the transformed independent variable W, of , satisfies (2.5),
with a specified right-hand side depending on the precise nature of the initial
condittons. The normal mode analysis based on (2.4) may then be interpreted
as identifying the poles of Y and if they lie above the real axis of w
instability resuits. They are, however, not necessarily the only indication of
instability. Contributions to y also come from any branch points of ¢ and
these are algebraic in nature being O(t ") as t — oo, where » has to be found.
For any n, derivatives of ¢ with respect to y of sufficiently high order become
unbounded as t —» «© due to the contributions from these branch points. A
reasonable requirement for stability is that » > 1 in which case the pressure
gradients induced by the non-linear terms decay to zero as t — oC.

The complete solution of the non-homogeneous form of (2.5) in any
particular case is clearly a formidable task and has been the-subject of some
controversy (see Brown and Stewartson (1980)). Some of the principal
features of the branch singularities may, however, be seen from a study of
Couette flow, in which U =y and (2.3) reduces to

(223) Loyl ’ﬁzl‘+52”)—o
‘ a” ax)(axz )T

/
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with a frst integral
2

=~
[y

2

r
+ 2 = F(X—y's }')‘

[ Hd

(2.24) Viv =

2
)

'\

-
-

'_\
where F is the given initial value of Ffrv. Provided that F has compact
support, te., vanishes outside a finite interval of x, it follows that when ¢ is
large

(2.25) t~t"2G(x—yr,y)  where — - =F.

Thus n =2 and all velocity components decay as t — », showing that the
basic flow is stable. A variation of this initial value problem is to suppose
that v =0 at y,, y, only for ¢ >, where ¢, is a positive constant. An
example is provided by the problem of long Rossby waves a uniform shear.
The governing equation Is

3 e or
(2.26) (:+_V?—):ﬁ+/f.— =0

(t ox /Oy y
(Dickinson (1970); Warn and Warn (1976)) with f# constant and y, > 0,
y, = v x. Let us suppose that v(y;) = ¢~ for t, >t and v(y,) = 0 for t > 1,.
Then

(2.27)

=™ (isTay K, (2 BUa—) .,
- \/_ ! AN e.\r+11x’ ,;, > 0’

is =2y K, (2\73(?/;5)

where K, is a Bessel [unction, and it may be deduced from the properties of
the integral (2.27) that v ~ 1~ % as t —» »x. We inler that in general © ~ 1~ 2 also
so long as the [orcing from the boundaries has compact support both in time

and space.
Without the condition ol compact support much less can be said. Thus
if F=1 then v = —3(;—y)(y—»,) and remains finite for all ¢. In the study

of non-linear effects on which we shall now embark the initial disturbance
will always be thought of as centred and vanishing outside a certain distance
from the origin. Thus, according to linear theory, at large times the algebraic
components of the disturbance decay like +~? and it will only be necessary to
consider the behaviour of the modal oscillations, which 1n a state of marginal
instability, are slowly growing in amplitude.

3. Evolution of forced critical layers

3.1. Introduction and linear theory. In order to focus attention on the
critical layer we consider lorced oscillations ol a prescribed wave-length and
period. As a result ¢ is a fixed real velocity and the existence of a definite
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value of y at which U(y) = c i1s assumed. We are then able to consider how
any singularity there may evolve under the influence of non-linear and
viscous eflects without having to take account of the possibilities either that
this critical layer does not exist because of the overall constraints on the
disturbance, or that the corresponding disturbance is the least important of
all possible modal disturbances as would generally be the case with free
oscillations. The treatment of unforced oscillations is delayed until the next
section.

Although the restriction is not strictly necessary the neatest way of
discussing the evolution of the critical layer is through the Rossby equation
describing quasi-geostrophic motions in a region of the atmosphere bounded
by lines of latitude. The governing equations have been written down by
Pedlosky and Greenspan (1967), using the sliced cylinder as an example, and
for weakly viscous disturbances forced by an oscillation of long wavelength
at a fixed latitude on a constant shear flow they may be reduced to the form
(3.1) (;ﬁ ¢ )_‘“‘3’.’__8(‘fﬁﬁfﬂ_i‘ﬁi‘_ﬁ_.)ﬁl’ _gCY

‘ ‘x ] oy? oyt dy exavt) o ox Qv

(Stewartson (1978)). Here ¢ 1s the reduced stream function of the disturbance,
x and v are non-dimensional measures of distance in the eastward and
northward directions, ¢ (< 1) is a measure of the amplitude of the disturb-
ance, and R (> 1) is a Reynolds number in which the length scale partly
depends on the wavelength of the imposed oscillation. Also the origin is
moving in the x-direction with the phase of the disturbance so that v = 0 1s
the (fixed) critical level. The forcing is switched on at y = yo (> 0) whent =0
and we are interested in the evolution in —x <y <y, for all time. The
boundary and initial conditions which we use are

Y =cosx at y=y, for (>0,
(3.2) W —0 as y— —oc for t>0,

W =0 for y<y, and r=0.

Strictly, another condition is required at y = v,, e.g., no slip, but since
R > 1 the violation of such a condition is of little consequence. The use of a
(radiation) condition at v = — » 1s simply to avoid the additional compli-
cation of reflection from a lower boundary. Another way of looking at the
limiting process involved in obtaining (3.1), (3.2) is that it enables us to
examine the properties of a critical layer in a uniform shear and to neglect
a?y in comparison with " in (2.5).

Provided y remains finite we may neglect the terms proportional to ¢
and R™' in (3.1) and then at large times y takes the form (Dickinson (1970);
Warn and Warn (1976))

AQx, 0¥ K 2101 for y <0,
(3.3) Ve i ) a2 5,172
vy [B(x.nJ, 2y 4+ C(x, Y, (2y"'%)] for y>0,
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where J,, Y,, K, are Bessel functions of order unity and A4, B, C are
functions ol x and slowly varying (unctions of ¢, to be found. By slowly
varying we mean that t appears in the form ¢"t or R™™1 where n, m > 0.
Two relations connecting 4, B, C are immediate, namely

(3.4) BJ, 2y + CY, (2v/%) = y5 /2 cos x,
from (3.2) and .
(3.5) 1A+C =0

from the reasonable requirement that y be continuous across y = 0. A third "
condition is required, to fix the solution, for which we must investigate the
structure of the critical layer near y = 0. If non-linear terms are neglected
then this condition may be obtained by considering the growth of the critical
layer with R = o or by supposing that the solution has settled down in
some sense, either argument leading to the same result as we shall now
demonstrate.

From (3.3)
(3 6) w_%A(xs HDEt+yl tlogvl+2y =11 +o0(y) as y 0
: T A, O[l—y’log y+27—1']+By+o(y) as y—0*

where 7 i1s Euler’s constant. In order to look at the structure of the critical
layer from the simplest evolutionary standpoint we set ¢ = R™' =0 in (3.1)
and assume that &y/0x is virtually constant across the critical layer at y = 0.
Then when > 1 and yt ~ |

¢ S\ (A
3.7 —ty-— ) — = —A'(x, 0), A =—
(3:7) (Fr Y 0.»:) &yv? (x. 0) x
so that

38 Y
(:8) ay? ¥

Yy Ax—yt, 00— A(x, 0)

since A(x. 1) is supposed to be a slowly varying function of r. The match of
(3.8) with (3.6) as |yt » ¢ and y -+ 0 is now complete provided

2 9] L

‘A(-}'_—,,-‘,'_’: 0) A (x+ 1, O)Jy_ JA(x—O, 0)—A(x+0, 0)

39) B= |- — ; Ldo.
5 b

This condition, in which 1 does not explicitly appear, completes the specifi-
cation of (3.3). It is easy to see in fact that if A is sinusoidal and we write

A = RC AO 6".", B = Re BO eix,
where Ay, B, are complex constants, then

(3.10) Bo+indy =0,  nAo[Y,(2y0'Y)+iJ, 2y = —yo%,



MARGINALLY STABLE INVISCID FLOWS 695

corresponding to the well-known phase jump of linear theory referred to in
(2.9). It should be noticed that the thickness of the critical layer in this
argument is O(r ') and that the non-linear terms of (3.1) may no longer be
neglected when et? ~ 1. Thus, more strictly, 4 is of the form A(x. &!/?t) when
e ~ 1.

Again, in order to look at the structure from the simplest steady but
dissipative standpoint we set ¢ =0, ¢/t =0 and take R > 1. Then (3.7) 1s
replaced by

(3.11) ROY O

This equation may be solved in a formal fashion but we anticipate that it
leads to the solution (3.6) except when |y| € 1 and ¢ then satisfies.

s

o i
(3.12) R- ”3% = —Re iAOJ exp{ —Ju’+ix—iyuR'?} du,

0

(Tietjens (1925)). A match with (3.6) is again complete provided

. | sin yu .
(3.13) Bye'™ = —2i4, ¢ J‘ -——du = —niAd, ",
0

L

as in (3.10). The thickness of the critical layer is now O(R™ ') and the
vorticity is O(R'/?) inside it. Non-linear terms may therefore not be neglected
in the critical layer if eR¥> = 1.

These arguments suggest that the evolution of the critical layer when
non-linear effects and viscosity are of equal importance may be described by
using a scaled set of variables, viz.

y=¥e  A=(ReM)', =g Vi,
(3.14)

62
F}g =¢ Y2(x, 1, Y).

On substituting these new variables into (3.1) and then setting R - ¢, ¢ =0,
we find that { satisfies

¢ C CAcl cA i
315 YNt =i,
G-1) ( C )(, cx Y ox aY?

since i does not change across the critical layer to leading order. The match
with (3.6) is complete provided

(3.16) B(x, 1) = *fﬁ(x,t, Y)dY

I ¢
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where the * denotes that the finite part is to be taken. The behaviour of ,
and hence of 4 and B, is now investigated as a function of x, t, y and 4.

3.2. Non-linear inviscid theory. Even when /=0 the solution of
(3.15) is a formidable task because A(x, () has to be determined, simul-
taneously with , through B and (3.4). A special case which may be fully
solved arises if J,(2v4/?) =0 when A4 is proportional to cos x and without
loss of generality we may then set

(3.17) A= —cos x.

Three procedures are now available. First we can expand ( as a power series

in T whose coefficients are functions of ¥, 1 and x, in the form.

(3.18) {=3i[l0lY, T)(’jx_in e 1=z [l20e? 0 +00 e 7] -
—5i[{30€* — {5 €+ 05007 = {3507 ]+ L,

where (., = O(t™). On substituting this form into (3.15) and solving for the (,
in sequence we obtain

T T
. = 2iYi ot

T
“ . —iY - B . ~-iY
Cro=Je Sy, G0 =1}¢€ dt, | ty¢ U2,
0 0 [4)
3.19
(3.19) T
. . . -iYe . . iYr
(o = [dty (15 2dty+{dty [tye 2dr,
0 0 0 0

and, in general, {,, is given by an m-dimensional integral.

The value of B follows from (3.16) on using the properties of é-functions.
The necessary condition for {,,, to make a contribution to B is that the
hyperplane, on which the exponent in the m-dimensional integral vanishes in
the 7,,71;.....1,, Space, musl contain points interior to the simplex
0<1 <1, <...<1, <1 The explicit evaluation of the successive terms is
in principle straightforward but rapidly becomes tedious because of the
number of polynomial integrals involved. We obtain

1 1
(3.20) B = —msin x+iﬁ nt? sin x—ﬁ-@m" sin 2x+ ...

Eventually all the harmonics of sin x appear, the coefficient of sin nx having
a leading term proportional to t2"*? if n > 1. The presence of these har-
monics makes the nomenclature “phase jump” unsatisfactory in connection
with the critical layer and it is preferable to refer to B as a “velocity jump”
the critical layer thus acting as a slip surface.

The second procedure is to note that, if we write

(3.21) u* = Y2 +4sin?ix,
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¢ satisfies a first order wave equation in x, t along contours u = constant.
These contours are closed if u < 2 and form the interior of Kelvin cat’s eyes
(Fig. 6). Consequently (O’Neil (1978)) a formal solution for { for all times

Fig. 6. Kelvin cat’s cyes

may easily be written down in terms of elliptic functions. For example if
0<x<2m 0<u <2,

(3.22 {=Y—usgnYcn(¢—1sgnY;ju),
where
sin fx =dusn(e:du), |Y| =ucnig;ju).

Whereas (3.20) is only useful for 7 <4, (3.22) may be used to compute
properties of B for all ime. In Figure 7 we display the variation of the
coefficients of the first and second harmonics of B as functions of 1. and in
Figure 8 the variation of B itself at 1 =0, 2, 6, 10. As t increases, B
continues to oscillate, the period, however, being a function of x varying
from 2r at x =0 to x at x =mn. Thus, at a fixed large value of t. B is a
rapidly oscillating function of x with an amphtude which slowly decreases as
T — . The upshot is that, at large values of 7, { is developing pathological
tendencies in the critical layer but the effect on the flow outside may well be
insignificant, since its integrals with respect to x and y both tend to zero as
T < L.

A third procedure, due to Warn and Warn (1978), is to solve (3.15)
numerically with 2 =0 by using a Fourier series representation in x trun-
cated to 55 terms, a fourth-order accurate finite difference scheme in Y for
Y| < 10 and a leap-frog method 10 advance the system in time. Due to the
appearance ol small-scale noise of intorelable intensity this method can only
be used for T < ~ 4 but it does have the advantage that the condition (3.4)
may be incorporated, in the form

(3.23) A+rB = 2r sin x,

where r is a constant. A change in the scale of Y and a shift of n/2 in the
origin of x is necessary for a complete identification of (3.4), (3.17) and (3.23).
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a)

0 5 10 15 20
13'7)

Fig. 7. a) Variation of B, with t: B =) B, sin nx. Warn and Warn's calculations terminate
al A. b) Vanation of B, and B, with t {see Fig. 7a))

9} T=b
2}
7=10
1+
w
x 0
=) r:B
1+
<%
2 <
3l
=0
1 1 ) L
0 02 0.4 06 0.8 10
xIT

Fig. 8. Variation of velocity jump Bix. 1) across the critical layer with x at t =0, 2. 6, 10 when
A= —cos x: B is an odd [lunction of x with period 2n
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The first method may also be used for general values of r, significant changes
in (3.20) only occurring beyond the stage explicitly given. The second method
may only be used for r = 0. Warn and Warn carry out numerical studies [or
r =0, 0.10 and 0.25. The accuracy of their work is confirmed by the perfect
agreement with the exact solution at » = 0 shown in Figure 7, and for larger
values of r the most notable feature is the distoring of the cat’s eyes, their
centres being displaced to the left. In Figure 9 we display graphs of { at

a) b)

T [T T T T Tl

Fig. 9. Graphs of lines of constant { (Warn and Warn (1978)): a) r=0,1=4.25:b) r =0.25,
=39

1 =425 for r =0 and at T = 3.9 for r = 0.25. It is interesting to note that
even with the exact solution available great difficulty was found in drawing
comparable graphs at larger values of t (Rosen (1978)).

33 Non-linear viscous theory. No matter how small 1 is, must be
expected that the increasingly pathological form of (, especially inside the
cat’s eyes, will provoke viscous damping and eventially we can expect that
the solution will become steady and the dependence on 7 disappear. From
(3.15) we might expect that this occurs when © > 27!, i.e, when 1 > Re. There
is a physical value in studying the final steady state in the critical layer
because it is set up in a time much smaller than that (~ R) taken by the
basic flow to disappear by diffusion. -

It turns out to be sufficient to assume that (3.17) holds (ie., r is
effectively zero) so that { satisfies

o . d . 0%
(3.24) Y qg —smq—g+sm X=/_5
X cy ay

and 1s periodic in x with period 2r. A remarkable feature of (3.24) is that if A
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is finite no solution can be found for which { — 0 as |Y| — oc and at the very
least we must require instead that

(3.25) ¢— H(/4)sgn Y, as Y - x

where H 1s a constant for each 4. Fram direct integration of (3.195)

2n 2n
. | .
(3.26) H{4) = —— J B-——dx = ~ i J‘ B sin xdx

0 0

(Haberman (1972); Brown and Stewartson (1978)). This is a remarkable result
for it implies that when the critical layer has settled down to a steady form
its principal effect is to generate a discontinuity in the shear of the basic flow
of a larger order of magnitude ¢'/2 H(Z), than that of the original disturb-
ance. The velocity jump is only O(c) and hence weaker. Since the original
ideas on steady non-linear critical layers were written down by Benney and
Bergeron (1969) and Davis (1969), there have been a number of applications
most of which are in error due to neglect of this [eature.

When 4 > 1 the solution may be expanded in descending powers of 42/,
whose coefficients are functions of x and 2'? Y, of which the leading term
(3.13) was given by Tietjens (1925). Further terms may be computed in a
straightforward but increasingly tedious way, and we have

(327) B= —nsin x+0511ni" 3 sin x—0.03584 "2 sin 2x+ O (A~ *)

(Haberman (1976); Brown and Stewartson (1978)). Again, higher harmonics
of sin x appear, as the expension is continued, indicating that the notion of a
phase jump is inappropriate once non-linear effects are significant. Hence we
have, from (3.26), that

(3.28) H(}) = -4”7(1 _0S11A 3y ).

On restoring the time dependence in addition to viscous effects we find that
the contribution, independent of x, to { has a leading term

1 |sin uc
(3.29) Y J "_‘L'l“(t’_"slj—(’2"3’3_"2')¢lu, z = Yill3,

showing that a dilfusion layer is spreading out from the centre of the critical
layer. This layer in fact acts as source of vorticity which reaches a distance y
from its centre in a time ¢t ~ Ry?. Thus its full impact on the basic flow is
achieved in a time comparable with that of any diffusive tendency of the
main shéar. (Only in Couette-Poiseuille flow is this tendency absent.) At
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small values of A we largely follow the argument given by Benney and
Bergeron (1969) and write

After substituting this expansion into (3.24) we fAnd that
(3.31) o= Y+K(v), where v=Y2—4 cos? Lx

and K is a function of ¢ to be determined. It is found by writing down the
equation for {,;, and expressing the fact that {, is periodic in x with period
2r. This is only possible when ¢ > 0 if

2n

(3.32) K'(t)= A, |(v+4cos?4x)dx,
0

for Y>0 with a similar result for Y < 0. When v < 0, (3.32) must be
modified by replacing the limits of integration with the zeroes of v
+4 cos?(x/2) and hence either K is a constant or { has a logarithmic
singularity at x =0, © = —4. The constants 4 . are fixed by the requirement
of a bounded ( as |Y|— x and are equal to Fn sgn Y. Thus

v 2n
(3.33) K(®=B.Fn|dv, ! |(v;+4cos® 3x)'?dx] !

0 0
according as Y >0 or Y <0.

Formally it appears that B. are arbitrary constants and on this score
Benney and Bergeron chose them so that H(Z) =0, which implies that ¢
must be discontinuous at the boundary v =0 of the cat’s eyes. It was
thought that those discontinuities are smoothed out, when 2~ > 0, by thin
shear layers of thickness A2 in Y, but it was later shown by Brown and
Stewardson (1978) that this i1s impossible. The reader is referred to the
original paper flor the proof and the result i1s that B, = B_ =0, K = 0 when
v <0, and

x: 2r
] l A -1
(3349) H(O) = {W_n[J (v+4 cos? %x)”zde }du =1.379
v
0 0

the numerical value being due to Smith (1980).

On the other hand, it is also clear that K (v) is an odd function of Y and
so the velocity jump B across the critical layer tends to zero as 4 —0. In
Figure 10 we display the form of B as a function of x for various values of A.

The asymptotic theories of this section may be compared with the
numerical studies by Béland (1976, 1978) of the evolution of the full solution
of the Rossby equation

o 2 2 2
(3.35) Cpry VW), W
Ct c(x.y) cx

=R_lV4III
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Fig. 10. The velocity jump B{x, x) for various values of 2. B(x, ) is and odd function of x of

period 2n
with an initial linear profile except near y = —1.5, a foreign disturbance
Y =cos x at y =25 and a radiation condition at y = —1.5. Fifteen har-

monics were used in the x-direction and finite differences for the integration
with respect to y and ¢; the results are internally consistent for r < 5. Bearing
in mind the different assumptions of his studies the agreement with the
asymptotic theory is remarkable. Thus for 2> 4 > 0.2 a steady limit is
achieved for the principal harmonic in B and is the same as that found by
Haberman (1972). For 4 = O there are clear signs of the oscillatory behaviour
of this harmonic, but as Figure 7 shows, even allowing for an origin shift,
there are significant departures from the asymptotic result. It is of interest to
note that the scaling laws of the theory hold even up to ¢ =0.2.

34. Summary. We see that when a critical layer i1s forced by an
external oscillating disturbance a velocity jump across the layer of the same
shape as the forcing disturbance, but out of phase by n is set up in a time
t ~ 1, but at longer times mgher harmonics of the oscillation appear and the
non-linear terms tend to make the motion in the critical layer more
pathological. This is damped out if some viscosity is present and ultimately
the motion becomes steady. However, the viscosity generates a mean vorti-
city which, although small, is much larger than the original disturbance and
gradually spreads right through the fluid. Thus the evolution of the disturbed
motion takes to settle down a time comparable to that of the diffusion time
of the basic flow and as a result the valuc of such a steady theory is limited
and it must be used with care.

The final form of the velocity jump across the critical layer, as distinct
from the jump in mean vorticity, also depends on 4 and varies from that
given by linear theory, when 4 » |, to zero as 41— 0.

4. Free evolution of critical layers

4.1. Formulation. Let us now consider the evolution of a shear flow
which is initially in a state of marginal stability. Relying on the extended
discussion in Sections 2.3 and 2.4, we assume that there is just one normal
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mode, whose wavelength is infinite, and that the associated cigenfunction is
analytic everywhere. Hence so long as linear changes only are considered
there are no critical layers in marginal stability in the absence of forcing, but
as we shall see they arise at second order when non-linear effects are taken
into account. The theory which we shall describe here is of general ap-
plicability but was worked out (Redekopp (1977); Brown and Stewartson
(1979)) in the contex of quasi-geostrophic flow in an atmosphere with a free
surface, using Rossby’s betaplane model, and we shall do likewise. The
governing equation is now

¢ ., B oY, Ve Y s
(4.1) ﬁr(V Y—k-¥)+ Ax. 1) + i R'VFY,
where k 15 a constant representative of the distorting power of the motion on
the [ree surface and f is the (constant) lateral derivative of the Coriolis force.
We suppose that there is a mean zonal shear flow U (y) which is in a state of
marginal stability. For example

4.2) U) =siny, Iyl < 3n

is marginally stable for all 8, k, the phase velocity ¢, of the mode of infinite
wavelength being —B(1 +k*)~'. Again il U = sn(vim). |v] < K (m). marginal
stability occurs for given values of m, k only at one value of f§. The profile
(4.2) will be used as a paradigm when appropriate.

In order to focus attention on the perturbation stream function, we
write

hd
(4.3) Y=[UW)dy+y¥(X, ¥, 1), X=x—cot,
0
so that the neutral mode is static in our co-ordinate system, where upon

( Py E Yo
(4.4) (ir+(u*L-O)Lx#f%—-‘-'ki”)(vl—kz)w

G 0X 0y X 0% (y
A U
+([)'+k2U—U”)(~'£=R"|74t/1+R"——»T.
cx dy

The overbar on X will be omitted henceforth, and R set equal to infinity
except when explicitly assumed to be finite.

We have postulated a state of marginal stability, the critical mode
having infinite wavelength, and have chosen the axes so that this mode is
static to first order. Suppose now that the system is given a small disturb-
ance at time r = 0, centred at the origin. Then, using also the studies in

Section 2.4 on the initial value problem, we may infer that, at large times, ¥
takes the form

(45) ltb = A(x’ t)(p(y)+l/12(xa Y, t)s
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where A is a slowly-varying function of x, 1, ¢(y) is the eigenfunction of the
neutral mode and y, 1s a second order function in some sense. We define the
scale of the disturbance by

(4.6) = max |4(x, O} < 1,

and the scales of x, 1 in A are negative powers of ¢&. Without specifying what
these are, we substitute (4.5) into (4.4) and obtain
) B+k2U—U"
(4.7) P —klot——— =0, @)= =0
U—(O
The equation for ¥, is

~2

@8 - %(U—(o)( S )+(ﬁ+k2 U—U”W = F(x, y, 1),
(X /

CAPR+KFU-U" CA(B+KEU-U"Y A
(49) F = co—J~+~ 2A-—(ﬁ»—— — 05 S W=co),
U—cqy ox

U—cq 0x

and, in general, ¥, has singularity at y = y., where U = ¢, viz. al the critical
level of the flow. This is in contrast with A(x, ) ¢(v) which satisfies the same
equation except that F is zero. In point of fact, since A¢ is a homogeneous
solution of {(4.8), ¥, can exist only if F satisfies an integral condition obtained
by multiplying both sides by @/(U —c,) and integrating across the layer. A
certain amount of care must be exercised in this operation due to the
singularity in FAU —¢,) and ¢, but the final result can be expressed simply
in terms of the velocity jump B(x, t) across the line U = ¢, defined by

N 7
(4.10) Bix,n= Lt 2 Lt %ﬁi.
¥ ~yc+ oy Yo oy
We have
¥2
(4.11) B _ | oFdy
. (1.\' (JI'—CO.

¥

where the asterisk denotes a Cauchy principal value and ¢ has been
normalized so that ¢(y,) = 1. Redekopp (1977) has investigated the conse-
quences of (4.11) on the assumption that B = 0 in connection with his explo-
ration of the hypothesis that some of the larger scale localized phenomena
on Jupiter, such as the Great Red Spot, may arise from solition interactions.
We shall see, however, that this hypothesis oversimplifies the problem.

The determination of B depends on a careful study of the nature of the
solution in the neighbourhood of y = y,. Let us write

¢ .
(4.12) —(%’- = Al Do+ =y el 1+0(x, y, 1)



MARGINALLY STABLE INVISCID FLOWS 705

and assume that the leading term in { is a rapidly varying function of y
which is small outside the immediate neighbourhood of y = y,. It is con-
vement at this stage to make a general assumption that Ul(y,) >0
(otherwise ¢ may still be singular at y = y, and further care is needed in the
special case which arises), to rescale x, A with |U.(yJ)|”' and to choose
y. = 0. We then find, on substituting (4.12) into (4.4), that

4.13) (7'+ ¢ A0\ EA+APA

: —t Yy i =a——+7A—,

ct Y cx  (x ¢y - a7 ex

where the constants %, 3 are given by
U:-II U(I"
= kU-UL =%(U;”—— . )
U

The velocity jump B is clearly a condition on the integral of { across the
critical layer which, for the purpose of solving (4.13), can be supposed to

extend from y = — o0 to y = + oc once we establish (see Section 4.2, below)
that it has thickness O(¢'/?). Finally, we reduce (4.11) to
a* [ oA 4 A
4.14 - dy = —pA 4
(4.14) 0x J tdy=a Ct »6x+c o’
where
2
’2* ﬂ(,B+k2U—U”)(pzdy
a= — U‘- 2 ’
J (U —cp)
1
v2
*"B_'_kZU_UHI ¢3
b= —U? - dy,
¢ J( U-—c, )U—co y
v1
y2-
l 2
= dy.
=t [
¥

We also need suitable boundary conditions. These are that [ — 0 as
y— +oo in (4.13) and {, A both - 0 as |x| - co. The quantities a,.b, ¢, a, y
are all constants and provided |84 (x, 0)/cdx| < &, (4.13) and (4.14) contain all
the terms of importance for the evolution of A. However, as we shall see,
they cannot all be of equal importance for any given large length scale of A.
Whatever it 1s, some simplification is possible.

4.2. The linear regime. Suppose now the length scale is initially O(¢™")
where n > 0. We then assume that

(4.15) t=0@E™, y=0(" (=0("9),

45 — Banach Center Publications 15
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and endeavour to find consistent choices for m, p, ¢ in terms of n. It is also
necessary to investigate what happens when ¢ ™1 is large, lest certain terms
of (4.13), (4.14) drop out then and are replaced by others. The scaling for y
appear to be the same for all n>§, namely p =3, and whenever it is
necessary to wrile down equations in which ¢ does not appear explicitly we
shall write

(4.16) =gy,

For 0 < n < 4 p= 2n but we shall not need this result since the governing
equations are then linear.

There are two crucial cases to consider, in one of which0 <n <3, ¢=0
and m = 3n. In this case, which we shall consider here, A¢A/dx may be
neglected in comparison with d4/dr, 3 A/éx?, and (4.13), (4.14) completely
solved for A. However, as ¢¥*t — x the behaviour of 4 is such that 484/dx
becomes comparable with ¢4/¢t and non-hnear effects are then of signifi-
cance. In the other case, n = 5, m =3, ¢ = 4, and non-linear terms must be
included, but on the other hand &/t may be neglected in (4.13): we shall
consider this case in Section 4.3, below, and find that there is a shorter time
scale which cannot be ignored so that these two cases have much in
common.

When 0 < n <31 (4.14) reduces to

4.17) AR TN
. Voo =a—,
( (Pr : ix)® ot
and, setting { =0 at r =0, we have immediately that
(4.18) C=af A (h y—1y+x, ty)dt,
0
so that
o x[ A, (X, 1)dx
(4.19) L tdy = ~a j A, fdx
X N X—X

Now (4.14) becomes

o

*TA(X, Ddx A A

4.20 ==
(4.20) a3

’ -, c
X—X ct
- X

and, if A(w, 1) is the Fourier transform of 4 with respect to x

2

- - co’t .
4.21) Alw, t) = A(w, 0)exp [21—2—+W(—an|wf+taw)J.

Thus if 2¢ < 0, ie. 0 < k?U. < U, an initial disturbance on a length
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scale ¢ " with 0 < n < § grows unboundedly with ¢ on the time scale = "
and the flow must be regarded as unstable to linear disturbances. The theory
leading to (4.7) merely established that it is neutrally stable on the time scale
O(1). It 1s far from clear that in this case an initial disturbance could ever
take on the form (4.21), due to the problem being badly posed, but in any
case a marginally stable flow with x¢ < 0 is very hard to construct. Our
paradigm (4.2) has x¢ > 0 and in such fows (4.21) implies that these initial
disturbances decay in magnitude and so are stable but. simultancously,
spread out laterally. Specifically 4 ~ &' "t~ '® over a range of values ~ ('/?
of x when ¢™t > 1 and the non-linear term (¢A4/¢x)(0(/¢y) in (4.13) becomes
comparable with &//ét when t = O(c %) where ¢¥* =¢' 7" At these times
A = O(o) and the critical layer thickness ~ (g!/?). The situation is reminis-
cent of Section 3.2 but it i1s not now possible to obtain a compete solution
even in special circumstances because of the terms on the right-hand sides of
(4.13) and (4.14). The best we can do is to set up a series solution in powers
of + as in (3.20).

4.3. The solitary wave. Of special interest in the evolutionary process
of the disturbance is whether it ultimatcly may settle down in a similar way
to a solitary wave. In that event it may be envisaged as a model describing
aspects of features of the Jovian atmosphere such as the Great Red Spot. For
this phenomenon to occur we must be able to find admissible solutions of
the governing equations of the form f (t —¢ux) where p is a constant and this
implies a non-linear phenomenon. For the non-linear terms in (4.13) and
(4.14) to be significant we should think of a length scale ~ &~ "2 and a time
scale ~ ¢ %2 which is the second crucial case mentioned above and which
could arise by evolution from the first. On such a length scale, the governing
equation for { reduces to

¢ (A CA . A

(4.22) pot e =yt A

XA - - / ’
(X (x oy ct X

with solution

X

(A (X, )+ A, DA (Xt
LA (X, DA, (x ) i

(4.23) + L
J UV 24(x, )= 24X, 1)
0

v
I

according as y >0 or y <0, on any curve on which
(4.29) u=y24+24(x, 1)

i1s constant. Thus, if the curve u = constant extends to x = —s¢ which it
must do if y? is large enough. (he lower limit of integration can be taken as
— . From a detailed study of this equation Brown and Stewartson (1979)
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infer that the functions A must satisly certain restrictive condittons. One class
of function which is acceptable satisfies the equation A, = g(A4) A, provided
A <0 and has a single minimum. For example, if 4, = —&uA,

(4.25) {=eop(yFOE+24)Y3) =4y P F(2+ 24 + 34y}
if u=y*+24>0, and
{4.26) C=sapy—y Gy + Ay +F W),

if u <0, where F is a function to be found, except that presumably F(0) =0
to ensure continuity of (. An important requirement for this solution is
that the lines on which ¥ = constant are either closed and cross the line
y =0, or extend from x = —a0 to x = +00. If A > 0 then there are lines, on
which u = constant, which cross the line y =0 and extend to x = + o,
where, of necessity, contradictory requirements are placed on F(u), the
homogeneous solution of (4.22). Granted that 4, = —euA,, A <0 and taking
F =0 we obtain a solitary wave for A namely

(4.27) Ag(x, t) = _ 12 sech? ¢'/2 (x—ic—c—r).

b a
The validity of (4.27) appears to depend on { being quasi-steady, i.e., that
dl/ct 1s negligible in comparison with the terms retained in (4.22), and this is
not the case. Nevertheless, we may show, by a parallel argument to that in
Section 3.2, that it is consistent to assume the velocity jump B across the
critical layer is zero. In order to do this, we replace 4 in (4.13) by its quasi-
steady form (4.27) and, for simplicity, set y = 0. This equation may now
casily be solved lor { given that { =0 at t+ = 0 and we find, as in Section 3.2,
that inside the lines v2+ 24 = 0, { oscillates finitely whereas, outside, it tends
to a limit as &t — oo. The leflt-hand side of (4.14) behaves like 1~ '/2 when &t is
large as required.

Previously this oscillation was removed by the introduction of a weak
viscosity (Section 3.3) but there and in the present instance such a generaliz-
ation leads to difficulty since the basic flow does not now satisfy the full
Navier-Stokes equations. The consequences in the earlier work were not
serious since the time-scale of the evolution of the mean shear is much larger
then that of the oscillatory flow in the critical layer and so this formal
contradiction could be ignored.

Now the disturbance is effectively to the mean shear and so the
evolution of the two must be considered together. The equation for {, (4.22),
changes to

o 0A &, P cA A
428 — R'— =q—+4+yA——R U,
(4.28) Yox ox dy dy? e +Y Ox ve

We know that when R is large enough { = O(¢*?) and y = O(¢"?), and so
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the forcing from the diffusion of the basic shear dominates the smoothing
effect of viscosity on the left-hand side of (4.28). Further, as soon as this term
matters the notion that { - 0 as x — + 00 is lost. Similar remarks may be
made for any value of Z =(R¢?)" ' > 0. It is only worthwhile considering
viscous effects if

(4.29) U =0;

there 1s, incidentally, another requirement on U needed to prevent a contri-
bution to the right-hand side of (4.14) from the mean shear. Brown and
Stewartson (1979) attempted to determine F when both these requirements
are met by using an extension of the Benney-Bergeron theory but they
overlooked an additional dilficulty. For if we write

(4.30) {=Col, MHRTIE (6, Y+HO(RT?

where {, is given by (4.25) when u > 0 and (4.26) when u < 0, we find that it
is impossible for {, to tend to zero as [x| - oc in the region where u > 0.

44. Summary. We have shown that the evolution of an initial dis-
turbance to a marginally stable shear low depends on the scale over which it
is made. From the discussion in Section 2.4 we may expect that to begin with
there is a sorting out process controlled entirely by the linear equations, at
the end of which most components of the disturbance are decaying al-
gebraically with time leaving only a mode with a large wavelength. If its
scale is not too long (< 6~ %) where 0 is a representative magnitude of the
stream function at the time being considered, then an examination of the
stability characteristics on a longer time-scale shows that the basic flow may
be either stable or unstable although the second possibility is difficult to
realize. If stable the disturbance decays and spreads outwards until eventually
its length-scale reaches J ~ !/*, whereupon non-linear effects become important.
For length scales > 6~ '/* we have been able to show that it is possible for a
solitary wave to be set up, similar to that occurring in the Korteweg de Vries
equation. Associated with this wave is a weak finite oscillation in the critical
layer of the disturbance. It does not seem possible to generalize the solitary
wave to include soliton interactions because ol the special properties which
must be satisfied in the critical layer and the oscillation can only be removed
by the action of viscosity but this destroys the basis of the solitary wave
concept (( —» 0 as |x] - x¢).

5. Stratified flows

5.1. Introduction. Critical layers are also commonly found in the
study of unstable parallel horizontal shear flows when in addition the density
of the fluid varies under the action of gravity, such situations occurring
frequently in the atmosphere and oceans. The fluid motion is described by
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equations deduced from the [ull equations of motion after making the
Oberbeck- Boussinesq approximation in which density variations are neglec-
ted except [or the buoyancy term of the vertical component of the momen-
tum equation. Mihaljan (1962) has shown that il the equation ol state gives
the density as a linear function of temperaturc only, and if the density
variations are small and we take the reduced shear velocity and density
change in the basic flow to be U (y), R(y) respectively, then on disturbing the
flow we find that the perturbations &y (x, v, 1), ¢T(x, v, 1) in the stream
function and the temperaturc satisfy

3 % f T
(f—+U(;-) —--) sy S T,
at X Cx ((Y: V) (N
(3.1)
- ; - T
(———+U( 7. )T+R( )(A---—;.f-;(-lk ------ ) _
Ot £ (X cix. _\‘)

neglecting, for the time being, the effects of viscosity. Here ¢ is a number,
formally arbitrary, but which later on we shall take to be very small, and
Ri >0 is the overall Richardson number, proportional to the coefficient of
the buoyancy force divided by the square of the velocity difference across the
layer. Thus R’ < 0 corresponds to a stably stratified atmosphere and, as we
shall see, so long as [ —R'(U’)*]JRi > } everywhere the shear flow is stable
irrespective of the form of U(y). Il Ri =0, equations (5.1) reduce to the
equations for an unstratified fluid and the form of U(yv) is of crucial
importance to the stability problem. For boundary conditions we take

(5.2) w=0 at v=y,.1;

in cases where the fluid is confined within rigid horizontal boundaries, and
allow y, and/or y, to tend to infinity when the flows are semi-bounded or
unbounded. In addition we shall suppose that ¢, T are prescribed at t =0
and are either periodic in x or are centred at x = (), vanishing as |x| - . As
in the theory of unstratified flows we assume throughout that U (y), R(y) are
smooth functions of v and specifically exclude any discussion of basic profiles
with discontinuities or even corners.

5.2. Linearized theory: the Taylor—Goldstein- Haurwitz (TGH) equation.
When ¢ < | the non-linear terms of (5.1) may be neglected and the equations
reduce to

ol SN2 ! ~ o ~2
(5.3) (%+U%—) Vlw—U“(y)(—f—wé )—w-—RR(»)‘—? 0.
ot X ct X ] CX

It 18 now appropriate to write
(54) Y=y,
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whereupon ¢ satisfies

(5.5) (U=c)o"—a> ¢) - U”¢—&§)—:ﬂ)— =0

to which we shall refer as the TGH equation acknowledging its simultaneous
and independent discovery by Taylor, Goldstein and Haurwitz (1931). The
function —R’(y) is often sct equal to N2(yv), N being known as the Brunt-
Vaisald [requency. Since.@ =0 at y =y,, y, the equation has non-trivial
solutions only for a set of values of ¢, which we expect to be discrete.
Further, since the complex conjugates ¢ and ¢ of ¢ and ¢ are also solutions
of (5.5), if ¢; # 0 for any admissible ¢, the basic flow is unstable since there
exists a weak initial disturbance that ultimately grows without limit.

In our survey of the propertics of the TGH equation we first observe
that, although Rayleigh's equation, to which (5.5) reduces when Ri = 0, has
no solution in which ¢; = 0 and ¢, is outside the range of U the same 1s not
true when Ri > 0 and — R'(y) > 0. Details of the properties of such solutions
may be found in Banks, Drazin and Zaturska (1976) and the literature
quoted therein, but the existence of such waves may bc expected from the
following two examples with Ri>» 1. Take —R'(3)=N?=1, y, = —mn.
¥, =n and then

(5.6) ¢~ +(a*+Lin?H)'2Ri"Y2, @ ~ sin n(n+y), n=1,2,3, ..

Again, take N? =sech?y, y, = —oc, v, = o and then

2Rill2 z+1/2
5.7 J R . ~sech’ v C (tanh y),
&7 T @2 - ) ¢~ sty & (an »

C being a Gegenbauer polynomial (Groen (1948)). In each of these examples
Banks at al. show, for a particular shear flow U (y), that like solutions may be
found for all Ri = 0 and that ¢ - (Max U), or ¢ »(Min U)_ as Ri—»0,.
The eigensolutions associated with these values of ¢ do not seem to lead to
any instabilities; since they do not possess critical layers their properties are
outside the scope of this review and we shall not discuss them further.

Let us now examine the modes for which Min U < ¢, < Max U so that
il ¢; # O they include a critical layer. Their main properties are given by two
theorems. The first is due to Howard (1961) and is known as the semicircle
theorem. It asserts that if ¢; # 0 then

(5.8) [, —4(Max U+ Min U)]? +¢2 = [{(Max U~ Min U)]?

and gives bounds on the possible values of ¢. The second theorem is due to
Miles (1961) and Howard (1961) and asserts that a necessary condition for
¢; # 0 is that

—RiR'(y) _,

° 0= T <



712 K. STEWARTSON

somewhere in the held of flow. This condition may also be suffucient. Thus if
U(y)= — R(y)=tanhy, y, = —x. ), = + and Ri = § then J(3) = } and
a neutral mode with a < § can be found: if Ri < } unstable modes have been
computed (Hazell (1972)).

For neutral modes with ¢; = 0 the cigensolution has a singularity at
y =y, and nearby ¢ has the form

(3100 A, ly—yd

where A,, B. are constants whose ratio 1s determined by the overall
properties of the solution tn y > v, or y < y.. As with the Rayleigh equation
(Section 2.2) there are three ways by which the critical layer at y = . may be
crossed. The first is to adapt the Benney—Bergeron theory of critical layers,
taking account of viscosity and non-lineary there, to bridge the gap between
the two solutions. This procedure has been examined by Kelly and Maslowe
(1970) and Maslowe (1972), but the difficulty of dealing with the mean shear
induced by the critical layer has prevented a complete study from being
carried out.

The second is to appeal to analytical continuation, or alternately to take
¢; >0 and let ¢; - 0, which leads to the conclusion that a solution is only
possible if 4 or B is zero on both sides. This cannot be achieved unless
J. <1 since A and B are complex conjugates for J. > % and we conclude
(Miles (1961)) that there are no modes of this type if J(¥) > . The internal
waves are present of course but they do not have critical layers. For J, < 1 it
might be argued that we can choose AB = 0 for some ¢ and the existence of
neutral modes would seem to confirm this. The study of the neutral modes of
(5.5) and of its analogue for rotating systems (see Pedley (1968); Maslowe
(1974) for a derivation of the relevant equation and an account of its
properties) must, however, be regarded as incomplete at the present time.

The third method 1s to consider an initial value problem and, in
particular, to look at the growth of the stream function  as a function of
time in the neighbourhood of y =y.. As with the method of analytic
continuation this shows that the two solutions (5.10) may only be joined by a
finite but growing critical layer at large values of t if A, /B, and A _/B_ are
in a certain proportion — one which its is impossible to achieve if J, > 1.

The conclusion 1s that, just as in the Rayleigh equation, free oscillations
with critical layers cannot occur when the flow is stable although we now
can have frec oscillations without critical layers. Critical layers can, however,
occur 1If the oscillation is forced, for example by prescribing ¢, « and ¢ at
y = y* where y* > y.. The linear properties of the critical layer in such
problems were first studied by Booker and Bretherton (1967) and by many
authors since. They showed that the critical layer has a very special property,
which they termed absorption, of decreasing the amplitude of the oncoming
wave by a factor O(e ") where v =(J.—1)"? thus reducing it to a

1z+.1/4 "7,

C+Bi'y_yc‘ » Jc__"](yc)a
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vanishing small value once J, is appreciably greater than }. For example, if
J. =03, ¢ ~Jandif J, =05, ¢”*" ~ 1/25. Moreover the reflected wave
is also very weak. Later we shall discuss this phenomenon in more detail
paying especial attention to non-linear aspects. It is worth noting here that
in more complicated flows, e.g., with rotation or in the presence of magnetic
fields, a valve effect can also occur with one type of wave passing smoothly
through the critical layer while another is absorbed (Acheson (1973)).

One other class of solution to the linearized equation (5.3) may be
identified. As with Rayleigh’s equation (2.4) we may consider the continuous
spectrum which arises from the branch points of the Laplace transform of
the solution with respect to r. Its form may be written down directly from
(5.3) on the assumption that, when ¢ > |,

o
H(y)+0 (_ng_f)]‘

where v(y), H(y) are functions of y to be found. It [ollows immediately that

(5.11a) W~ ey Uil - 312 £iy)

I R
1 2(y) = —-— ——= Ri,
(5.11b) va(y) 4 it

that H(y) is arbitrary and that the expression in brackets may be regarded as
a series in descending powers of + and ascending powers of log + whose
coefficients are functions of y. This form was first written down by Eliassen
Hoiland, and Riis (1953) and subsequently by Booker and Bretherton (1967)
for a uniform shear. There has, however, been a long-standing controversy
about its correctness which has recently been resolved by Brown and
Stewartson (1980) who also show how the unknown functions may be found
in an imtial value problem in terms of the values of ¢ and /¢t at + = 0. In
such problems the final state of y is a linear combination of solutions of the
TGH equation and functions such as (5.11). These modes can occur whether
v is positive or negative, but are of greatest importance when Min J > } so
that no unstable wave-like modes can occur. For example, these modes are
important in the absorption process of incident waves at large values of J
discussed earlier. For such problems the function H(y) develops a singularity
at the critical layer and it turns out that there is a thin transition layer when
t > 1 located at yt = O(J''?) across which the incident wave is converted
into one of these modes (Brown and Stewartson (1981)). Thus energy which
had hitherto been travelling across the shear layer now travels parallel to it
with the local fluid velocity. This is the physical significance of the concept of
critical layer absorption.

53. Non-linear evolution for Ri = 4. We now consider the non-linear
evolution of a small disturbance imposed at t+ = 0 on a stratified fluid in
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shear flow when it 1s marginally unstable. In order to fx the problem we
take

(5.12)  R'(y) = —sech? y, U(y) = tanh y, J(y) = Ricos?y.

If Ri < j this flow is unstable and we may expect that any initial disturbance
rapidly becomes too complicated to follow analytically, while if Ri > } there
are no dominant modes whose amplitude variation can be traced. The one
case which we can discuss is when Ri = }—, so that the flow is marginaily

unstable and the dominant wave has

(5.13) a=3 ¢=0, @ =a.(sechy)’?({ tanh|y)}/?
according as y > 0 or y <0 with

(5.14) a, o eftd—4RoM

(Miles (1963); Brown, Rosen and Maslowe (1981)). This form of solution is
singular at y = 0 which is the critical level and must be replaced by another
which is regular at y =0 but has a more complicated dependence on ¢,
namely

I

—iyuf2
(5.15) b= —ei AT e
* 2nl/2 uJ/Z e

0

where the * denotes that the fimte part is to be taken and c.c. means
complex conjugate. Further, matching (5.15) with (5.13) shows that

(5.16) Ae** =q | le. a_ =ia,,

confirming the identity of conclusions to be drawn, from an initial value
study and from insistence on analyticity, about the relationship between the
solution in v >y, and in y < y.. This form of the dominant mode is
discussed by Brown and Stewartson (1978) whose argument we follow here
but they omitted the precise form ol the amplitude dependence (5.14) of a.
on t. This may also be deduced from Howard's theory (1963) of the
behaviour of ¢ near the stability boundary.

The explicit form obtained for ¢ in (5.15) implies that the horizontal
velocity and the temperature become large when ¢ is large, even when Ri
=1-0. Thus at y =0, (5.15) implies that

iA .
(5.17) T= e X2 N2 4 oo

so linear theory must eventually fail. This failure is largely confined to the
critical layer in the next stage of evolution of the disturbance and can be
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analysed separately from the remainer of the flow field by setting Ri = 1 for
the present and rescaling the variables. We write

y=2g2Y, 1 =¢231, Ri =1,
(5.18) o
( ?
=B W(x, Y ), T = :._1/3%2___+___},
V=T ¥x Y ’ oYy
whereupon
(("Jr _,(")ﬂd) lﬁfb_ (F‘PFI(D VR
&t XY 20x 0 \dYaxay éx ay?)
(5.19) ' )
E-H’ c\ oY 1(’“]’_ 1 ép (6‘1’ R el Pl
€T ONJEY 20x 4éx cYoxdY ox eY? )

together with initial conditions

Y=Y (Y, 1) +cc, ¢ =0,
(5.20) .
A * ", —iYu/2

¢
Y, = T h173 J uafd“'

2n
0

Before discussing the solution of these equations some preliminary comments
about the scaling laws of (5.18) may be useful, since they are not quile in
their final form. As stated, the solution of (5.19) is formally independent of ¢
and may be set up as a series in ascending powers of T whose coefficients are
functions of Yr and x. In addition, the various terms can be computed
without reference to the solution outside the critical layer although this
means that the solution contains undetermined constants. These may be
found by reference to the solution outside but the matching procedure is not
quite as straightlorward as is normally the case and necessitates a rescaling
of the variables in the critical layer. It may be done either by assuming that
A is not O(1) but actually O(¢'/®) or that the time scale in r is not O(c~??)
but O(c™*). In the interest of a purely formal expansion procedure therefore
there is something to be said for introducing these scales right away, but
since the real reason for the choice only becomes apparent after a long
calculation, and there is no saving in computation time if the correct scales
are adopted, we shall stick to these more natural scales and make any
adjustments needed at the appriopriate stage in the argument.

A basic feature of the solution in the critical layer is its form as {y| — o0.
From a study of the equations obtained from (5.19) by neglecting the right-
-hand side. we find that

N e,.:,-/‘;‘_;_ Y|l/2(_%]:|% Y|+ini)+ E+cec.,
(5.21)
@ ~ |JY|V2Fetriit e,
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as Y— + o« where E, F are arbitrary functions of (x, t) to be found.
Moreover, we know from the initial conditions (5.20), that

(5.22) E — Aé™?, F-0 as 1 -0.

The expansion of the solution in powers of 7 proceeds by successive
substitution into the right-hand side of (5.19) and so we may anticipate that
in general F # 0 and what is more to the point, that F takes on different

values as Y — + oo. Both E and F also contain arbitrary functions. Hence we
can write the asymptotic form for ¥ in the full solution as

(5.23) ¥ ~e"HYN[E-LF(logliY)|—4ni)]+cec, as Y-» —x,

Y o~ PEAY)EE-LF(log 3 Y+ 5m)]+
52
(5-24) +1—4J(log } Y+in)+cec., as Y- +oc,
where E and F are again arbitrary and at any stage of the series expansion /
and J can be found in terms of E and F.

The leading terms in the expansions of I and J have been computed on
the assumption that E and F are forced by A only. Other forcing functions
may be considered but it is this contribution only that we need to deduce the
leading terms in the evolution equation for the initial disturbance, We have

(5.25) I =2i4}412(14+ ) 1) 2+ 337iA| A2 (A 1) e + 0 (1),
(5.26) J = —4.04iA|A* (L 7)° X2 iy A|A]* X2 (L 1) + 0 (21572),

where f; is a constant not yet computed.

In the matching problem with the solution outside the critical layer the
first term to constrain the value of A4 is the leading coefficient in (5.26), since
all the others explicitly quoted can be accommodated by a suitable choice of
a homogeneous external solution or choice of E and F. The presence of a
non-zero coefficient of ¢*/2, with a logarithmic factor. contradicts the require-
ments of a solution of (5.5) with « = § for then this factor must be explicitly
absent. A match is possible only if we allow A4 to vary with t in which case a
forcing term proportional to ¢A/ct appears on the right-hand side of (5.5)
and leads to a logarithmic term in y. A match of this term with (5.23) and
(5.24) is now possible leading to an equation for 4. At this stage we may also
allow for the fact that Ri is not quite equal to § which also gives a forcing
term. to (5.5), and finally the matching process leads to

dA i 1/7)\°
(5.27) o= (Z—RE)A +§(§) Bye~ 23 A% A,

where 8, was computed to be equal to 0.367 and — Ri is small and positive.
If we revert to the unscaled temporal variable ¢, see (5.18), (5.27) becomes

dA* /1 1/t)\®
, e =Z=RilA*+-|- AX|* A%,
(5.28) " (4 z) +8(8) B 1A
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where €4 = A* so that A* is also the unscaled amplitude of the disturbance.
We now see that the non-linear evolution of an initial weak disturbance
when 4 — Ri is small and positive takes place over a time scale ~ (}—Ri)™!
when its amplitude ~ (41— Ri)"7*. In terms of ¢ taken to be a representative
amplitude of the disturbance, the non-linear evolutionary time scale is
0¥y in v or O(¢™*7) in 1, as mentioned earlier.

The reduced’ form of evolutionary equation

(5.29) a8 = B+t$|B|*B,
dt,
derived from (5.28) by an obvious scaling, is similar to the Landau-Stuart
equation
dC
(5.30) = C+k|C|2C (k¥ = constant),
1 .
of classical non-linear stability theory (Stuart (1960)). We may conclude that,
just as with (5.30), B — co at a finite value of r and hence that the basic flow
Is supercritically unstable. We may not conclude that it is subcritically
unstable because the linear theory corresponding to (5.13) and (5.14) does
not exist when Ri > 1. For Ri = 1+0 there are no modal solutions of the
form (5.4) which include a critical layer. The only solutions which exist in
this form have [c] > 1, correspond to internal waves, and in particular to not
have the non-linear evolution of the form we have been discussing here.
Should three-dimensional disturbances be permitted then reasonant triads or
tetrads may occur (McEwan, Mander and Smith, (1972)) but the instability is
bounded in amplitude. The parametric dependence of the non-linear disturb-
ances in Ri in the neighbourhood of Ri = } is certainly peculiar and has by
no means been fully resolved. The presence of the factor 9 in (5.29) is worth
noting: it may be associated with the fact that the basic linear solution (5.13)
is not smooth everywhere and so the standard integrals of Stuart—Landau
theory do not converge. The power of t thus signifies that the integrals are
evaluated at a large but finite time. Finally, we draw attention to the high
power of B on the right-hand side, an unusual feature of these theories (but
see Roberts and Stewartson (1974)).

A study on the lines of the preceding section when the effect of viscosity
is comparable with that of non-linearity has been carried out by Brown,
Rosen and Maslowe (1981). The appropriate parameter is 4, where 4,
= (Re?)™ ! is the stratified equivalent of the parameter A defined in (3.14), and
this is taken to be large so that the investigation is analogous to that of
Tietjens rather than that of Benney and Bergeron. The time scale of interest
has '

(5.31) R'® <t <R,

the implication of these inequalities being that the time is sufficiently long for
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the critical layer to have become quasi-steady but not long enough for the
mean flow, which does not satisfy the Navier-Stokes equations, to diffuse on
this account. This difficulty, inherent in viscous stability theory. is noted in
Section 2.2. There i1s a distortion of the mean flow of the Haberman type
sitmilar to that of Section 3.3 for the homogeneous situation and the effect of
this is included.

The equations for the viscous problem are (5.1) with the zeroes on the
right-hand sides replaced by R~ ' F*y and (R Pr)" ' FF? 7, respectively. Here
Pr is the Prandtl number and is set equal to unity in the analytical
investigation but not necessarily in the numerical work which is an exten-
sion of the weakly non-linear theory of Maslowe (1977). The terms in U’ (y),
R”(y) are neglected as justified above. The basic profiles are exactly as in
(5.12) and the marginally unstable mode whose development is examined is
again that in (5.13). In the neighbourhood of the critical layer at y = 0 the
solution for the stream f{unction is, when Pr =1 (5.15) with a factor
exp[ —u?/(12R)] in the numerator of the integrand, and on a time-scale on
which the critical layer is quasi-steady, i.e., only 4 is a function of time, the
upper limit ¢ tends to infinity. When Pr % 1 no such simple solution for y is
available. Again the non-linear terms become important in the critical layer
the thickness of which is now O(R™'?). The appropriate variables in the
region are, when Pr =1, of the form (5.18) but with

y = R~ 17y, T=R" 13y, =R VOY(x, Y 1),
(5.32)
T = R”"(2a—w-+‘—i?),
Y ¢y

and the resulting equations are (5.18) and (S5.19) with additional terms
/Y, P W/Y on the right-hand sides and the non-linear terms multi-
plied by A; 2. A solution is sought in powers of 4; /> which is analogous to
the expansion in powers of t in Section 54. The terms in ¢/¢t in the
equations may be set equal to zero when t » R'/? but are retained to order
A7 17 to illustrate the diffusive effect of the x-independent term that results in
a distortion of the mean flow of order ¢Z R*?.

Again as in Section 5.4 there is eventually a restriction on the function
A as the outer flow is unable to accept a leading-harmonic logarithmic
contribution forced on it by the critical layer unless 4 depends on r. This
amplitude equation is ol the form

dA* 1 .

(5.33) —r = (-{-j;—Rz)A*-f—ai‘|A"‘|2 A* +a¥ |A¥|* A*,
where ¢ and a} are functions of R and Pr with Ri = 1. Strictly, the term
involving a¥ is relevant only if a¥ = O(R'?). If Pr # 1, a¥ = O(R) and has to
be computed numerically. Thus if Pr = 0.72, a¥ ~ —0.0067R as R — x the
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mean flow distortion making a contribution ~ —0.300R%?. More generally
a¥ changes sign as Pr passes trough unity. It may also be shown that af
= O(R?) and when Pr # | must be neglected in (5.33). It follows that the
basic flow is supercritically stable if Pr <1 and supercritically unstable if

Pr ~ I. Further. & = O[(}—RNY? R~ 2], the time-scale for the evolution of
A* is O[(}—Ri)™'] and the conditions for the validity of the theory are
(5.34) 1 <(A—Ri)R < R?3,

on use of (5.31). :

If Pr =1 an analytic study is possible and shows that a¥ = O(R'?) at
most while the computations indicate that a¥ -0 as R — oc. The terms
involving af must now be restored to (5.33) so that the amplitude equation
more resembles (5.28); the restrictions (5.34) on Ri and R are, however,
unchanged.

54. Critical layer absorption. Let us now turn to the changes induced
by a stable strongly-stratified shear layer on an incident wave. This question
was first considered by Booker and Bretherton (1967) who noted that
according to linear theory the incident wave does not penetrate beyond the
critical layer and that the reflected and transmitted waves are exponentially
small. They referred to this phenomenon as critical layer absorption and we
have already briefly referred to the role played by the continuous spectrum
in this mechanism.

In a series of papers, Brown and Stewartson (1980, 1981a,b) have
carried out a detailed analysis of the process taking into account both linear
and non-linear terms. In the first of these studies the analysis is closely
similar to that described in Section 5.4. It is frst shown that the incident
wave y, may be represented near the critical level, which may also be taken
as y = 0 without any loss, by an expression similar to (5.15) namely

at ar
* ivu x " —iyu
_ iax fax o
(5.35) Y, = Ae J AT du + Be pEET du+cc.,
0 0

where v =(J.—$)"?, J, is the Reynolds number at this level, 2n/x is the
wavelength in the x-direction of the incoming wave and A, B are constants
determined from the properties of this wave. For J. » 1, B = O(4e” ™) and
may be neglected. The reflected and transmitted waves have similar forms
but the corresponding values of A and B have different properties. It is clear
from (5.35) that &y,/¢y ~ t12 as t — ¢ so eventually non-linear terms must
become important near y = 0. These may be found by repeated substitution
of (5.35), together with an equivalent form for 7, into (5.1). Formally we
obtain ¥ and T as a series in powers of er*/2 whose coefficients are functions
of x and yt, where ¢ is the amplitude of the incident wave, but explicit
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expressions for them rapidly become too complicated to compute. It is easier
to determine expressions for the reflection coefficient # and transmission
coefficient .7 explicitly to order £?r® and we have, when U(y) = tanh y,
R'(y)=—1,
(536) A= —i2V2-2ivemw_

g2 iv-7i2 5 1/4(1 + \//grsiv— 712 p2iv = 1 - 2iv (34 2iv

while .7 is exponentially small.

In the two later papers Brown and Stewartson exploit the simplifications
which may be made directly in (5.35) when v » 1. By means of steepest
descent arguments we may show that

at

* —iyu 2 12 7\ \1/2-iv o
(5.373) J‘—il'z—_—x du ~ (._13) (:‘_) e—lv—lnf4+
u v v
0

ie—ivq(at)iv— 1/2
vin—1)

, it n>1,

(5.37b) S du

e e—iyu ie-n-,,(at)n-—l/z lr -1
~ = ’ I »
uS/Z—lv V(l_n) 1

where n =ayt/v. Of the terms on the right-hand side of (5.37a) the term
independent of r represents an incoming wave while the others may be
identified with the continuous spectrum (5.11a), when »n » 1, 1.e, outside the
neighbourhood of the critical layer. Thus, while in general the continuous
spectrum may be identified with the genesis ol the disturbance and may be
neglected at large times, this 1s not the case near the critical layer. Here the
contribution from the continuous spectrum, which may be called critical-level
noise (CL-noise), is as important as the incident wave at all times and
indeed the line # = 1 acts as a transition point converting the incident wave
mto CL-noise. The form of (5.37) also enables us to give a physical
interpretation of critical level absorption. It is the conversion of a wave
carrying energy across the layer into CL-noise in which the energy is carried
along the layer. This property may be seen more clearly by noting that the
appropriate form of  is then given by (5.11a). Consequently if the incident
wave is arbitrary the appropriate form of ¢ is

(5.38) ¥ ~ ¢ cos(v(y)log t+h () ha (1)f (x—tU ()

where h,, h,, f are arbitrary functions. Strictly (5.37) give the leading terms of
an asymptotic expansion in descending powers of v all terms being similar in
form to those given. There are, however, also terms of order e~ which are
systematically neglected but make a different contribution to the form of .
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Using expressions like (5.37) Brown and Stewartson were able to carry
out the expansion of the solution of y to a much higher order in powers of ¢
than with their previous broad-brush method. For details reference should be
made to the orginal papers but we can report their conclusions. The reflected
~and transmitted waves may be written as a double series in powers of &t*/?
nnd e*™* whose coefficients are function of y, v and integral powers of ™.
“his structure is similar to that arising when an incident wave strikes an
unstratified shear layer but which has planetary vorticity, discussed in
Section 3. Qutside the shear layer the form y; taken by the reflected wave is

N -4
539) Yr=Y Y camM(EPar)? 2™ V2cosinax +d,y, (vi)+ ko v}

n=0 m=0
vhere c,, are algebraic functions of v with leading terms ~ 0.065"' for
10 and ~ 0.009732 for c,,; d,, are algebraic functions of v, log v and
iog t; k, = +(—RiR(o0)—n?a?)'/?; N is the maximum value of n for which
RiR(0)+n?a? < 0.

The transmitted wave takes the form ¥ outside the shear layer where

1540) WT =f11 (82/3 at)lzcos (D:x +.k| y+gll)+ oo

«nd fi, q;; are functions of v only.

5.6. Discussion. The results we have presented about non-linear crit-
ical layers do not exhaust the advances made in this area of stability theory.
i‘ar from it, for the problems raised are of considerable importance in
meteorology and oceanography and have therefore been the subject of
‘ntense study over recent years. They are believed to be associated with some
of the thin layers of turbulence observed in the atmosphere and the ocean
‘hermocline regions (Browning et al. (1973); Thorpe and Hall (1974)), with
-lear air turbulence (Maslowe (1972)), and with the occurence of quasi-
permanent features of Jupiter's atmosphere such as the Great Red Spot
{Redekopp (1977)). Many of these studies, however, while throwing general
:ight on various natural phenomena, have drawbacks when considered in the
context of critical-layer dynamics: Thus numerical studies must be carried
out in sufficient detail to give the structure of the critical layer and yet the
Reynolds number must be large enough so that in some sense the flow may
e regarded as almost inviscid, an essential requirement to the main thrust of
:his article. The extra complication introduced with stratification does not
make it easy to develop numerical schemes with the penetrating power of
those used by Warn and Warn (1978) and Béland (1979). One of the most
interesting is due to Patnaik, Sherman and Corcos (1976) who examined the
evolution of a small disturbance to a stratified shear flow in a marginally
unstable state. Considerable detail of the structure of the critical layer was
noted including the formation of cat’s eyes and the generation of “braids”,



720 K. STEWARTSON

expressions for them rapidly become too complicated to compute. It is easier
to determine expressions for the reflection coefficient .# and transmission
coefficient 7 explicitly to order ¢?t* and we have, when U (y) = tanh y,
R'(y)= -1,
(536) # = —i2!2"2ve
——82 ziv— 7/2 5— 1/4(1 + \/5)— Siv—-7/2 e2i\' v 1—2iv t3 + 2iv

while .7 is exponentially small.

In the two later papers Brown and Stewartson exploit the simplifications

which may be made directly in (5.35) when v » 1. By means of steepes!
descent arguments we may show that

at

* —iyu 2 12 /N2 —iv . .
(5.373) J‘% du -~ (_n) (Z‘_) e v inf/4 +
U y v

T 19 AR

vin—1)

*J‘ e—l‘yu ie—iwp(at)i\'— 1/2

, if n>1,

(537b) FZ_::_\J du ~ — . if n < 1,

v(l—n)

where n = ayt/v. Of the terms on the right-hand side of (5.37a) the tern:
independent of r represents an incoming wave while the others may b-
identified with the continuous spectrum (5.11a), when n > 1, i.e., outside th
neighbourhood of the critical layer. Thus, while in general the continuou:
spectrum may be identified with the genesis of the disturbance and may b
neglected at large times, this is not the case near the critical layer. Here the
contribution from the continuous spectrum, which may be called critical-leve;
noise (CL-noise), is as important as the incident wave at all times anc
indeed the line # = 1 acts as a transition point converting the incident wave
into CL-noise. The form of (5.37) also enables us to give a physica:
interpretation of critical level absorption. It is the conversion of a wave
carrying energy across the layer into CL-noise in which the energy is carried
along the layer. This property may be seen more clearly by noting that the
appropriate form of y is then given by (5.11a). Consequently if the incident
wave is arbitrary the appropriate form of ¢ is

(5.38) W ~ 1732 cos(v(y)log t+h (N (NS (x—tU ()

where h,, h,, f are arbitrary functions. Strictly (5.37) give the leading terms of
an asymptotic expansion in descending powers of v all terms being similar in
form to those given. There are, however, also terms of order ¢~ ' which are
systematically neglected but make a different contribution to the form of .
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Using expressions like (5.37) Brown and Stewartson were able to carry
out the expansion of the solution of  to a much higher order in powers of ¢
than with their previous broad-brush method. For details reference should be
made to the orginal papers but we can report their conclusions. The reflected
and transmitted waves may be written as a double series in powers of £r*/?
and e*** whose coefficients are function of y, v and integral powers of t =",
This structure is similar to that arising when an incident wave strikes an
unstratified shear layer but which has planetary vorticity, discussed in
Section 3. Outside the shear layer the form y, taken by the reflected wave is

N o
(539) Yr= Y Y camM(E a2 D2 cosdnax +dpm (V) +k, v}

n=0 m=0
where c,, are algebraic functions of v with leading terms ~ 0.065°! for
cio and ~ 0.0097%2 for c¢,q; d,, are algebraic functions of v, log v and
log t; k, = +(— RiR(0)—n?a?)"/?; N is the maximum value of n for which
RiR(o0)+n?a? < 0.

The transmitted wave takes the form y; outside the shear layer where

(540) ll’]' =fll(82’3 at)IZCOS(ax+_k|y+gll)+ e

and f;,, q,, are functions of v only.

5.6. Discussion. The results we have presented about non-linear crit-
ical layers do not exhaust the advances made in this area of stability theory.
Far from it, for the problems raised are of considerable importance in
meteorology and oceanography and have therefore been the subject of
intense study over recent years. They are believed to be associated with some
of the thin layers of turbulence observed in the atmosphere and the ocean
thermocline regions (Browning et al. (1973); Thorpe and Hall (1974)), with
clear air turbulence (Maslowe (1972)), and with the occurence of quasi-
permanent features of Jupiter’s atmosphere such as the Great Red Spot
(Redekopp (1977)). Many of these studies, however, while throwing general
light on various natural phenomena, have drawbacks when considered in the
context of critical-layer dynamics. Thus numerical studies must be carried
out in sufficient detail to give the structure of the critical layer and yet the
Reynolds number must be large enough so that in some sense the flow may
be regarded as almost inviscid, an essential requirement to the main thrust of
this article. The extra complication introduced with stratification does not
make 1t easy to develop numerical schemes with the penetrating power of
those used by Warn and Warn (1978) and Béland (1979). One of the most
interesting is due to Patnaik, Sherman and Corcos (1976) who examined the
evolution of a small disturbance to a stratified shear flow in a marginally
unstable state. Considerable detail of the structure of the critical layer was
noted including the formation of cat’s eyes and the generation of “braids”,
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i.e., rapid density variations over half their boundaries. The Reynolds num-
bers chosen for the calculations were fairly small (R ~ 100) and as a result
both the disturbances and the basic flow decay until, at the end of the
calculations, the density in the cat’s eyes is almost constant.

Another interesting set of calculations has been carried out by Fritts
(1978, 1979) at a much higher Reynolds number (~ 10°) which reveals a
number of intriguing aspects of the interplay between non-linearity and
viscostty in stable Aow fields (Ri > 1). Unfortunately, from our point of view,
he chooses a step length across the shear layer which is of the same order of
magnitude as the width of the critical layer viewed either as inviscid or
viscous. It is, of course, an open question as to whether this step length is
adequate for the understanding of the large-scale phenomena in the shear
layer, but 1t cannot give the fine structure which we know from the extensive
studies reported here is characteristic of critical layers at high Reynolds
number and small disturbances to the basic flow.

On the analytic side, two papers have been written (Kelly and Maslowe
(1970); Maslowe (1972)) attempting to adapt the Benney and Bergeron theory
to stratified flows so as to describe free oscillations when viscous effects are
weak but persistent in the critical layer. However, these studies are incom-
plete because the importance of enforcing the Haberman option (1972) was
not realized at that time. Subsequently, Haberman (1973) discussed the
modifications to the mean shear produced by the oscillations but further
work needs to be done to assess its significance. This will be well worthwhile,
since it may be possible to set up free linear oscillations in the shear flow
and outside the critical layer even when Ri > 4, the matching across the
critical layer being effected by non-linear means, and perhaps being equiv-
alent to a zero velocity jump. More recently, Huerre (1978) (see also Huerre
and Scott (1980)) studied critical layers using Hadamard’s concept of the
finite part of a infinite integral and obtained an equation equivalent to (5.30)
for the non-linear growth of waves which are neutral but weak. However, the
basic state is unstable so that consideration needs to be given to the question
whether their non-linear growth would be swamped by that of other waves.
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