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1. Introduction

Upper and lower bounds for the performance index and the optimal
control play an important role in the optimal control theory. These bounds
are useful for estimating how close a snb-optimal control is to the optimal
one, without actually calculating the latter. Further bounds can be suc-
cessfully applied for the proof of bang-bang-ness of optimal controls
(see [87). The problem of finding bounds was first dealt with in [1]-[4],
[10), [12], [13], [15]-[17] for lumped parameter systems and in [14],
[19], [20] for distributed parameter systems. In the most papers, duality
theorems and for the special case of optimal regulator problems estima-
tions for the solution of the Riccati equations are used, in order to cons-
truct lower bounds.

Bounds for optimal control problems described by operator equa-
tions in Banach or Hilbert spaces were calculated by Aronoff-Leondes
[3], Chan-Ho [11] and the author [6]-[8]. These bounds are applicable
not only to lumped parameter but also to distributed parameter systems.

The aim of this paper is to generalize the results of papers [6], [7]
and to compare with those of Aronoff-Leondes and Chan-Ho. In the
following we consider the optimal control problem in normed linear spa-
ces E; (with the norm || ||):

(1) §(@, ) = (1@ —R|P +K fu|)"? = Infimum
[3] eV
and
(2) j(Q, w) = Maximum {|Q —Rll;, K |lul,s} = Infimum
3] 4

(35]
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where £ >0, 1<p< », 4 € L(E,—»E;) and Be L(E,—~E,) are linear
operators with D(A) and D(B) dense in FE, and E,, resp., R E, and
f € E, are given elements and

u

V= {[Q]EEIXE,I AQ+Bu+f =0, ueUc Ez} (U convex).

If A =1, then we assume B € L(E,—~»E,) and f e E,.

Performance indexes of the forms (1) and (2) practically arise if we
want to approximate a given state R and additionally to minimize the
costs of control.

Obviously, problem (1) has the same solution as the problem

' . 1 .
(1) j(@, %) = @ —E|} -+ K |ju|f = Infimum.
[3] sV
For our control problem we have chosen the form (1), in order to be able
ro use the results of approximation theory. The problem

3) []-[5]], = zotimam
* P [Qlercr,xx,
with
@ 19]|, - ver+miame a<r<
and
() 3] p = Maximum {[@l, K llull},

tespectively, is obviously an approximation problem in the product space
P = E,xE, (f K> 0) and contains our optimal control problems (1)
and (2). Applying the results of approximation theory, we immediately
obtain the following optimality and duality condition (for proofs see [7]):

0
THEOREM 1. [30] 13 a solution of problem (3) if and only if there exists
leP' = (B, xE,) (") with

(6) e <1,
@-E] _|[¢]_[~
@ (W MR

U
(}) We write the funetional ! € P’ in the form 1[3] = 1,(Q) +Hl,(v) with I, € B},

l, € E;. For the norm (ljjp- it follows then |lipr = (W,if +EK [li,I§)/2 (1/p+1/g = 1,
1 <p < o) and |flpr = Maximum {If,ll,-, Ballr} (» = 1), resp. if we take norm (4)
on P. For norm (5) we obtain |z = {41l + lslle: (Il Iz —norm on E;).

P



UPPER AND LOWER BOUNDS FOR MINIMAL NORM PROBLEMSJ 37

and
(8) z[Qo—Q]< 0 V[ﬁ] e?.

NEAET I

THEOREM 2. The following duality condition is valid:

a9

Infimum
2. Lower bounds for problem (3)

= Supremum (lI(R) — Supremum (1, (@) +Kl,(u))) .
q €

[3],7 P Hip-<1 [ul v

The simple estimation |L(x —r)||/IIL]| < o — 7| for bounded linear operators
L # 0 leads to the lower bound

(10) If —ZI/IL|| < Infimum |l —r||
Lz—f

without application of duality theorems. Applying inequality (10) to
our problem (3) we obtain the following bounds:

LEMMA 1. Under the additional assumption that the operators A and B
are bounded (with D(A) = H,, D(B) = E,) we have the bounds:

, 4R - flls
11 Infimum (|Q —R|P K |[u)?)'? >
I s R T ES e T
Jor 1/p+17g =1 (1< p < o0),
. AR + flls
12 Inf —Rl,+ K = .
(12) A&ﬁl}ffjﬂ(ll@ XK llall) Maximum {[A[, [BI/K]
and
. : AR 4 flls
13 Infimum Maximum —Rl,, K|u],} = .
(13) AQ+Bu+f=0 (e CEE LY 4]+ IIBII/K

Proof. Defining L € L(E, xE,—~FE,) by L [?‘] : = AQ +Bu and using

the estimations || L) < (|lA19+K "2 B9 (for (11)), |IL|| < Maximum
{I41, |BIl/K} (for (12)), and |ILIl < IlA|+{B}/K (for (13)), respectively,
bounds (11)—(13) follow from (10). =

Remarks. (1) In comparison with earlier results which only hold in
Hilbert spaces, the advantage of the bounds derived in Lemma 1 lies in
the fact that they are applicable to problems on arbitrary normed spaces.
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(2) Forp =q =2 and t‘:he state equation
(14) Q@ = Lu+f

we obtain from (11), as a special case, the bound

Tnfimum (|Zu— [} +K ul) > ~ llrIs
usE, -K‘l" "Lllz

given by Aronoff-Leondes [3] only for Hilbert spaces.

In the following we make use of duality theorems in order to be able
to obtain better lower bounds than in Lemma 1. To this purpose we
now assume the spaces E; to be Hilbert spaces (denoted by H,, with the
inner produet (, );).

In our congiderations the inequality

(r =R-[f"),

(15) Infimum j(Q, ) > Supremum Infimum j(Q, )
AQ+Bu+f=0 IeHy (1, 4Q+Bu+f)3=0

‘plays an essential role. This inequality is obviously valid for arbitrary
functionals j and (also nonlinear) operators 4 and B (see also [1]).
For functional (3) it is easy to solve the problem

j(@, u) = Infimum
(1, 4G+ Bu+1)3=0
for certain 1 e H,.

LevMa 2. Let 1€ D(AT)NnD(BT) <« H, with |AT1),+1BTUl, # 0 be
given. Then we have

[Q]_[R] (AT, B) (T,
) 0 AT
2
K

Proof. Applying the well-known relation Minimum |z —r|j= {f(r) — 8] X
S(2)=8
X |IfII=! (see [22]) to our problem, we obtain (16) by setting

B
f[g]: = (ATI’ h +K(BTI/K’ %)3 T:= [3] ’ r:= [0]
and f:= —(1,f);. @
Remarks. (1) For a given [ it must be (I, f); = 0 if 47! = 0 and B7!
=0, Q* =R, 4* =0 is then an optimal solution of (16).

(16) Minimum
(3, 4Q+Bu+f)y=0

P

P

(2) For quadratic problems it follows from (16) that

. (AT, B),+ (1, al*
16’ Minimum —R|E 4+ K ||u]?) = .
6y Mm@ —RL Kl = = e BT K
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Obviously,

AT
[ ] _ AT, B+, f) | BT +[R]
u’ 14725+ 1BTUp/E L K 0
is an optimal solution of (16').
From Lemma 2 and inequality (15) also follows a weak duality theorem.

THEOREM 3. Under the same assumption as in Lemma 2 we have

[3] —[f] (ATT, BYy + (T, £

AT]
BT
K dr

Remarks. (1) Inequality (17) shows that the expression on the right-
hand side of (17) is a lower bound for our optimal control problem also
in the case when the operators 4 and B of the state equation are unbound-
ed in contrast to the results of Aronoff-Leondes and Chan-Ho. Aronoff-
Leondes only discuss state equations of the form @ = Lu + f (L bounded)
while Chan—Ho assume that the operators A and B in the general state
equation AQ+Bu-+f = 0 are bounded, and also do not give bounds of
the form (18)-(20).

(2) Under the assumption that Re D(4), AR+fe D(AT)nD(BT)
and

(17) Infimum
AQ+Bu+f=0

> Supremum
P opleDAT)nD(BT)

NAT (AR +f), + BT (AR+ 1), > 0

we can estimate the supremum on the right-hand side of (17) by setting
l=AR+f and we obtain the following lower bounds:

(18)

. IAR 4113
Infi —R|P+K |u|P)? >
AO+BT-II-:;I-BO (“Q "l + "“"2) (".AT(A.R _l_f)“g _l_Kl—q"BT(AR +f)"g)llﬂ

1lp+llg =1, 1< p < o0),
(19) Infimum (||Q@ —Ril,+X [lully)

AQ+Bu+f=0
IAR + £

Z Maximum (A (AE 1)y, IBT(AR +)/E}

(20)  Infimum Maximum {||Q —R|, K |}
AQ+ Bu+f=0

S AR+
Z JAT(AR+£)l, + IBT(AR+f)s/K °
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These bounds are greater than or equal to the corresponding bounds
(11)-(13). Bound (18) was derived for p = 2 in [6] and the bound (19)
for A =1 in [7] using other methods.

(3) Obviously, for A = I we have

Q R
151
If now R +f € Ker BT, then |[R + ||, is also a2 lower bound (as follows from
(17)), and therefore in this case we have the optimal control «4° = 0.
u® = 0is also an optimal control for problem (1) if K |R - fll, = BT (R + /),
and p =1 (as follows from (19)). Now the question arises under which

additional assumptions the equality holds in (17), i.e., when does Theorem 3
constitute a strong duality theorem.

THEOREM 4. Let j(Q, u) be convexr and Gateaux differentiable (with the
derivatives jo(Q, %) and j,(Q, w)). If we furthermore assume that there ewists
a solutton (Q°, u° 1°) of the equations

Infimum
Q+Bu+f=0

< B+l

P

(21) ATl+jQ(Q7 ‘u) = 0: BTI+ju(Q: “) = Oa AQ +Buy +.f = Os
them we have

(22) Minimum j(@, ¥) = Maximum Minimum j(Q, ).
AQ+Bu+ =0 leH, (1,AQ+Bu-+/)3=10

Proof. Making use of

](Q) '"') _j(Qoy A!"o)
= j(Q, w)+ (@, AQ +Bu +f); —j(Q", w’) — (I', 49" +Bu’ +f),
2 (jQ(Qo: uo) +AT101 Q _Qo)l +(ju(Qo1 “o) +BTZO, % _“o)a =0

V[Z] with AQ +Bu+f = 0, we see that [u°] is a solution of the primal

[1}
problem of (22). [ o] also is a solution of the problem Infimum j(@, %)
% (1% 4Q+ Bu+f)g=0

which we can analogously prove. Together with inequality (15) asser-
tion (22) now follows. ®

Remarks. (1) Under the same assumption as in Theorem 4, a Lagrange
duality theorem can also be derived:

(23)

Minimuem j(Q, #) = Maximum Minimum (j(Q, %)+ (1, AQ +Bu +f)s).
AQ+ Bu4f=0 leHgy (Q.u)eH xH,y
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(2) For problem (1) with p = 2 equations (21) have the form
21y ATI1+Q—R =0, BTI+Ku =0, AQ-+Bu+tf =0,

so that the assumptions of Theorem 4 are fulfilled if there exists a sol-
ution | of AATI4+BBTlI/K = AR+ f (if R e D(4)).

(3) The assumption of Theorem 4 can be weakened by replacing the
Gateaux differentiability by the subdifferentiability. Equations (21) then
have the form

(21") ATl+0jo(Q,u) =0, BT14+9j,(Q,4) =0, AQ-+Butf=0

with
ez

3. Bounds for the quadratic problem
For the case p =2, A = I, B = —L (bounded) problem (1‘) has the form

(24) J(4) = | L —#lf + K Jul} = Minimum
uweUcH,
or
(24")  J(u) = (LTL+EKI)u, u);—2(u, LT7)y+ |Ir]? = Minimum.

WUCHz

For this special quadratic optimal control problem we can additionally
derive bounds which characterize the deviation of an arbitrary control
from the optimal control. It is well known that problem (24) for K > 0,
U = H, has exactly one solution «° satisfying the operator equation

(25) (LTL+EDu® = L7r

with the self-adjoint, strongly positive operator A = LTL +KI. Applying
variational methods to the solution of the operator equation (25), the
following estimations can be established.

THEOREM 5. Let U = H,, K > 0 and u® be the optimal control for prob-
lem (24). Then the following estimations for arbitrary controls u € H, are
valid;

(26) 0 J(u)—J () < WLTL+KDu—Lr /K,
27) luw —woll, < (LT L+KI)u — LTr|,/K
and
T T.
(28) L™ 7|l, < 1, < L™ 7], .

K+ |Ljp — K
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Proof. Applying direct methods given in [23] to the operator equation
Ay = f (with A = L*L+KI, f = LTr), we obtain with

lul : = (A%, %), and (4,0),:=(4u,v), for
J(u) &= (Au, u);—2(u, LTr),

the expression J(u) = jju —u°|% — |u’|%, where «° is the unique solution
of (25). From J(u% = —|u°|% now follows J(u) = J(u®) + |ju—u’l?.
The inequality K|u|,< |ldu|; is obtained from K ju|} < (A%, u),
< lAull, lull,. Therefore, |ju —u®|% < |[Aw —LTr|}/K. From J(u) = J(u)--
+ |} inequalities (26) and (27) now follow. Estimating the optimality
condition (25) leads to inequality (28):

(28)  LTL+XKI| wl, > |ILTrll; and w0, < (LT +KI)" L 7|,
< ILfr)y/K. =

Remarks. (1) Inequalities (26) and (27) indicate the deviation of an
arbitrary value from the optimal value depending on the “defect” of the
operator equation (25). Bound (26) is also useful as a stopping condition
for the application of iteration methods (gradient methods).

(2) Estimation (28) additionally gives bounds for the norm of optimal
controls. Here the lower bound is also valid for K = 0 if in this case an
optimal control exists. Making use of the spectral theory for linear operators
the author presents in [8] the following bounds:

(28")

L7l { llrlly WL 7lly }

< [lu%]e < Minimum .
K+ 1LLo i < 0l < Mind oK ' K+ |\LrE/IrE

(3) Minimizing problem (24') subject to ¥ = SLTr yields an upper
bound. This together with the lower bound from Chapter 2 gives

LT 72
K+ (| LLT BN\ ETrllz

LT 2
LT r| < J(u0) < [rlf —

29) (irlt — h
@9 W= e

(4) From the optimality condition (25) it follows that the optimal
control %? is a fixed point of the mapping

(30) F(u) = (LTr —LTLu)/E (K > 0)
which is contractive for

(31) q:=|LF/K<1.
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The use of the Banach fixed-point theorem now yields the estimation

qn—l

0< J (W)~ (u9) < MFrly =

llu? — utly + K 1"l I+ — u™ly

for ¥**! = F(d4™) (n =1,2,...; 4! arbitrary).
Applying a duality theorem of Schumacher [21], it is possible to
calculate bounds for problem (24) with constraints of the form

(32) U := {u e Hyl |ulla< £}

THEOREM 6. For the solution u°® of problem (24) subjest to the conirol-
restriction (32), the following inequalities are valid for % € H,:
(33) 0 J(u)—J(u")

NLTL4EIyu—L i3/ K it JL"Iu—L"rl < KB,
<2807 Lu—L r|, +-E (' — ulfz) —
—2(Lu—r, Lu), else.

Proof. Schumacher [21] has given the duality theorem

J (#°) = Supremum S(u, 4)
A>0,ueH,
with
8(u, ) = L(u, 2)— L' (4, A)|3/4(C +4),

L(u, 4) 1= J(u)+ A(lulz — F°)
for strongly convex and differentiable functionals i.e.,

J(v) —J (%) = (J' (%), v—u)y;+Clo—ulz, C>0.

For our problem this gives

J (u%) = Supremum (— \LF (Lu — )} /(K +2) — (Lu—r, Lu+1r), — 25).

A%0,ueH,
By maximization with respect to 4, bound (33) immediately follows. m
Remarks. (1) For f— oo, bound (33) obviously yields bound (26).

(2) Since for the optimal control #° the inequality J(u)—dJ (4
> Ku—u°; Vu e U is fulfilled, estimation (33) also gives an estimation
for ||u—u0; YueU.

(3) From (28) we can see that the control problem (24) for [L77|, < Kp
has the same solution for U = H, as for U from (32), and that
for |LTr|l, > B(K -+ |L|*) these solutions are unequal.
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4. Bounds for the case K =0

For K = 0 all optimal control problems, described in Chapter 1, have
the form

(34) iQ—Rj, = Infimum
AQ+Butf=0,usU cH,

and for A =1, B = —L

(34') i —r, = Infimum  (r = B+J).

ueUcH,y
The bounds, presented in Chapters 2 and 3 for K > 0, are not valid for
K = 0 (with exception of the lower bounds (28) and (28')). For problems
(34) and (34') it is very difficult to calculate lower bounds since here
the case Infimum ||Q —R|l, = 0 is possible. For instance, Infimum ||[Lu — 7],

= 0 if and only if r € R(L). If » ¢ R(L) then we have "
(35) 0 < Infimum Ly — 7|, = Maximum (I, r),.

ueH, leKerLT.lltll 1=1

This results from Theorem 2. Estimation (35) immediately yields the lower
bound

(36) (2, )ab /il

if there exists an I # 0 with [ € Ker L” and (I, ), # 0. An optimal control
%0 is again equal to 0 if r e KerLT.
For the control set (32) the Duality Theorem 2 has the form

(37) Infimum ||Zu —r|, = Supremum ((7, ), — B ILT,)
lully <8 iy =1

so that we can here also calculate lower bounds for the case where an
l € H, exists with (I, r),— g I\LTI|l, > 0.

To derive lower bounds for problem (34) is stil more difficult
In [6] the author gives such a bound under some additional assumptions
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