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1. Introduction

Exponential families of probability distributions on the real line have been
defined by Koopman ([6]) and studied by many authors, see, e.g., [8] for
some references. An extension of this notion to processes with independent
increments was given by Magiera ([13]), and Franz and Winkler ([2])
independently, see also [15]. They defined such families by using the one-
dimensional distributions of the processes under consideration. An analytical
description in terms of the corresponding Lévy-characteristics was given
in [9].

As an essential property of exponential families with independent in-
crements we mention that the “last” observation X, of the process is a sufficient
statistics for the parameter of the family. This property has been used to
define exponential families of Markov processes, which was done in [10].
There one can find also a description of those families in terms of the
transition functions of the corresponding Markov processes. Examples of
exponential families of Markov processes have been studied in [10], [11].

In this note we shall give a survey of the above mentioned results, for
considerations from the statistical point of view see also [7], (14].

2. Definitions

2.1. By N we denote the set of nonnegative integers, by R the set of
real numbers and by B the g-algebra of Borelian subsets of R. Let E be a
o-compact topological space, and € the c-algebra of its Borelian subsets,
Q:=ET, N:=E" with T=[0, o0), X, (w) =w, (0 = (wy),7€2). Then A is
generated by the variables X, se T. Define ¥, to be the o-algebra generated



328 U. KOCHLER

by X,, s€[0, t]. Moreover, let (P,),; be a family of probability measures on
A such that n:=(X,, U, P,) is a (conservative) Markov process in the sense
of [1]. This means that for all xeE; s,reT and every bounded, G-
measurable, realvalued function f we have

E: (f(Xs+|)| Qll) = Ex,f(Xs) (Px'a's'a XEE),

and that the function
(¢, x, By—>P(t, x, B).= P, (X,€B) (xeE,t >0, Be )

is a (conservative) transition function on (E, ©).

By M, we denote the set of all (conservative) Markov processes # on
(E, ®) satisfying the following condition:

(A):  There exists a o-finite measure u on € such that u(U) > 0 (U open,
nonvoid), P(t, x, *) is equivalent to u(-) (t >0, xeE) and the derivation
P(t, x, dy)

pidy)

If (E, ® <(R, B) (E closed under operation of addition, O E) and =
belongs to My with

has a version continuous with respect to (t, x, y) (t > 0; x, ye E).

P(t, x+z, B+1{z}) = P(t, x, B), (t >0:x,zeE, Be®)

then = 1s called a Markov process with independent increments (shortly: i.i).
(We restrict ourselves to the one-dimensional case; an extension to R” seems
to be possible without serious problems.)

For every ne Mg with 1.1 the process (X,),» ¢ has independent increments
under P:= P, and we have

P(X,—X,eB)=P(t—s5,0,B) (0<s<t, Be®).

Conversely, every probability measure P on % under which (X,),>¢ has 1.1
generates a Markov process m with 11, which has the transition function

P(t, x, B)y:= P(X,+xeB) (t >0, xeE, Be().

In this sense we shall identify every process (X,),»o on (2, A, P) having
independent increments under P with a Markov process n = (X,, U, P,}
with i.i.

2.2. A family (my)s.o of Markov processes my = (X,, %, P)eM; on
(E, €) is called an exponential family of Markov processes if the following
conditions hold:

(i) Choose an arbitrary xe E and consider the family (P3),_¢. Then for

every t > 0 the variable X, is a sufficient statistics for 3 with respect to 21,
ie., for every A€, there exists a (€, ‘B)-measurable function ¢, such that

PYAIX) = 0,(X)  (Pyas. 9€0).
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(i) There exists a o-finite measure u on € such that for every 9e @ the
measure g occurring in condition (A) above is equivalent to pu.

(i) @ contains at least two elements. If 3, €@ with 3 # 9, then
Ty & My,

The set of all Markov processes n from 9, which belong to some
exponential family is called the exponential class of Markov processes on
(E, ©).

If an exponential family of Markov processes consists of Markov-
processes with i.i. only, we shall speak of exponential families of processes
with il

23. Let us consider two examples.

a) Assume that 2 = (my)g.e is a family of Markov processes with i.i.
satisfying the following condition:

(B): There exist a o-finite measure p on € with p(U) >0 (U open,
nonvoid), a continuous function h(x, t) (xeE, t > 0) and real functions A(-),
B(:) on @ with A(3) # A(Y) (3 # &) such that

P3(X,edx) = h(x, Nexp(A(Hx+B(Htyudx) (t>0,xekE, 3O).

Then 2 is an exponential family of processes with i.i.. (Obviously, (ii),
(u1) of 2.2, are satisfied; to prove (1) see [2].) In particular, if ng is the Wiener
process on R with trend coefficient $e R and diffusion coefficient o2 indepen-
dent of 3, then (ny) is an exponential family of processes with i.i.. The same
statement holds if ng is a Poisson process with intensity 3 > 0 (see, e.g., [2];
there are also further examples).

b) Let = =(X,, %, P,) be a Markov process from ;. Define =, to be

the set of all pairs («, g) such that « is a real number and g is a strictly
positive continuous function on E with

P,g(x):= | P(t, x, dy)g(y) = exp(at)g(x) (t >0, xeE).
E

Assume (a, g)e =,. Then by

P9t x, dy):=exp(—ar) P(t, x, dy)g(—y) (t >0;x, yeE)

g(x)
a (conservative) transition function P*# on (E, ®) is given. Thus there exists
a Markov process n'*? = (X,, 9, P*9) on (E, € having P*? as its tran-
sition function.

Obviously, #*?cM;. Define M(n):= {7*9(a, g)eZ,}. We have
ne M (n), because n = n'®" where 1(-) = 1. If M(n) # |=}, i.e, if M(n) has at
least two elements, then M () is an exponential family of Markov processes
(see [10]). More concrete examples of exponential families of the form M (n)
are given below.
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3. Exponential families of Markov processes

The following theorem characterizes those Markov processes © which belong
to the exponential class and shows that M (=n), defined in example b) of the
previous section, is the greatest exponential family of Markov processes to
which © belongs.

THEOREM (see [107). The following statements hold:

(1) A Markov process n=(X,, U, P,)e Mg with state space (E, )
belongs to some exponential family of Markov processes if and only if there
exist a real number a and a nonconstant strictly positive continuous function
g(-) on E such that

P, g(x) =explat)g(x) (¢t >0; xekE). (1)

(i) If n belongs to some exponential family & of Markov processes, then
P < M(n).

ExampPLES. a) (see [11]) Assume that n is a (conservative) birth-and-
death process on N with birth-rates 4; (i > 0) and death-rates g, (i = 1). Then
it follows, from (1) that

Agl+)—(Li+uw)gD+ug(i—1)=ag(i) (=21),
2og(1)—25g(0) = ag (0)

If we suppose g(0) = 1, these equations have a uniquely determined solution
for all real a, which we denote by Q,(a) (i=0). It can be calculated
recursively. The functions Q(a) (2 = a) satisfy (1) (i.e, n belongs to some
exponential family of Markov processes) if and only if

Z Yy —— = (2)
with

(Recall that = is conservative if and only if ) s Y m = c.) One can
i=0 MMM k=0
show that there exists a nonpositive real number a, such that Q,(a) >0
(ieN) if and only If a = a,.
Suppose (2) holds. Then the largest exponential family of Markov
processes M (m) to which n belongs can be described as [ollows: M (%)
consists of birth-and-death processes n'”, having the rates

QEE(“) (20, u0i=p 2 i,

© Qi)
where o runs through [a4, o).

A2 =
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The following example includes the previous one as a very special case.

b) (see [12]) Let m and p be nondecreasing functions on [0, L) for
some L < oo with m(0) = p(0) =0, 0 < m(x) < m(L—-0) (xe(0, L)), p strictly
L

increasing and continuous. Moreover, suppose that | mdp = oc holds. Then
0
there exists a uniquely determined conservative Markov process # on the

state space E:= {xe[0, L) x is a point of increase of m} which is reflected at
. e d d

zero and which has the infinitesimal operator D:=d—d— defined on an
map

appropriate domain of continuous functions (see [12]). The process 7 is
called the quasidiffusion with speed measure m and scale p.

If mis a step function with E = N, then = i1s a birth-and-death process;
if m is strictly increasing, then 7 is a diffusion in the sense of [3]. Classical
diffusions are obtained if m is strictly increasing and m, p are smooth enough
(see [3]). Denote by ¢(x, a) (xe E, ae R) the unique solution of

d
Do =ap, o0, a)=1, —@(0, ) =0.
dp
There exists a nonpositive ay such that ¢(-, «) > 0 if and only if o = a.

Generalizing example a), one can show that m belongs to some ex-
L

ponential family of Markov processes if and only if | pdm = 0. If this holds,
0
then M(n) consists of all quasidiffusions #'® (a > a,) having the speed

measure m® and the scale p® given by

dm® = @2 (-, ydm,  dp® =@ (-, a)dp.
c) Put E:={1,2,...,n} and let n be an irreducible Markov chain on
E. Then me M. The process = does not belong to any exponential family of
Markov processes because a strictly positive solution g(-) of (1) exists for a

=0 only and this solution is unique and a constant function by the
Frobenius Theorem.

4. Exponential families of processes with independent increments

Let me M, with E < R be a Markov process with 1.i. Then by the definition
ol M, there exist a o-finite measure x on € and a continuous function h(x, ¢)
(xeE, t > 0) such that

Py (X, edx) = h(x, t) u(dx) (xeE, t >0).

Furthermore, assume that # belongs to some exponential family 2 = (ng);.0
of processes with ii.. Then by the theorem above we have # < M (n). Thus
for every mge # there exists a pair («, g) = (¢(9), gg)e =, such that
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Py(t, x, dy) = exp(—az)%P(z, x.dy)  (x,yeE;t>0)

holds. Since n and =y, have i1, we get
gOg(x) =g(y—x)g(x)  (x, yeR),
assuming g{0) = 1, we obtain
g(x) = exp(w(9) x) (xeR)
for some real v(9). Thus there exist functions
A(9):=w(9), B(3) = —a(9) (3e @),
such that
P} (X,edx) = exp(A(9) x+B(Nt)h(x, £) u(dx) (xeE, t >0, 3e0).

Now, using example a) of 2.3, we have the following

PROPOSITION. A family P = (ny)y.e of Markov processes with i.i. belong-
ing to Mg with E < R is an exponential family of processes with independent
increments if and only if there exist a o-finite measure (@ on E, a continuous
Sfunction h(x, t) (xeE, t > 0) and functions A(-), B(*) on @ with A(3) # A(3)
(3#9), card® > 2 and

P3(X,edx) = h(x, Dexp(A(D)x+B(I)u(dx) (xeE, t>0, 3e6).

This proposition characterizes exponential families of processes with i.i.
by means of their one-dimensional distributions. Such a description was used
in [13], [2] as a definition of exponential families.

Assume that ne 9 is a Markov process with i.i. and let M(n) # {n}.
Denote by I(n) the set of all Markov processes #'€ M (n) which have i.i.. It
may happen that I(n) = M (=) (this holds, e.g., if 7 is a Poisson process on N)
or that I(n) # M (n) (this case occurs if 7 is a Wiener process). A description
of I(m) is given in the next proposition. To prepare it, let us recall some
properties of processes with independent increments.

For every Markov process © with i.i. there exist real numbers y, a2 with
62> 0 and a o-finite measure v on R\ {0} with

o
J W”(")’) < 3)

R\(0)
such that

J exp(iix) P(t, O, dx)
R

1] ' . ily _
=exp{![wl—2aziz+ J (exp(z)ty)*l~r1+7)v(dy)J}

R (0}

(AeR, t > 0). 4)
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The triple (y, 6% v) is uniquely determined and we call it the Lévy-
characteristics of n. For every triple (y, 6%, v), where ye R, 62> 0, and v is
a o-finite measure on R\ {0}, satisfying (3), there exists a Markov process
n with ii. having (y, o2, v) as its Lévy-characteristics.

We define

R, := {ucR]| [ exp(ux) P(t, 0, dx) < oo for some t > 0}.
R

Then the equation

. 2
R, = {ueRI J exp(uy)f;?va) < 00}

R\{0)
holds, and R, is an interval of the real line which includes zero.

ProrosiTION (see [9]). Let n be a Markov process with ii. Then =n
belongs to some exponential families of Markov processes with i.i. if and only
if R, # {0},

If R, # {0}, then the largest exponential family I(n) of processes with
independent increments to which n belongs consists of all Markov processes
™ (ueR,) with independent increments, having the Lévy-characteristics
(7., 62, v,) with

7, = y+uc’+ J %F (exp(uy)—l)v(dy),
R [0)
2 2

oy =0, dv,(y) =exp(uy)dv(y).

For the corresponding one-dimensional distributions we have

PY(X,edx) =exp(ux—v(w)t)Po(X,edx) (ueR,, xeE,t>0)

with

|
v(u) =uy+§u202+ j (exp(uy)—l—l:yyz)v(dy).

R\{0}

Using this proposition, one can construct a great many new examples,
see [9].

For statistical investigations it is desirable to have a probabilistic
interpretation of the parameter of the exponential family. We get it by a
reparametrization of I(n) as follows; for details see [6]:

Put 9:=3w) =v'(u), @:={3w)ueR), and denote by u=u(9) the
inverse function of 9 = 3(u). Then, with the notation A(93):= u(3), B(9):=
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—v(u(9) (3€0), we get
I(n) = |ng :=n"M 9@},
where
PY (X, edx) =exp(A(Dx+B(I)1)Py(X,edx) (3€0O, xeE, t>0)
and

EsX, =% (%€O,1>0).

5. A generalized fundamental identity

Let = be a Markov process from Yi.. Recall that a mapping t from Q into
[0, oo] is called a stopping time if {t <t} e (r = 0). If 7 is a stopping time,
put W:={AeWANt<r}eN,t >0} The following proposition gives a
generalization of Wald’s fundamental identity, which can be used in sequen-
tial statistics (see, e.g., [7]).

PROPOSITION.  For every (a, g)e =, and every stopping time t we have

g)PEPAn{t<ool)= [ exp(—ar)g(X)dP, (AeWN). (5)

Anfr < o}

For the proof observe that (exp(—at)g(X,), W)so is a positive mar-
tingale with respect to P, (xeE) and apply the stopping theorem for
martingales by using the stopping times t,:=1 A s (s > 0). This yields (5) for
7,. By letting s v and after some calculations analogous to those made in
[7] we get the proposition. (The proof can also be derived from the general
theory of absolute continuity of measures, developed in [4].)
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