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1. Introduction

In the nineteenth century one of the greatest achievements in mathematical
physics was the development of classical thermodynamics. Including the early
years of this present century the subject established the existence of absolute
temperature T and entropy S in the equilibrium states of certain types of
continua. Some modern research workers in continuum thermodynamics
have criticised classical thermodynamics as being merely a thermostatic
theory. Although classical thermodynamics relies heavily on the notion of
equilibrium this criticism is unjustified. For example, the principle of increase
of entropy pertains to the initial and final states of a thermodynamic system
which can experience a class of non-equilibrium transitions. However, clas-
sical thermodynamics has nothing to say about the processes connecting
states and applies to a limited range of materials.

Carathéodory’s ([5]) view of classical thermodynamics provides a clear
distinction between the mathematical and physical contents of the subject.
The theory based on inaccessibility of states of a thermodynamic system
undergoing adiabatic transitions only has been well described by Buchdahl
([4])- There have been minor criticisms of Carathéodory’s approach by,
among others, Whaples ([17]) and Cooper ([6]), but, this approach remains
sadly neglected in recent times. The work of Carathéodory has not been
totally ignored in the literature. For the contributions of Valanis ([16]) and
Nemat-Nasser ([11]) are based on extensions of Carathéodory’s statement of
the second law of thermodynamics. Unfortunately their extension is to a
space of states which contains not only the usual observables of deformation
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and empirical temperature but also internal or hidden variables. These
internal state variables are used to model a wide range ol material behaviour
including history dependence, chemical reactions and microstructural
changes. Unfortunately, the extended form of the second law stated in [11],
[16] needs to be able to control all the state variables. It is not clear how in
practice this is to be accomplished. Indeed, Nemat-Nasser ([11]) states
precisely that it 1s impossible to control the internal state variables.

Generally the modern phase of continuum thermodynamics has
favoured clarity of cxposition to physical motivation. For example it is not
clear which entropy production inequality 1s the correct restriction on
material processes. Is il the Clausius-Duhem Inequality, the Miiller
Inequality ([10]) or the global expressions discussed by Green and Laws
([8])? Modern thermodynamic theory takes T and S as primitive concepts
and makes no attempt to relate a physical statement of the second law with
an entropy production incqualily. Standard practice in continuum thermo-
dynamics today is to employ the entropy incquality as a restriction on all
conceivable processes. This practice is like driving a car without ever lifting
the bonnet!

Some recent contributions to thermodynamics are worthy of note. Day
([7]) starts from a Work Axiom and constructs a non-equilibrium entropy
function for history-dependent materials. However, he does assume {from the
outset the existence of a positive absolute temperature. Silhavy ([13], [14])
has constructed non-equilibrium theories of thermodynamics based on orig-
inal classical ideas. Indeed he has proposed one version of the theory which
combines the first and second laws of thermodynamics.

This present series of lectures aims to describe the approach to non-
equilibrium thermodynamics with which I have been associated in the recent
past. The approach of Bree and Beevers ([3]) can be applied not only in
non-equilibrium situations but also to a wider class of materials than does
the classical theory. The basic ideas in [3] are explained and application is
made to constitutive theories for elastic-plastic materials, deformable
dielectrics, thermoelectric media, viscoelastic solids and general dissipative
media. Some stability results for dissipative media are constructed.
Asymptotically stable and Lyapounov stable classical solutions of the dis-
placement initial-boundary value problem are found.

2. Mechanical balance laws

Let V denote the volume of a region of three dimensional Euclidean space
occupied by a part P of a continuum B at time ¢. Let x be the position of P
relative to a fixed origin and take X as the coordinates of P at some
reference time ¢t = 0. The equation of motion is

(2.1) x =x(X, 1).
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Define the velocity v and deformation F by

X ax,

2.2 = -
(2.2) U=y K= ox

where Latin upper and lower case indices range over the values 1, 2, 3. The
usual index notation operates throughout.
Conservation of mass takes the equivalent forms

. o
(2.3) o+ov,, =0, =2=J=detF>0;
@
where ¢ and g, are the current and reference densities of B, a superposed
don’t denotes the material time derivative and a comma followed by the
index k indicates differentiation with respect to x,.
The conservation of momentum has

) 0
(2.4) or; = 0 ;+ob; = Q~ (Qobi+2Zkin)
0

where b i1s the external body force per unit mass, ¢ is the Cauchy stress and
X is the unsymmetric Piola--Kirchhoff stress with

(2.5) gji = 7 Fig 2y
The conservation of angular momentum requires that
(2'6) J,‘j = O-_JI

It is also convenient at this point to introduce the symmetric Piola-
Kirchhofl stress K with

(2.7 Kyg=JF ' o,F3.

3. The laws of thermodynamics

A thermodynamic system X is any part P of a continuous material consisting
always of the same matenal particles. The state variables & =(,, ..., Ey) 18
that finite set of independent physical quantities which are needed to specily
completely the force which holds P in equilibrium. The state variables are of
two types: deformative state variables such as the volume V of a gas, and
non-deformative state variables such as pressure in the gas p. At least one of
the state variables must be non-deformative. If only one state variable in a
set & 1s non-deformative then the set is said to be standard. A system X is
adiabatically enclosed if its equilibrium can be disturbed by mechanical
means only. It is diathermic if its equilibrium can be perturbed merely by
changing its surroundings.
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Classical thermodynamics relies heavily on the notion of equilibrium.
For example, the zeroth law of classical thermodynamics asserts that for any
system X in equilibrium there exists a function of state 0(§) which is such
that the states of any two standard system X, and X2,z can coexist in
equilibrium if and only iIf

(3.1) 0, =0,

0 is called the empirical temperature function. For a standard set & it is
supposed that @ can replace any one of the state variables, y say. Then take
E=(& 0) where € =(¢,,.... Ey- ) are the delormative state variables and
clearly @ can be regarded as the non-deformative state variable. Further,
since & is an independent set by definition any additional state variable must
satisfy and equation of the form

3.2) u=u(g=u( 0.

Equations like (3.2) are called equations of state.

A compound standard system is formed when two standard systems are
brought into diathermic contact. A non-standard system can be envisaged as
N standard systems each separated from all the others by adiabatic
partitions.

To carry over the concept of state into non-equilibrium situations it is
necessary to distinguish between extensive and intensive quantities. An
extensive variable, such as volume, 1s one whose total is the sum of its
separate parts whereas an intensive variable, like pressure, is defined over

some region. From an extensive variable £ a corresponding intensive vari-
able ¢ can be defined by

(3.3) E = {gedV.

In this way the state of a system at a point can be defined in terms of
intensive variables only and irrespective of whether the system is in equi-
librium or not. This i1s called the local state. However, the measurement of
empirical temperature then poses practical problems. In fact the measure-
ment of empirical temperature relies on the thermometer being sensitive
enough. In eflect the local state ol a material must be 1n equilibrium with the
measuring instrument and in many non-¢quilibrium situations empirical
temperature can be measured. However, to the extent that such measure-
ments may not be accurate any non-equilibrium theory of thermodynamics
should be regarded as approximate.

For each particle of a continuous medium experiencing non-equilibrium
changes associate an equivalent standard system (e.s.s). The conditions in the
e.s.s. are those of the particle and are uniform across the es.s. Thus, as P
moves from position to position its e.s.s. experiences homogeneous changes
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of state [rom one equilibrium configuration to another. In this way the es.s.
simulates the quasi-static changes envisaged by classical thermodynamics.

In a non-equilibrium theory additional variables are needed to describe
the processes which occur. These may be gradients or time rates of change of
state variables or any other quantity needed to determine the non-
equilibrium changes. This approach to thermodynamics suggests that there
are two types of equation in constitutive theory. We have already noted that
there are equations of state and processes are governed by process equations.
This is in conflict with the principle of equipresence which must be regarded
as physically untenable.

The first law of thermodynamics asserts the existence of an internal
energy [unction U the increase of which represents the energy stored in a
material in a transition from one equilibrium state to another and U is a
state variable. The energy equation for a non-equilibrium system X which
occupies V at time t is

/ ‘
(3.4) 3{ (JQ u+iv, v dV) = jg(r+bk v ) dV+ J{Gﬁ v;—q;y njdA
v v av

where u is the specific internal energy, r is the rate of radiative heat supplied
to 2 and ¢ is the heat flux vector across the smooth surface ¢V of V' with
unit normal n.

On using the momentum equation the point form of the energy equation
can be written

1 1
(3.5) U=r+w—— g =r+w—— Qg
e Qo
where
o1 1 . |
(3.6) W=—0;0;=—2XgFig; qx = ~ Fix Qk-
o Go J

It will be shown in subsequent sections that it is always possible to put
3.7) W=f(8 E+w, =W +w,

where w; is the rate of working per unit mass due to changes of state and w,
is the rate of working per unit mass due to processes. Then, since u is an
additional state variable there is an equation of state

(3.8) u=u(f).
On combining equations (3.7) and (3.8) it follows that

du = ou . 1 . ,
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For the system X occupying volume V let
(3.10) r=rw

where r' is the rate of exchange ol radiative heat per unit mass between X
and its surroundings whereas o is the rate of exchange of radiative heat
between any part of X and the remainder of 2.

Now w = w(x, B) and clearly

(3.11) fowdV =0
v

and w requires its own constitutive equation. As V collapses to a point so
w—0and r—r.

Since conditions are uniform across the ess. div ¢ =0 and in general r
and w, are different for the particle and its e.s.s. However, r 1s chosen so that
h assumes the same value for the particle and its es.s.

Four kinds of transitions for 2 are now considered: an adiabatic or
a-transition is one which has

(3.12) r=0 1n V, qn=0 on ¢V
An i,-transition has r chosen so that

(3.13) h=0 in V.

An i,-transition has 6 = 0(¢) only, g-n =0 on ¢V and

(3.14) Jehdv =0.
v

Finally, and (a, i)-transition is one any part of which is an a-transition, an ;-
transition or an i,-transition.

The second law of thermodynamics can now be stated as [ollows: In the
neighbourhood of any given state of a thermodynamic system X there are
states which cannot be reached [rom the given state by means of an («, i)-
transition.

This statement must be considered in conjunction with Carathéodory’s
mathematical theorem:

If in the neighbourhood of any given point in Euclidean n-space there are
points which cannot be reached along solution curves of the equation

(3-13) P ¢=0
then there exists functions 1 = A(E) and n = n(§) such that

(3.16) P-&=n.

In other words 47!

equation (3.15).

is an integrating factor for the left hand side of
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4. Consequences of the second law

The second law holds for all (a, i)-transitions and in particular for an i,-
transition with h = 0 in V. So by Carathéodory’s mathematical theorem there
exists functions of state 2 and n with

(4.1) P(&)-& = h = i.

By considering two homogeneous standard systems brought into diathermic
contact to form a compound standard system it can be shown that for the
€8.8.

(4.2) h=T)s

where T 1s a universal function of empirical temperature only and s is a state
variable. In fact, s can be identified as the specific entropy of the particle
with total entropy in V defined by

(4.3) S = fosdV.
o

This definition is consistent with a result which can be derived for a
compound standard sysiem.
Now the local form of the energy equation becomes

(4.4) P(&)-&=T0)s(8).

It 1s supposed that T is a single-valued monotone increasing function of 0 so
that 0 can be replaced by T among the state variables. In this section &
= (&, T). This cannot be deduced from this version of the second law nor is
it neccessary but in this case T is called the absolute temperature function.
From equations (3.9) and (4.4) it follows thal

(4.5) Y+sT—f(8)-E=0

where § = (§) =u—T5 is the specific Helmholtz free energy.
Since the £ are arbitrary then

¢ ¢
» )
cT cE
Notice that for an i -transition s is constant and the transition is locally
isentropic. Whereas for an i,-transition

r 1 [,
(4.7) S=JQ$dV=~T~-Jgth=O
V Vv

and hence it is globally isentropic.
Let I(&,, So) be a state in a standard system X which after experiencing
an (a, i)-transition moves to a state I'(¥, §'). The range of possible values of
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S" i1s connected and S, must be an end-point of the range. For if not the
second law can be contradicted. By convention S, is the lower end point so
that during (qa, i)-transitions the entropy change is always non-negative. The
sign of T and s is now fixed by this convention and we can prove that T(8)
1s positive provided it i1s assumed that neighbouring isometric states [ and [’
{constant deformation variables) of a standard system connected by a-
transitions are such that ' > u.

Again, using an argument of contradiction it can be shown that the
entropy change in a non-standard system undergoing (a, i)-transitions only
must increase. Hence it follows for a non-equilibrium system

(4.8) $=0

for all (a, i)-transitions. Now

h .
(4.9) S=j@s'dV=jgf dV = R+3S,
Vv Vv
where
or’ qn 001 dV, O'N
. = |"=dV—- | — = | == - x
(4.10) R de JT‘IA j‘ T j- 7 dA,
% 1% Yo LU
and
glw+w,) qg Qolw+w,) QG
(411) Sl = J‘%—Tp_'fi}dvz J% T P TZ dVO
v Yo

with g, = T, and Gg = T as the spatial and referential temperature gradi-
ents. By the principle of increase of entropy for all (a, i)-transitions it is clear
that $, >0 when r'=0 in V and q-5 =0 on JV. So, the inequality

or qn

. > fo-dV— | 1" dA
(4.12) S JTd J -
| 2 oV

is a sufficient condition for consistency with the second law of
thermodynamics.

Suppose the terms in §, are independent of the rates of change of the
state variables & then S, does not change instantaneously when the heating is
switched on. Thus, inequality (4.12) is also a necessary condition. Indeed, if
S, is independent of just one of the rates & say T, an a-transition can be
found for which the values of & take the same value as in S, and the energy
equation is balanced by altering T. Again in this case inequality (4.12) is a
necessary and sufficient condition for consistency with thermodynamic
theory. However, if all the rates of change & appear in S; then when r' is



THERMODYNAMICS AND STABILITY OF CONTINUOUS MEDIA 57

switched on they can all change in value instantaneously and S, can change
sign. In this case inequality (4.12) is not a necessary condition.

Inequality (4.12) is inherently global in the sense that it cannot be
reduced to an equivalent local form. At a point inequality (4.12) becomes the
usual form of the Clausius—Duhem inequality

T

Notice, this is a derived result in this theory.

To show another difference between the Clausius—Duhem inequality and
the above theory consider the example: Two standard systems X, and X, are
at temperatures T,, T, adiabatically enclosed from each other and the
environment. Remove adiabatic partition between them and let internal
radiation be the only process to occur. Let w, and w; be radiation rates to
X, and X, then w,+wy; =0. Then

: g_.@
(4.13) 08 = v T)'

Wp _ @a

(12
414 R S
(+19) 7T, T,

0.

(T - L)

A\

This cannot be deduced from the Clausius- Duhem inequality.

5. Applications to constitutive theory

To complete a mathematical model of a real material a constitutive theory
must be constructed. This theory should have equations which are based on
physical expcrience, are independent of the choice of axes and be properly
invariant. They must also be consistent with thermodynamic theory. The
modelling in this section will lay emphasis on the latter principle and the
others are automatically satisfied.

Several models are considered including finitely deformed isotropic
clastic-plastic materials, deformable dielectrics, one-dimensional ther-
moelectric solids and one dimensional visco-elastic continua. This leads
naturally to dissipative media in general.

Internal radiation effects are neglected in the rest of these lectures.

5.1. Finite deformation elastic-plastic theory. The classical theory of
thermodynamics is unable to provide a sound thermodynamic foundation for
the theory of elastic-plastic deformations. One of the main consequences is
that the plastic work rate is not necessarily positive. This is consistent with
the Bauschinger effect.

For now it is necessary to assume that elastic properties are not
influenced by plastic deformation. It is necessary to assume that plastic
deformations do not contribute to volume changes since that would show
itself as a history dependent effect on the elastic properties. This is not a bad
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assumption for metal plasticity. The material is assumed to be initially in an
annealed state, which is stress free and at some reference temperature. When
a stress is applied to this reference state an elastic deformation occurs with

(5.1) EKL = %(CKL_‘SKL} = Eﬂ = %(Fux FkL_‘SKL) = % IFﬂ' Fr}j-du}

where E¥ is elastic strain, F’ is elastic deformation and Jy, are the
components of the Kronecker delta function.
Define a Piola-Kirchhoff stress by

(5.2) K=JF "aF9 ' = K(E®, )

where K is the force which holds the material in equilibrium. Provided a
point (K, () in stress-temperature space does not cross the yield surface the
deformation remains elastic. On crossing the yield surface the local reference
stress free configuration is changed and becomes plastically deformed. How-
ever since the clastic properties arc unaffected by plastic deformations then
equation (5.2) remains valid but now referred to the local plastically de-
formed configuration. Now the deformation becomes

(5-3) FiK = R:?& U(I:})N U(I\’l)l)( = RiM UMK

where U is a positive definite, symmetric plastic stretch tensor and the
orientation of the plastically deformed reference configuration is chosen to be
that of the original reference configuration. The plastic strains C'” and E"
are defined by

(5.4) Cify = Ul USPL = 2E¥L + 0y,

So U™, € and E'"™ provide local strain measures of the local plastically
deformed configuration with reference to the initial refercnce configuration.
So with F© = R¥ U and F»" = U™ then

(5.5) F = F9F»

and F, FP are respectively the elastic and plastic deformation tensors.
Since plastic deformation does not contribute to volume changes

(5.6) det F'P =1, J =det F.
At the onset of plastic flow
(5.7 vr=Cc" =1, EP = 0. R =R, v =uU

and these provide initial conditions which together with equation (5.2) and
constitutive equations for plastic deformation rate can be used to calculate
their subsequent values.

In this case then (E, ¢) are the independent state variables. There exists
an equation of state for the specific internal energy

(3.8) u = u(E®, 0).
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The rate of doing work per unit mass by the stresses in addition to that
which contributes to the kinetic energy is
: L (e) L @) o gl !
(5.9) w=— KynEf{v+— Kan CRLFR Filtk
Qo Qo
For an isotropic material the Cauchy stress ¢ and the stretch tensor 1}
= Ri¥ Ri{ U¥] have the same principal directions so it can be shown that

(5.10) sun = Ky CEh = JRY R;‘j\)r Oij-
Since s is symmetric the work rate w can be written
= 1
(5.11) =S8 s D,
0
where
(5.12) DL = HUR U +UB U ),

and since DY} =0 we have introduced the deviatoric stress s with
[ _ 1 N
(5.13) SKL_SKL__BVSPPOKL'

Thus the local form of the energy equation is

, 1 .
(5.14) P& &=r+w,—— Qi =i
Qo
where
Ju 1 cu
: = m—— K, = ).
(5:13) d (BE“” 0o 8())
So as in the general case T and s exist with
(5.16) h=T(0)s(E®, 0).
It is assumed that T replaces ¢ in the list of state variables. Then
o &y

where Y = u— T is the specific Helmholtz free energy.

Further, il at least one of the rates of change of the state variables is
absent from the process equations then the inequality

(5.18) 008 = g‘?-r—(gf)
K

where Q=JF“’)_1q is both necessary and sufficient for consistency with
thermodynamics. However, if all the rates of change of the state variables do
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occur in the process equations then inequality (5.18) is merely sufficient. On
employing the energy equation (5.18) becomes
Qx Gk

(519) @o “.',p_ T 2 Oa

where G = F© ' g. During elastic deformations w, = 0 and heat conduction
is the only process which occurs whereas during yielding plastic flow and
heat conduction are two processes each of which requires a process equation.
Plasticity theory does not have a sound thermodynamic base from classical
theory since w, does not vanish in the quasi-static limit.

To complete a constitutive theory for heat conducting plasticity process
equations must be prescribed for plastic flow and heat flow. An appropriate
stress measure appears to be s so take the yield surface equation as

(5.20) flske. T %) = glsg)—c(T, %) =0
where x =x(n,), A=1,2,... and
(5.21) % =0 when D'V = 0.

Two possible choices for the parameters 5 are:

t t
172 ’
n = [1D¥L DLV dt, Ny = s, D¥Ldt.
0 0

Then, it is assumed that

HKL(S:MNs ']—;K)a, a>01f=0a
0, f<0

g , 0 : : .
— 7~ $un— -~ T The equations (5.22) with « >0, a =0 and f
CSMN eT

< 0 are said to hold during loading, neutral loading and unloading respec-
tively. Here it 1s assumed that plastic deformation is independent of time
scales. Then, with o = A, DY}, H is not arbitrary and satisfies

(5.22) DY) =

where « =

(523) j'KL HKL = 1, HKK = 0
The equation for heat conduction is
(5.24) Ok = QK(E%?N, T, T.).

During loading the process equations involve the rates of change of all
the state variables so inequalities

(5.25) sk Hyg 20, 0gGr<0

are sufficient conditions for consistency with thermodynamic theory and they
are not necessary restrictions. Thus, the plastic work rate need not be
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positive and this is consistent with the experimentally observed Bauschinger
effect. Other authors account for this but only when history dependent states
are considered (see [9]).

During neutral loading and unloading Qx G < 0 is both necessary and
sulficient for consistency with the thermodynamic theory (see [2]).

5.2. Deformable dielectrics. The equations of electromagnetism for a
deformable dielectric have been given by Toupin [15] as

%—’:Jrcur] e=0, div b = 0;
(5.26)
od )
—-E+curlh=0, divd =0;

where b, h, d and ¢ denote the magnetic induction, magnetic field, electric
displacement and electric field respectively. In a moving dielectric

(5.27) b=puh—v A p), d=ce+p

where p is the polarisation vector and ¢, u are material constants. Introduce
the material form of the polarisation through the equation

(5.28) p=J1Fn.

Into this model introduce a very simple form of viscous damping so that
the momentum equation can be written

(5.29) Qo (Ui +Av,) = Xk +0ofi— gk &+ &ijx Fim7im by
where 4 is another material constant and
(5.30) e=e+vAnb.

Balancing energy and taking account of electro-mechanical interactions leads
to

(5.31) Qo = Qor + Kyn Eyn+Ex ik —Qr.x + 20 W,
where

(5.32) ex =J ' Fixey: w, = v, vy
With

(5.33) K = K(E. =, 0)

the state variables are determined so u = u(E, =, ). Hence,

ay _ 0 oy
534 K =0, —, = 0p — . - __r
( ) ¢o 3E € = Q¢ on ) aT
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and the processes of viscous damping and heat conduction are restricted by
/=0, QG 0.
5.3. Thermoelectricity. From Maxwell's equations in a one-
dimensional, non-polarisable thermoelectric material it follows that b is a
constant and the electric field e and current j satisfy e = ¢(t) and

(5.35) j= -

The force which holds the material in equilibrium is

(5.36) K =aF ' = K(E. 0)
where

.
(5.37) le—:;(—, E=1(F*—1).

The specific internal energy u is a state variable with « = u(E, ¢). Then. the
energy equation becomes

I . 1
(5.38) i—— KE =r4w_ —— —— =

where ow, =¢j, T = T(0)) and s = s(E, 0). By a standard argument

Y i
-, K = py -
¢T Co

(5.39) s = I

where Yy = u—T5 and T replaces 0 in the list of state variables. It should be
emphasised here that the theory of thermoelectricity cannot be treated
rigorously by classical thermodynamics. As for elastic-plastic materials w,
does not vanish in the quasi-static limit. However, the above thermodynamic
theory i1s capable of rigorous application in this case.

A further consequence of the second law is that

(5.40) ei-1 >0
T
where g = ¢T/cx. The two processes of heat conduction and electrical
conduction are governed by process equations.
For simplicity now assume that the material is rigid and incompressible.
Take

(5.41) e=¥l~-+ Py, ¢ = Tj—xg
a

where ¢ is the resistance, P is the thermoelectric constant n is the Seebeck



THERMODYNAMICS AND STABILITY OF CONTINUOUS MEDIA 63

cocflicient and x is the thermal conductivity. It is supposed that TP(T)
= n(T} so the entropy inequality reduces to

(5.42) SR

Thus, ¢ and » are non-negative and inequality (5.42) 1s both necessary and
sufficient to comply with thermodynamic theory since T does not appear in
the process equations. Notice that from this simple constitutive theory
electric field can exist in the absence of an electric current and heat can be
driven up a temperature gradient. For a practical description of these effects
see [12].

Finally with

dP  dn =
543 T = == —f
(>43) dT dT T f
the energy equation can be written
N T ;2 T
(5.44) ou=9Ts = Qi‘+';§'“ (z —(—;— )+l + fj E_;-».
cx\ ox) @ (X

The quantity f is called the Thomson coefficient.

5.4. Viscoelastic materials. The stress K can be split up into two parts
(5.45) K =KY+K®"

where K is the elastic stress and K™ is the viscous stress. The force which
holds the es.s. in equilibrium is the elastic stress and

(5.46) K®© = K“Y(E, 0).

The viscous stress is such that K" = K" (E, E, ) and K*' -0 as E —0.
The state variables are (E, ) so the equation of state for u is

(5.47) u=u(E, 0.

From the energy equation

(5.48) T =. K“=g, ff// :
Oy cE
The residual entropy inequality requires
) w o QG v QG
(5.49) .).,go T-FK”E—T.L,—%(!XBO; KWE-=1>0.
Il

Since ¢ does not appear in the terms in these inequalities they are both
necessary and sufficient for consistency with thermodynamics.
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6. A simplified model

For ease of exposition consider a one-dimensional, linear theory for a
continuum L contained in xe¢[0, 1]. In this case the mass per unit length or
density ¢ is a constant. Further the displacement between the current and
initial positions of a typical particle P of L is given by

(6.1) d=x-X.

Hence the speed v = x = d. The equation of linear momentum in the absence
of body forces is assumed in the form

(6.2) o(d+Aid) = —

where o is the only non-zero component of the Cauchy stress and A is a
material constant.
The energy equation in the absence of external heat supply is

(6.3) U=w——

where

¢v od
ow =0 ——+ow, =aD+olv?, D=_—.
CX Cx

In this dissipative model let
oc=0(D,0).
Then, from the thermodynamic theory

Y oy
- g = Q - -

(6.4) §= —RT' 2D

where y = u—Ts. Then, the energy equation reduces to

(6.5) oTs = pr_fﬂ

x
The boundary and initial conditions for equations (6.2) and (6.5) are:
(6.6) d(0,1n=d(1,t)=0, TO,n=T(,1n=T,, te(0, x);
and

(6.7) d(x, 0)=dy(x), d(x, 0) = v,, T(x, 0)= T, xe(0, 1).
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Introduce the following measures:

1 I
(6.8) z(1) = [od* (x, 1)dx, k(1) = 3 [ov’(x, 1)dx,
0 (0]

1
$(1) = Jav(x, )dx.
0

Multiply the momentum equation (6.2} by the speed d and integrate
over [0, 1] to obtain
1 1
(6.9) k+¢+ fostdx = — “IQH'", dx
o 0

where 1 =T-T,.
Multiply the energy cquation (6.5) by 1T~
deduce that

"and integrate over [0, 1] to

1 1
’ T;
(6.10) J otsdx = J%Qw)p ;__‘+q_g_29%dx
0 0
where it is assumed that T, is independent of x.
On adding equations (6.9) and (6.10) it i1s found that

1 1

(6.11) _ Z; =d~d[{k+¢+ JQSta'x} = — fﬁ{gﬁ'p—@%dx.

0 0
Recall that thermodynamic theory requires

.44
(6.12) pr-A?é 0

provided D and T do not both occur in the process equations for w, and g

in this case. Hence, I(t) 1s bounded by its initial value [, = ky+ ¢y.
However, better results are possible. Before equation (6.11) is exploited

further multiply equation (6.2) by d and integrate over [0, 1] to form

1
(6.13) §5-2k+411z = — [oDdx.
0

7. A mechanical theory

For a purely isothermal theory with zero heat flux then equation (6.11)
reduces to

1

(7.1) k+¢ = — Jow,dx.
0

5 — Banach Center Publications 15
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Moreover, for a linear model ¥ is quadratic in D and so equation (6.13)
provides

(7.2) _ 17 -2k+2¢p+172=0.

In this case w, — Av® so equation (7.1) becomes

(7.3) k+¢ = —2ik.

On combining equations (7.2) and (7.3) we obtain
(7.4) k+¢+Liz+ik+¢p+117)=0.
Clearly, then
(7.5) k+¢+4542=fge ¥
and it is supposed that

Jo =kot+do+34i,

is positive. Thermodynamics requires that 4 be non-negative but for subse-
quent development here 4 is assumed to be strictly positive.
Now, from

(7.6) d(x, )—d(x,0) = J'D(_\f, Ndy
0
it follows that

1
(1.7) 2(n < § [eD? dx.
0

This is equivalent to a Poincaré inequality in one dimension. For this linear
mechanical model

1
cD?dx = 5 [oD?dx

0

(7.8) =3

(= N

where ¢ > 0. A number of possibilities now arise and we consider two of
them.

Tueorem 7.1. With the assumptions above classical solutions of the
displacement initial-boundary value problem, if they exist, are such that

lim k() =0,  lim z() =0

1—a 1+

provided 0 < 4 <2 \ﬂ
Proof. By means of a weighted arithmetic-geometric mean inequality

29 )..</1 +2k
(_) 42\4 /4 .
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where 7 is a positive weight. On choosing y = 4 equation (7.5) and (7.8) and
inequalities (7.7) and (7.9) combine to produce

(7.10) tk+(@e—54%)z < foe M.
So for small enough damping the theorem is proved.

THeorREM 7.2. With the same assumptions as Theorem 7.1, the classical
solution of the displacement initial-boundary value problem, if it exists, has
lim z(t) = 0 for all values of ..

t—x

Proof. We take the proof in three parts. Since k is always non-negative

it can be deduced [rom equation (7.5) using (7.7) and (7.8) that

4z 4, .
(7.11) f-i-—,-zg-'rfg e 4,
A Y
(i) For é > 142 then
(7.12) z(t)Szoe_“‘T'“—h-;--f(:—-— e M.
C-—zi
(i) If 4¢ = A% then
4fot
(7.13) z(1) < (20+1;?—)e—".
(i) Finnaly, with A% > 4¢ it follows that
(7.14) (1) < (zo +—1—J:0 —_)e“""’“.
: zi —C

So for a full range of /4 the theorem is proved. =

As a corollary of this theorem, inequality (7.10) indicates that lim k(r)

= 0 for all values of 4.

8. A thermo-mechanical theory

Some of the ideas of Section 7 can be extended into a thermomechanical
theory. For this, consider again equation (6.11) when it is assumed that

(8.1 oY =43cD*—bDt—%ar?, q= —xg;

where a, b, ¢ and »x are material constants. Thermodynamic theory requires
that x is non-negative and a positive but for stability we will suppose % > 0
too. Notice that

1

(8.2) ¢+ [ostdx = p+h=30+h>ez+h;
0
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where

1
= {eD*dx,  h=4{ardx.
0 0

It can also be demonstrated that

1 1
(8.3) $1g7dx > {1?dx.
0 0

So from (8.2) and (8.3) equality (6.11) with the same assumption as Section 7
becomes

(8.4) k+p+h+2ik+2ih <0
where
AT 2T,
IT=—"-2"f=""2 max (T}
max T a xe0.1]
xe[0,.1])

Further, in this linear model equation (6.13) takes the form
(8.5) $E-2k+2¢+ [erd~c+2/1:'=
The approach when t =0 has been given is Section 7.

To illustrate the method further let us consider the problem with small
thermo-mechanical coupling term b. Then

1 1
(8.6) 2¢+ fostdx =2p— |bDtdx,
] 0
So equations (8.5) and (8.6) yield
(8.7) $3E-2k+2p+322 < B, p+Byh
where
b b

By = 200 B = pe
Inequalities (8.4) and (8.7) imply that
(8.8) k+p+h+ivivaltk+p+h+iivi <0
where
(8.9) v=min(l, g, a=min v(1-38,), v(2—18,)!.

Notice that ¢ < v < 1< A Thus, we can write
d
(8.10) — (k+p+h+4vz)e“"2'+ tatk+p+h)+ivii—La)2 e <0

So, we can prove
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Tueorem 8.1.  Withour restriction on either the coupling constant or the
damping term, the classical solution of the initial-boundary value problem for
linear thermoelasticity, if it exists, has

lim k(1) =0, lim h(r) = 0.

t—> t—
Proof. Integration of inequality (8.4) over [0, t] leads to
' 1
(8.11) k() + 1)y dy < o= (ko + po)
0

on the additional assumption that p>0. This result is similar to one
obtained by Batra [1] for heat conducting, linearly viscous fluids.
Finally, we prove

Tueorem 8.2.  For sufficiently small coupling and damping the classical
solution of the initial-boundary value problem for linear thermoelasticity, if it
exists, has

lim z(¢t) =0, lim k(1) =0, lim A(t) = 0.

t— 1—=a I=a

Proof. From inequality (8.10) it follows that
(8.12)  k+p+h+ivitlviAi—ia)i—goe i+
+%1j{ 'k+p+h—Ltv(i—da)z) e M2ds <0
0
where
go = ko+potavietiv(i—3a)z,
is supposed positive. Thus, for ¢ > 3v(4A—3a) it can be shown that
(8.13) k+p+h+iviedvii—ta)z<goe 2.

With p > ¢z another weighted arithmetic-geometric mean inequality (as in
the proof of Theorem 7.1) completes the prool. Provided the thermoelastic
coupling remains small it is possible, as in Section 7, to extend this result for
all values of the damping term.
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