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§ 1. Introduction. Motivations and definitions

In applications (geology, microscopy, engineering design, construction of
graphic displays, image transmission (coding) systems, and in mathema-
tical (linear and nonlinear) programming, optimal control theory, diffe-
rential games) the following problem often arises.

An unknown, real-valued function @ is to be uniformly approximated
over a domain G,, say @G, = [0, 1]%, based on N (point) evaluations

(1) m(t‘) =0‘, ": =1, -o.,.N, t;EGo

for other measurement specifications see below Section 4) and of course,
based on some a priori knowledge about . This knowledge is usually
expressed by # € K° where K° is a compact subset of the Banach space
of continuous functions over G, denoted by C(G,).

An N step algorithm of approximation consists in

(1) specifying the choice of t¥ = (t,, ..., t5), which might be passive,
i.e., simultaneous, or sequential, i.e., given by a sequence of functions,
AY = (4,,..., Ay) and rules

(2) t, 1= AN(K%), o :=x(l),
i=Ay_n(,¢,j=1,...,i—-1,K%, i¢=1,...,N
and

(2) giving a pointwise approximation a of ¢ based on the information
collected, i.e., on t¥, ¢¥ and K°, ¢¥ = (¢, ..., &x),

(3) a(t,t;, ¢, i =1,...,N, K%, te@,.

[501]
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Often the main cost of the algorithm is measured by ¥, i.e., compli-
cated functions (computations) (A¥, a) are allowed in order to obtain
a small global error

e(AV, K°) :=sup{e(AY, z)|v e K*}, e(4AV,2):=¢(i¥ (4", ), a),
e(tV, ) :=sup [x(t)—al(t, t;, x(t), s =1,...,N,K)| t @},

where ¥ (4%, 2) = {;(4%¥,z), i =1,..., N} arc defined by (2).

The global error e(tV, K°) of a passive algorithm AN =tV is defined
similarly. Of course, in the construction of an algorithm, especially if we
are interested only in the order of magnitude of e(AY, K°) with respect
to N, N is regarded as a free parameter. Also of special interest are those
algorithms in which AN+ can be regarded as a “continuation” of ANE
(that is 1" #(AY%, z) < 7%+ (AV*+! z) for all z) at least for a subsequence
N,—oo. For a more detailed and general definition of sequential approxi-
mation problems in B-spaces see [7], [10].

If the set K° is convex and has a centre (i.e., is central-symmetrical
or balanced), then

¢ (N, K°) : = infe(A", K°) = infe(t", K°) =: ¢,(N, K'),
4N N
sec [1], [7]. Here we show that for natural classes K° of convex functions
(which are far from being central-symmetrical, but rather are like simplices)
the use of sequential N-step algorithms allows us to obtain a significanily
(with respect to order in N) smaller global error than the use of passive
ones, see Theorem 1 below.
Here we assume that @, is the ‘“‘interval” [0, 1]?, and

(4)

(5) K’ = {z| © convex in ¢, 2(i}) =¢%, 4 =0, 1, ..., 27, fixed}
= K°(x, Gy),

where the points ? are the centre and the vertices of [0, 1]7.
In fact, as a corollary, a good (optimal order) algorithm results, see
Remark 1 below, for the more general classes

(6) K°(m, M) = {z| Spectrum D,z < [m, M], x(l}) = ¢,
£ =0,...,2?7 fixed},

where D,z (t) denotes the Hesse matrix (of second derivatives). (b) is the
special case m = 0, M = oo, and in (8) K°(m, M) is in fact understood
as the closure in €(@) of the C* functions with everywhere defined D,.
The corollary comes from the observation that if 2 belongs to X°(m, M),
then z, = z—m|it|* and ®, = } M |it|* — 2 both belong to K°(0, oo) (when
not stated otherwise we use the usual notation || || and {u, ?) for euclidean
norm and scalar product in R?).

Let us note that a similar approximation problem for convex bodies =
of RP*! (say for the class K° of bodies lying in the unit ball B,) is reduced
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to the above case where cach measurement gives the value ¢; = m(d;, @)
of the support function m(d, £) = sup{d{d, v>| vex, d € R?*'} in some
direction d; and the Hausdorff distance p(x,, 2,) is used. This distance
is identical to the uniform norm in d € 8,(R**') = the unit sphere. An
equivalent norm arises if d is restricted to the surface of the unit cube,
and then we have our problem (1)-(5) because m(d, z) is convex in d,
see (8], [9]; lgradgm(d, )| <1, de8,, z < B,.

In order to have a compact set K in O(@) we should assume (because
otherwise there are discontinuous functions in K®) that in (5)

(7) lgradz(t)| < g, for te@, (a.e. in @,

for some constant g, (this restricted set will be denoted by K°(g,)). For
reasons which will be-clear later (we do not need any information about g,
in constructing proposed algorithm), we do not include (7) in (5). Of
course the finiteness of the functional D(z, @) (see (16) below) which
implies the optimal order ( —2/p) of the error, is guaranteed a priori if (7)
is assumed. Note that, by the convexity in t, the functions # in K° are
continuous and uniformly bounded on any compact subset of the open
domain (0, 1)*.

Instead of computing the optimal function e (defined by putting
in (4) an infimum with respect to a(-) before the supremum) we ghall —
for computational simplicity and without loss (as regards the order in N
of the global error) — define the function a used in (4) “locally” over the
“subintervals” G¥, ¢ = 1,2, ..., into which @ is decomposed (see below)
to be the analogue a(G¥Y, z) of the function a(G,, z): = a(K?®, ) defined
by

(8) a(K’ t) :=sup{z(t)] e K}, te@,

for K* = K°(x, G,). Of course a(K® ) (thus each a(GﬁV, x)) is a convex,
piecewise linear function over @,, (resp. G¥), yet in general the function a
thus constructed will not be convex in ¢{. Note that for p = 2 the function
a{K’ t) is composed from at most 4 linear pieces. The function e(t?, x)
from (4) is thus giving the diameter of the set of localization I(¢V, z) in
the space L(G,).

Many of the constructions and methods of proof which will be presen-
ted below are valid for arbitrary values of the dimension p. The solution
for the case p = 1, which is by no means trivial, has been given in earlier
works, [8], [9], and can casily be obtained (reconstructed) by using the
methods (hints) given below. Here we solve the case p = 2 completely.
We also indicate in Secetion 4 those points whose generalization for p > 3
is not yet obtained.

ProOPOSITION 1. For the class (5), even when (7) is assumed, there exist



b04 G. BEONNEVEND

constants K (K°, g,), ¢ = 0,1, such that
ep(N,E) 2 kN and e,(N, K% >k, N7

where k, are positive if K° is nontrivial.

The class K° is nontrivial if there exist two different functions ,
and @, in it. The second inequality is then the consequence of the asympto-
tics (12) (see [5]) because one can construct a function # which is strongly
convex and C? (has a constant, positive definite Hesse matrix) over a sub-
domain of Gy. To construct & let max(x, —w,) be realized at a point t.
By the gradient bound in (7) this point is interior to @, = {{| w,(t) > z,(1)}.
The support hyperplane to the epigraph of z, at (!, #,(t)) is over #, in
a convex subdomain @, of @, and a quadratic funection z is chosen so that

2(t) = }{(z.(0) +a,(t)), gradz(t) = grada,(l) (L—eé),
D,z(t) = d,I, dy> 0.

Here ¢, d, are so small that, on the boundary of @,, z is smaller than z,.
Then x := max(z, #,) is convex on &, and quadratic over a subdomain
@, of @;. To prove the first inequality —for simplicity for the cage p = 2 —
we first choose in @, a square T = (P,, P,, Py, P,) so that 2(P,) = z(P,),
2(P,) = 2(P,), which is always possible by turning T through some angle
about its centre, It is only important that the points (P, 2(P))),¢ =1, ...
...y 4, should lie in the same plane. Let w be the maximum of convex
functions over @G; which take at the vertices P,, ..., P, and at its centre
P, the same values as z. That is,w is linear over the four triangles
[Poy Py Pyy1], and we can extend w beyond @; to the whole @, yielding
in K° a function @. If N is large then in one of the 4 triangles formed by
the centre and a side of T there exists a square U similar and similarly
posed to T, with side length not smaller than r, N~*2, where r, depends
only on K°(g,), inside of which there are no points from V. Let U =
= (Uy, Uy Us, U,) be a square, where U, U, is parallel to P,P, and
nearer to ﬁ’; than to Py P,. Let 2, be the maximum of the convex func-
tions (defined over G,) which take the same values at the points P,, P,,
U,+Us U,+U,
2 ' 2

be the maximum of the convex functions which take the values of x, at
P,, Py, Uy, Uy, Ugy, U,y Py, P,; let both of them continue to be equal
to w outside G;. The estimation |w;—a,)|> 7, N "%r,, r, depending
on d, and G, (which corresponds to the one-dimensional case of the cons-
truction) is easily proved. For p > 2 a similar construction can be given,
with simplices (rather than cubes) in the role of the sets G, G,, 7.

Thus an algorithm A% or, more precisely, a sequence of algorithms
4= = (4!, 4%, ...) is rightly said to be optimal with respect to order if, for

y P3, P, as the functions 2, 2, w, w, 2, 2, resp., and let z,
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z e K°(go,
(10) e(AY, 2) k(@) N7 with  ky(2) < ks (K°(g0), 4%),

where the constant k,(K°(g,), A*) is independent of N. In Theorem 1
(see (19)) we prove that for p = 2 a simple algorithm is optimal (modulo
a small factor log V).

§ 2. Description of the algorithm

The notion of individually best N point approximation, a (¥, ), is defined
by the extremal problem, for given (known) x

(11) e(N,2):= iﬂ;fe(t”’, ) = e(", ) 2 || — a, (", (1Y), K')|c(q,)-

For an analogous, essentially equivalent problem of approximation of
strongly convex C* smooth bodies by polyhedra in the Hausdorff metrics,
the asymptotics of ¢(N, #) for N—oo and arbitrary p has been obtained
in [5]. In our case it is not difficult to prove that

(12) e(N,z) =r, N~ ( f VdetDzm(t)dt)zlp +o(N=¥P),
o

where the constant r, depends only on p. Roughly speaking, the best
system of N nodes, for N large, must be such that their linear density,
at a point ¢, along the principal directions (eigenvectors) of D,z(t) is
proportional to the square root of the corresponding eigenvalue. Of
course our aim is to get exact upper bounds for finite N, and at present
we do not know whether for the multidimensional case, p = 2, it is possible
to construct an algorithm satisfying (10) and yielding, for each ¢ with
continuous and positive definite second derivative, asymptotically optimal
nodes (for p = 1 this is true).

The nodes yielded by algorithm 1 below are not such; however, they
are chosen according to the principle of equal local errors (see [1]) which
is derived from an important property of the optimal set of nodes.

In order to describe algorithm 1 (for simplicity for the case p = 2),
we need some preparation. Let z be an arbitrary element of K° and let
us denote by K (@, z) the set of convex functions z defined over an interval
G = [a,, b,] x[a,, by], of length I(G) = b,—a, = by;—a,, for which the
values 2(8¥) = #(8¢), ¢ =0, 1, 2, 3, 4, are fixed, where S¥ are the centre
}(a; +a,, by +b,) and the vertices of G. Thus K° = K (G, «). The diameter
d(@, z) of K(@,z) in C{G) (more precisely in L*(G)) is easily computed
as the maximum of the distances of the value of = at a vertex of G from
the value of the linear function (at that vertex) which is determined by
the values of x at the centre and at the opposite vertex of ¢. By a (re-
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gular) subdivision of @ — for given # — we mean the generation of four
“standard” sets K(Gy,s), j =1,2,3,4, from the set K(G,x), where
each G, is a half-size interval such that

(13) U@ =6, 2GnG) =0 for i #j

(2 is the Lebesque measure). Let us define the indices 1, 2, 3, 4 in such
a way that their growing order corresponds to the clockwise movement
round @, G, being the down left interval, G4 the upper right one. These
sets are thus defined if we compute #, in addition to the five already fixed
values of z in K(@, z), at eight new points.

ALGORITHM 1. Choose a (small) positive number ¢, Define by sequential
subdivisions a sequence of points (7,17, ..., t},,s, and interval subdivi-
sions {G7, ..., G5,} inductively as follows.

Let @ =@, =[0,1F, &3, ..., 1! being given as in the definition of
K°. Suppose that G5, ..., G5, are already defined and such that

in
(14) UG =6G,, AGPNG]) =0 if i #j.
{=(

We order the lower indices ¢ in the following way: say that G{ is before
G} if, for an interval G = @, m < n (see (13)) we have G} < @, and G}
=@y for 1< a< < 4. Now let ¢ = ¢(n) be the smallest, in this sense,
index suchk that the uncertainty in the values of # over G}, as computed
from the five measurements (points (s;, 2(s))), 8; €@G7), i.e., d(GF, x) is
greater than ¢ In fact, as will be clear below, we could use the following
criterion as well (replacing d(G, ) by 4(w,@)):

(15) Az, @) := x(85) +a(s5) +2(s) +2(s5) —42(5§) > €
for G = Gy, .

Define now the next eight new measurement points, %,,s,4,5 =1,..., 8,
as those eight ones which are needed in the subdivision of G- Thus
are defined the new points ##*', j =1,...,8(n+1)+5 and the new sub-
division

(14)" G+, j=0,...,3(n+1).

The algorithm terminates at some (mega) step N = N(¢, 2, G,) when
after 8N function evaluations there exists no value ¢(N) satisfying (15).
Then obviously z is approximated by the locally constructed functions
a{E(GY), 1} (see (8)) over each @} within accuracy e.
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§ 3. Error estimation for the algorithm

An important role will be played by the functional

(16) D(z,G) = [ (grada(u), n(u)>du,
o

defined for an arbitrary interval @ in G, and function z in K°. Here
{gradz(u), n(u)) is interpreted as an arbitrary value of the subgradient
of the convex function z of ¢ in the direction of the outer normal »(u«).
Thus the smallest value is

b by
ox ‘[ Ox
I,+1, = f[-a?-]dsﬁj [—g]dsl, where ¢ = (8;, $,),
1 2
a2 o |

o oz (b, —0, s;) or({a,+0, 8,)
[_] (82) = -

08, 0s, s, !
aa:](s ) — 0x(8,, b, —0) 0x(8,, ay+0)
os, ) Y 28, 08, )
It is well known that for (% smooth functions
82 32
(17) D(z, &) =GfAm(t)dt, R

is the Laplace operator (otherwise 4z should be understood in a generalized
sense; see e.g. [4]). .

In fact, for a function z in K'(z, @), which might be discontinuous
at the boundary of G, the value (16) can be defined (and be finite!) by a limit
procedure

D(z, @) =limD(z,,G), where =z,eC(G), o, for n—>oo,
uniformly on compact subsets of the interior of &. However, without
assuming an upper bound g, for the gradients over @, ¢(A”, K°) cannot
even be made to converge to zero for N—oo.

THEOREM 1. The number of function evaluations, i.e., steps N = N (¢, z,G)
necessary to finish algorithm 1 over G, for an arbitrary convex funclion x
with gradients less than g,, t8 estimated from above by

5/8
(18) N(e,z,F) < Ny(e,0,Q) : = [8 D(:DE, G) log 2 liG)go] ’
+

where [ ], denoles the nonnegaiive eniire part and log i3 of base 2.
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COROLLARY 1. Choosing ¢ as the solution of (18) for given N, N (e, x, G,)
= N, we obtain an N-step algorithm AN whose global error is almost of
order —1 = —2/p, (because of D(», &) < 1(Go)go, —DlogD < 1/2,

4 321G ,

(19) (4", E°) < v~ T =% 0g2*°N1(G,) g, -

Choosing ¢ = g, = 4 %¢, and performing algorithm 1 with ¢ = ¢,,
k=1,2,..., we obtain an infinitely continuable algorithm, for which
at each step N essentially the same inequality (19) holds. For the proof
of the theorem we need two lemmas.

LemMwma 1, For arbitrary G and x the following inequalities hold:
(20) idG,z)< Az, ) < D(z, @).

Proof. The first inequality from the left was proved already in the
description of algorithm 1 (by noting that the maximum of two non-
negative numbers is less than their sum). The second part can be inter-
preted as the statement that the simplest discrete approximation of the
integral (17) (which is based on five evaluations of z to get a discrete appro-
ximation for the Laplace operator at the centre of &) is always less than
the exact value of the integral thus approximated. The idea of the follo-
wing proof was communicated to the author by T. Fiala.

Let v, be the unit vector pointing from the centre s§ of G to the
vertex s¢, Then

c
(21) (s =w(s?)+l/2—fgrﬂ'd‘”(sg-Hl/E”:)y vn>dt, ¢= l(fl-
J 2
Since
: 1 oz (8) oz (8)
Eadae), o) = (5% & T,
0z (8)

with 4+ depending on ¢, we obtain (20) by using the monotonioity of
7 (8
08y
not difficult to construct many functions # for which

08,
))in 8, (resp. 8,) and summing (18) with respect to 4. It is

(resp.

24(z, @) = D(z, Q).
LEMMA 2. For arbitrary nonnegative numbers 2z,, 2, 25, 24, L such that

2+ 2+25+2,>1 and L2=1



AN OPTIMAL SEQUENTIAL ALGORITHM 509

we have

(22) D [8zlogL], < [8( 3 =) log2L|, —8.
i 3

Proof. By the simple inequalities log.L > 0, and log2 =]_.

Z[u,]+<[2u¢]+ for ;= 0.

Proof of Theorem 1. We show by induction with respect to the value
of & that (18) holds. Let us assume first that N,(¢, #, @) = 0. Then
because of the fact that we can assume

1 —
(23) U g, — = V2!

€
(otherwise formula (16) shows by Lemma 1 and a simple inequality that
d(r,#) < ¢ and thus N(s z,G) = 0), it follows that D(z, @) must be
less than e, and thus, again by Lemma 1, d(v, @) < ¢, i.e., N(e, z,G) = 0.
The function N (e, 2, @) satisfies (for a subdivision (13))

4
8+ D' N(e,,G)) = N(s,x,6).
i=
Thus we have to prove that if N(e,2,G) > 1, i.e., d(v, @) (or 4(z, @)) is
greater than g, then

4
(24) 8+2Nn(51w)Gj)<No(3)m’G)-
j=1
This, by the additivily of the functional D(x, @) with respect to subdivi-
sions, i8 a consequence of Lemma 2; put
9o g5m(@,) = $L(6).

€

5y = D(m,G‘)s_l, L = L(G)) =

Remark 1. For the class K% m, M) (see (6)) with finite m, M the
transformations z—wx,(2, m), 2—z,(z, M) lead to the following algorithm.
Perform simultaneously for #, and x, algorithm 1 as described, replacing
the criterion of subdivision (15) by

min (4(z,, G), A(xy, @) > for @ =@},
and define the approximation a(@, 2) for each G = @) as
ml*+a(@, 7)), IM|*—a(G,s,), resp.

Remark 2. A simpler, infinitely continuable variant of algorithm 1
is the following. Instead of fixing a number ¢, let us perform the sequence
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of subdivisions according to the following rule: let ¢(n) be that value of ¢
for which d(z, G}) (or A4(z, (7)) is maximal. The number of subdivisions
(steps) N,(e, #, G) needed to reach a global accuracy & can be estimated
by the same inductive method and turns out to be majorated by the same
quantity Ny(e, z, G).

Let us note that, as the previous proof indicates, the logarithmic
factor cannot be eliminated from the error estimations (18), (19). It is
easy to see that for each fixed «# in K® with a continuous and positive
definite Hesse matrix, we have asymptotically for N — oo (see (17))

3
(25) e(t", x) = WD(w,GoH-O(N’l), N =N (A%, x).
Indeed, because of (15), (17), for large N and continuous Az, we have
(26) fAm(t)dt ~ (3 % +1)2e.

It seems true that there exists no simple optimal order algorithm for
which the asymptotic error would have the same main part as in (12);
note that

(27) Az (1) > 2 (det D,x(1))'*  with equality iff =0,
08, 08,
and
o _ 2o
o8 28t

The reasons behind this statement and further motivation concerning
our algorithm 1 (its stability properties) will be given in the next section.

§ 4. Generalizations and further comments on the algorithm

The most interesting question is of course whether or not the straightfor-
ward generalization of algorithm 1 to the p > 3 dimensional case yields
an optimal algorithm (with respect to the order of the global error) and,
if so, whether that order is equal to ( —2/p), the lower bound given by (12).
While the answer to the first question seems to be positive, concerning
the second one the following remarks (“negative results”, resp. conjectures)
are stated, indicating that algorithm 1 yields the optimal order (—2/p)
only for those classes of functions # for which IIA:vIILpIz(G) < oo uniformly.
A generalization of inequality (20), i.e., Lemma 1, would be

(28) d(z, @) < 4,(2, G) < 1 *(G) D(z, @)
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for some constant ¢,, where D(x, @) is given by the obvious generalization
of (17) and (16),

Ay(@, @) 1= ) o(P)—2°z(PF).

The first part is again easy. As regards the second part, the exact
value of ¢, is 1/2 (here d(z, @) = 4,(x, @) and —as noted after (21) — the
exact value of ¢, seems to be also 1/2). Now, in order to prove that algo-
rithm 1 has an error of optimal order (—2/p),

?(@)-D(x, G) \P"
&

No(e,m,G):=kP( (1+o(e%), d>0,

the following inequality should hold (generalization of Lemma 2, i.e.,
of the subadditivity property of N) (of course modulo some logarithmic
factor):

Dy(2, @) := (P~?(@) D(z, @7,

2P 2D
(29) D D2, 6) < Dy(a, ) it G =1J6,
Jm1 Jm=1

for regular subdivisions and all z. Now (29) requires nothing but the
norm inequality (a; = Di?(s,G,)), laliy,, which is not true when p > 3.
By Holder’s inequality D,(z,G;) < ||Am||Lp,2(m, and the functional
AP?(z, @) is obviously additive in @. The conjecture that the main part
of N, is kps"’” A (z, @), especially that Az € L,,(G@) is needed, is seen
from Hadamard’s inequality A4*2z(t) > Ip v det D,z (t), and from the fact
that the Green function for the Laplace operator having the singularity
(1/1t—3))*% p> 2, is only in Ly_yyp_q) the dual of Ly,.; 6,2>0.

Let us see whether for the functional giving the main part of the
individually best approximations (12)

(30) A (@, G) := ( [Vaet D, (s, t)dt)””
G

there exists another upper bound (see (27)) which is expressible in terms
of (the values and) the gradients of z at the boundary of G. If the values
of o are fixed along the boundaries of the intervals belonging to a subdi-
vision, then these values become independent for the different subinter-
valg; thus subdivision means dccomposition, in a well-defined sense. If
one applics the Cauchy—Schwarz inequality to the integral (30), then one
obtains

(31) Ay(z, @) < Hy(z, G) := (volgradz(G) - vol(G))'?,
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where vol means the Lebesgue measure and grad«#(@) is the image of the
set ¢ in the “monotone” map t—>gradz (). Notice that H,(z, (a, b))
= (¢’ (b) —a'(a)} (b —a) = D,(2, G). Because of the monotonicity of gradas,

2P
gradz(@) = |J gradz(@,), vol(gradz(G)ngradz(G,)) =0, j #1,
fe=]

H,(x, @) satisfies the required subadditivity property

2P
(32) D B2z, @) < HY (0, ),
J=1
because of Ilalqu < lally, for ¢ =1/2, a e R*®.

Take some constant k, for an algorithm using subdivisions for a mea-
surement pattern in which at each step over an interval @, we get and use
information I concerning the values of = over @, I(», G,) = ¢,, and accep-
ting or subdividing the interval, depending on the value of some “barrier”
functional 4;(z,@G,) < e. In order to prove the inequality

Hp (, @) )p/!

(33) N, z,@) < k,,( -

it would be enough to prove the inequality (the analogue of Lemma 1)
(34) al(z,G,):=d{z| I(2,G,) =I(z,G,),2e K’} < g, 4 (2, 4,)
< 1, Hp(w, Gy),

where d stands for the diameter of a set in L, (@,), and g, 7, are constants.
Indeed, for p =1, using at each step three points

(35)  A{: = 4,(z,a,bd) =2d(z, (a,d)) =z(a)+2(b) =2z((a+b)/2),

one obtains (33) with k, = 1/2. In the inductive proof for arbitrary p, No(-)
is chosen in the form

/2
Noe, 2, @) = [u (Eziw,—ﬁ‘))” —v]

with appropriate positive constants %, v. The constant v is needed (used)
in order to compensate for the number of measurements needed in a sub-
division and not included in the left side of (32), sec (24).

In the case p = 2, inequality (34) is not true, i.e., cannot be satisfied
for the information pattern used in algorithm 1.

It seems true that the only information pattern I for which (34)
holds is the complete one, I i.e., if at step » we measure all the values
x(t) and subgradient grad«(t) along the boundary of some interval G,,

then of course (as e.g. in the case p = 1) we could choose Al to be dj or
H, as well,

+
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Any discretized version of the algorithm in which the subgradients
are approximated by finite differences scems (except the case p = 1)
to be far from giving the optimal order with respect to the number of
function evaluations; this will be partly explained below when we speak
about the instabilities.

In the case p = 2, when the information I™ used at step n consists
of the values of # along the boundary of G, and along its two middle
lines, 47 being taken as dz, (34) is not satisfied for any r,, yet the role of
the functional H, can be taken up by

(36) Fy(2,@) := (11(“7;9)‘12(5”:0))”2:“

where I,, I, are the integrals defined earlier in (16), (17). Concerning the
functional P, let us prove that in the case of the complete infoi'mation
pattern I° inequality (34) with H, replaced by F, holds with d; ¢ = AI3
and 7, = 2. Indeed, for arbitrary z, z, with I°(z) = I"(z), T, % GG’(G),

we have
2 2
< 25up f f]/ Pz 0%z
08} 38,

() —#(2)] < 25uDp ff
G
< 2F(w, G);

by the convexity of z, and then the Cauchy-Schwarz inequality yields
the last part by the definition of F,.

If we compute (use) not the values of the gradients (along the boun-
dary) but the values of x along the two middle lines then for the correspond-
ing algorithm as in the proof of Theorem 1 (using the subadditivity of
F,) we can prove that

22

(37 Vi@, @) < [, T2 1og 2|
+

&

Even this algorithm cannot be discretized (to give one with an optimal
order) because of the following énstability. If the values of z are known
(along the middle lines and the boundary of ) only within some accuracy
€, (e.g., this happens if for their approximation the one-dimensional algo-
rithm (35) is used), then the perturbation of the value of df is not bounded
by a quantity proportional to &,.

Our algorithm 1 is stable with respect to errors in the measurement of
#(t;) = ¢;. More precisely: suppose that the values ¢;, ¢+ =1,..., N, are
measured within accuracy ¢,; then, by using, as in algorithm 1, five such
values over the current interval @, the value of the uncertainty in ()
over @, d(z, @, ¢)) can be computed easily. Let us subdivide & in such
a way that (for a given &)

d(z, F, e,) < e+4e,.

33 — Banach Center 14 ey
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For this algorithm, the number of steps N (e, z, @) is estimated by
the same expression as when &, = (0. Thus in the case of measurement
errors of magnitude M}, to obtain over G, a global accuracy 6 M~! (choose
& = ¢y = M) no more than k(g,, K°)Mlog M steps are needed (by (19)).
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