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1. Introduction

A generalization of the Arrow and Karlin [1] model is considered. It is
assumed that n commodities are produced. These commodities are iden-
tical with respect to production cost and different with respect to holding
cost. The demand functions are positive and initial inventories are zero.

For a fixed planning interval [0, 7] and given demand functions
an optimization problem is investigated. Some qualitative properties of
optimal solutions are given.

Next the endpoint T of the planning interval [0, T] and the demand
functions are treated as dynamical parameters. The family of multi-
commodity inventory problems is considered.

The main problem which arises here is the following: what information
about dynamical parameters is needed in order to obtain a solution which
is optimal on a certain time interval [0, a) for all problems in the family ?
In this direction we establish the existence of a horizon in the sense of
Modigliani and Hohn [6] and Blikle and L.o§ [3].

The same problem for one commodity model was investigated in the
above-mentioned papers [5], [3] and for one commodity model with
backlogging in Z. Lieber’s paper [4]. The problem for two commodities
was treated in the author’s paper [6].

In this paper the general n-commodities case is considered. In Section
2 the single optimization problem is described and all technical assump-
tions are introduced. The problem is formulated as a control problem
with state space constraints. Control and state variables are, respectively,
the rate of production and the level of inventory. In Theorem 1 some
necessary optimality conditions obtained by the maximum principle are
formulated. In Section 3 several properties of adjoint functions as well
as of admissible solutions satisfying the maximum principle are given.
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Some of these properties have a very clear interpretation. For instance,
Proposition 1 tells that if the optimal level of the inventory of a commo-
dity is zero then also the optimal levels of inventories with greater holding
costs are zero. Section 4 is rather of an auxiliary character. Lemmas 3
and 4 are used in the proof of the main result, i.e., of Theorem 2, which
is given in Section 6. Proposition 2 of Section 5 is also used in the proof
of Theorem 2. Moreover, Proposition 2 has a very clear interpretation.
Namely, it states that in every sufficiently large time interval therc exists
a point at which the levels of the optimal inventories of all commodities
are equal to zero. The last section contains the definition of a horizon
and the proof of Theorem 2.

2. Mﬁlticommodity inventory problem

The problem is formulated as an optimal control problem.

Let the vector of inventories Y (t) = [Y,(t), ..., ¥,({)] be the state
variable and let the rate of production «(t) = [u,(¢), ..., %,(t)] be the
control variable. The state space constraints and the control space con-
straints are:

(1) Y, (1)>0, w(f)=0, i=1,2,..,n.

Let r(t) = [ry(0), ..., r,,(i)], the rate of demand, be a continuous and
strictly positive function. The differential equations governing the behav-
iour of the inventory are

(2) Y() =u(t)—r@); Y(0)=0.

The cost functional is given by the formula

T
(3) Flusr, T) = [{e(ayuy(t)+ ... +au,(t)) +h Fy(0) + ...

oo R Y (1)} dt,

where ¢(-) is assumed to be increasing, strictly convex and twice continu-
ously differentiable; a; and %, are some positive constants.

For fixed r and T the problem is to schedule the production plan
u(t) so as to minimize the cost functional F under the constraints (1)
and (2).

The main problem of this paper is to give some property of the family
of problems (1)-(3) indexed by T and r. For this purpose we first fix the
funetion r and number T

It is easy to see that without any loss of generality we may assume
a =a; =,.. =a, =1 in (1)=(3). This will be done in the sequel.
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In this paper we assume that h, < h,<...<h, and Y, ,0) =0.

Let us now suppose that the function % is in L*(0,T; R*) and Y
belongs to H'(0, T'; R*). By the maximum principle (cf. Bensoussan et
al, [2]) the following theorem may easily be obtained.

TaeoREM 1. If u e L*(0, T; R") is an optimal solution of problem
(1)—(3), then there exist functions A, ¢ =1,2,...,n, such that
(i) 4 €8 non-decreasing and right-continuous,
(ii) 4; is constant in any time interval on which

¢
Yi(t) = [ (ug(r)—ri(v))dz > 0,

(1) max [v,(Dw,+ ... +0,(H)w,—c(w,+ ... +w,)]
=0, (U (1) + oo F V() U (B) — (g () + ... +2u,(0)

where v;(t) = kit —A,(t), ¢t =1,2,...,n.

In the following we will consider the set M of functions % € L* (not
necessarily optimal) satisfying conditions (1)-(2) and such that there
exist functions 4; (and so also v;) satisfying (i)—(iii) of Theorem 1.

3. Properties of elements of ¥ and related functions

Let w e M, Y be given by (2) and let v»(2) satisfy (i)—(iii}) of Theorem 1.
It is easy to obtain the following

CoROLLARIES. I. At every point t e (0, T) the function r, has both one-
side limits and

v,(t—) = 0(t+) = vy(t).

IL If v,(t,) < max(v,(ty), ..., U, (to)) them u, =0 in (1,1, +e) for
some € > 0.

OI. %+ ... +%, = 8(max(v,, ..., v,)) where

{0 for  z<¢'(0),
“”‘hw*m for 2> 0(0).

In the sequel max(vy, ..., v,) will be denoted by v,..

For the proof of IT and III let W denote the set of vectors w = (w,, ...
...y w,) which maximize the left-hand side of (iii). Let I = {£: o,(¢,)
= Umax(fy)}. Statement II follows from the easy observation that, for
every w € W, if ¢ ¢ I then w;, = 0. By this remark it is sufficient to consider
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the expression

max {vm(t.,) . Z s —0 (Z w,)}
ief fel

wi»0,fel

instead of the left-hand side of (iii). From this ITT follows immediately,
LemyA 1. If j > ¢ then v, > v; on [0, T).

For the proof let us suppose that there exists a ¢, € [0, T') with »;(2,)
< 9,(t;). Then by I this inequality holds in [¢,,¢; +¢) for some &> 0.
Thus, by II, %; =0 in (¢, t,+¢) and

{
Y, (t) = Y;(t) + [r,(8)ds > 0

O
because r; > 0 and ¥, > 0. Let 8 = sup{t < t,; ¥Y,;(¢) = 0}. Thus ¥,(t) > 0
on (¢, ¢,]and, by (ii) and (i), %(t) = A;¢-+a,in [8, ¢,], and for some constant
a; the hypothesis v(;) < v,(t,) implies also that v(?) < v;(t) for ¢ € [s, t,].
Indeed, if v;(?,) > v(%) for some ¢, €[8,1?,), then
0;(ty) = hety — A4(81) 1 0;(ts) — 04(20)
= 0y(to) + By (ty —tg) — A (2y) + Ac(L0) < v(2,) +
+ Rl (31 —1) < v(te) +Ry(t, —2,) = %(ty).

Theorefore, by II, #(t) =0 on [s,?,] and

&

Y, (t:) = X (8)— [ry(8)ds < 0

because ¥Y,;(s) =0 and r; > 0. This contradicts (1) and so the lemma is
proved.

COROLLARIES., Let n>j>¢t> 1.
IV. If A, = consiant on [1,,1;) then v; > v; on (i, t,).

V. If Xit,) =0 for some t,c[0,T) then 9v,(ty) = v;0,(2) = ...
« = P,(0s) = Vmag(ty) = ¢'(0).

VL. Ifv;(to) = v,(ty) for i, € [0, T') then X,;(t) = 0, v(fe) = vy, (%) = ...
L =,(t) and 80 X, ,(t) =... =X, (t) =0.

Proofs. IV: Note that, by Lemma 1, v(t,) > v(t,) and moreover,
for 1 (1, 1,),

0, (1) = RBy(t—1,) +25(8) > ho(t—ty) +0,(ty)
= h(t—1,) + Rty — A (%) = Rt — 4;(8) 2> byt — A, (1) = vy(1).
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V: Let us suppose the contrary: ;(t,) < v, (t,) < Dpax(t,) for some
k> 1. ByITandI, u; = 0on (¢, t,+¢c)foran ¢ > 0. Hence, for ¢ € (1,, t,+¢),
¢

¥;(t) =0— [r,(8)ds < 0, which contradicts (1).
to

VI: If X,(¢,) > O then, by (ii) of Theorem 1 and Corollary IV, v;({,)
> 2;(1,). This proves the first statement of VI.

To prove the second ome, let us suppose v,(t)) = v;(f,) < v,(¢,) for
some k > ¢. Then, by I, IT, v; < v, in (ty, t,+¢€) for an £> 0 and % =0

in this interval. Thus, for ¢ e (ty, t,+¢£), we have Y, (i) =0— f'r, (H<o.

This contradiction proves that v;(f,) = v;,,(%) = =9, (t.,) Now the
last equality ¥,,,(%) =... = Y,(f) = 0 follows form the first part of
this corollary.

A very interesting property of Y (¢) follows at once from Corollaries
V and VI

ProrosiTION 1. If Y,(1,) = 0 for t, € [0, T) then
Yi+1(to) = Yi+2(to) = e = Yn(to) =0.

This property means that if the inventory of the ¢th commodity
is zero then the inventories with greater holding costs are also equal to
Zero.

The next lemma will be of a more analytical character.

LEMMA 2. The functions v,(t) are continuous on [0, T).

Proof. In the proof we will consider three cases.

(a) Let t, € (0, T) and Y,({,) > 0. By (ii) of Theorem 1, v; is linear
in a neighbourhood of t, and 8o it is continuous.

(b) Let Y () =0 for ¢ =1,2,...,n and some ¢, € (0, T'). By III,
2(v, (1)) = %, () + ... +u,(t) and thus

ZY‘(t) _f{e(v (8) — Zr ()} ds.

{ml

The sum attains zero at t,, and so v,(t,) = ¢'(0) and moreover

r1(te) + .. Tn(to) < e(":’u(to)) a(”n(to—)) ri(te) + ..o +1p(2).

Therefore v,(f,) = v,(t,—). Hence, by Corollary V, v,(t,) = v,(1,)
= 0, (ty—) = %(t,—) and so, by I, v;(t,) = v,({,—) for all 4.

(¢) Let Y,(t,) =0 and Y,_;({;) > 0 for some ¢€{2,3,...,n} and

€ (0, T'). By Proposition 1, ¥,(1,) = 0 for j > ¢ and ¥,(%,) > 0 for j <.

Then, by Lemma 1 and Corollaries V, IV, v,(f) = ... = v,(1,) = ¢'(0)

and v;(2) = v;_; (1) > v;_;(t) in ({y—¢e,ty+¢) for j =2,...,4—1 and some
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e>0. Hepce %, =... =%,_, =0 in ({,—e¢,?,+¢). From this and II
it follows that

(%) 3(0,(8) = g+ ... +2y, D (f—e, ty+Fe).

Let us now suppose that ¢, is a discontinuity point of v,(t). This
means that

vn(to_) > vn(to+) = vn(tn) = ‘vi(to) = 17'-_1('50).

Since v;_,(?) is linear in a neighbourhood of t,, v, > 7,_, in (t,—7, t;)
for some 7, and so #;,_, = 0 in this interval. The function ¥,+Y,_,+ ...
. + ¥, attains zero at ?,, and so by (=) and the above remarks

(*x) a("n(to-)) = (Up+ ... F%) (Bo—) < 1p(te) + ... +1{l).

n
On the other hand, the inequality &(v,(t,)) < X r;({,) cannot hold
T
because it implies the same inequality in (¢,, f, +¢,) for an ¢ > 0, and s0
we would have

UpF eor FU < U+ oo0 FU U, =(V)< P+ ... 75

in (ty, t,+ &;); &5 = min (¢, €,). This is impossible because (¥, + ... +Y,) (t,)
= 0. From this and (x*) it follows that v,({,) = v,{{,—) and so as in (b),
vy(ty—) = v(t,) for j = n,n—1, ..., i. Moreover, the functions »_,, ..., v,
are continunous at ?, because they are linear in a neighbourhood of t,.

4. Relations between the elements of M
Let u,#%#eM and Y, ¥, v,% be corresponding inventories and adjoint

functions.

LEMMA 3. Let i =2,...,n and 4, €[0,T). If v,_;(t) = v,(1,) and
01 (b)) < 0y_1 (%) and Y (1) = X\, () = ... = X,(1) =0 for some 1>,

the'n 6{_1(t0) = 5'(t0)

Remark. Note that by Proposltlon 1 for ¢t € (0, T) one may put ¥,(t)
=0 instead of ¥;(t) = ¥,,,() =... =X, () =0.

Proof of Lemma 3. The proof will be by induction on t.
Let ¢ = n. Hypothesis o,_,(,) = v,({,) gives, by VI, Y, (?,) =0,
and so

(%) Tp () < é(v to) = a(vu-l(tl)))
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In fact, if 7,(t,) > &(v,(%)) then, for an &> 0,
to+e

Y, (t,+e) =0+ f (U (8) —ra (D)) @t < 0
)

since &(v,) = %+ ... +u, > u, and 7, > 0. For the proof of the lemma
let us assume for a moment that

(%%) 5n(to) > 9,5 (t).

Hence, by hypothesis and (-u), D (o) > 0,1 (B0) = Vi (t) = 0, (20)
> ¢ (v, (%y)). This gives %, = ... =%, , =0 in ({,—e, ,+¢) for an &> 0,
and so Yﬂ(to) > 0 since Y, (t,) =0 “would imply (9, (%)) = 7u(t).

Let ty, = inf{t > t,; X, (1) = 0}. By the hypothesis of the lemma 1
is well defmed On the interval (t,, t), 9,(t) = h,t+a, for some &,, and
80 ¥, > v, in this interval. Indeed, from o,(%,) > v,(f,) we get h.t,+a,
> hoto— A, (1), and thus a@, > —A1,() = —1,(2) for t € (t,, ty).

Morcover, by IV, ,(t) > 4,_,(t) for t € (fy, ;). Therefore in the in-
terval (t,, 2,)

Uy = 8(0,) > 6(0,) = Uy + ... U, = Uy
hence
t
0= Y,o(t) = To(te)+ [ (in(8) —7a(s))ds
to
)

> Yo(to)+ [ (4a(8) —ra(8))ds >0
to

This contradiction proves the lemma for ¢ = =.
Assume now that the lemma is true for ¢ =n,2-1,...,7+1. We
will prove it for ¢ = j. The hypothesis v;_,(t,) = v;(t,) gives v;_,(,) = ...
. = ,(%) and Y,(t,) = ... = ¥,() = 0. This implies

(*+*) Ty(to) + ... +7p(lg) < a(vj—l(to)) = a(”j(to))~

Indeed, if 7,(t) + ... +74(ts) > 8(v;_, (%)) then r,(t)+ ... +7,() > &(v,(2))
=+ ... +u, ()= ul)+... +u,(t)in a neighbourhood of ty, which
is impossible since Y,(t;) = ... = ¥, (%) = 0 and r,(%,) > 0.

As in the case { = n, the proof will be carried out by contradiction.
Let us suppose

9;_1(t0) < 9;(2).
Then

Ej(to) > '51-1 (to) = v;_,1 (L) = v;(2) = 0’(7'1(%) + ... +rn(to))y
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and 80 %; =%, =... =4#;_, = 0 in (¢y—e&,?,+¢) for an ¢ > 0. Moreove,
(#4) ¥,(te) > ¥,(t,) = O.
Indeed, if ¥,(t,) = 0 then &(,(t,)) = 8(,(ts)) = r5(fe) + ... +74(t,), because

3(0,) =u,+ -+, in (f,—e, 8+ ¢).
Let ¢, —1n1{t> to; Y,(t) = 0}. Then

(#5) 9, = h;i+ &, for an &, and o, > ¢,_; and 9, > v; on (1, 1)
as in the case ¢t = n.

Thus by the induction hypothesis on the interval [{,, t,,) if v; =0, 41
then o, = o,“, because we have @(t) > o,(t) for t e [t,, t,) and Y 1+1(%)
= =Y,(t) = 0.

In particular, for ¢ = i,,

(‘6) vj_l(to) - vj(t“), 50 v’(to) = 0f+l(t0) = 4 =‘U,,(3.) alld thllB aj(to)
= Gp1(te) = ... = F,(ty) and X, (t) = ¥;.(%) =0 for k =1,
2y m—].

Let & =sup{t, <t<1; v(t) = 0;,,(t).} Then
i

(*T) @) =0, =... =v,(), G@E) =06,,,() =... =0,() and
Yiul) = ... = T,(0) = ¥y () = ... = X,(B) = 0.
Let X = {t € (ty, 1,); v;{t) < 9;,,(1)}. The set X may be written as | (a;, b;)

U({, t,) where (aq, b)) < (8, §) with v;(a;) = v;,,(a)), ;(b;) = v;,,(b;) and
9;(t) < v;,,(?) for ¢ € (ay, b;). By the induction hypothesis

4 by
(#8) f(uj+l(s)+ cer U, (8))ds =f(ﬁj+1(s)+ oo+, (8))ds
% :
= [ (1) + oo +7,(8))ds.
9y
From Corollary II

(#9) 0=u;<% on L‘_}(a,, b))V, 1,).

On the set [?y, t,)\X we bave 9,(t) = v,,,(t) = ... = v,(?) 50 ,(2) = ¥;,,(1)
= ... = 0,(t) and by (*5)

(+10) T.(8) > v, (1) for te[ty, t)\X.
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By (#b) we have, moreover, #,+ ... +4,_, =0 on (f,,1%). Thus,
using (+6)—(«10), we obtain

7 7
[ (@) —wy(a))ds = [ (y(8) + ... +i(8)—uy(8)— ... —u,(8))ds
to

b

= [ @@—we)ds+ [ (3(5®) —d(r)(e)+

Y (agd) {(to.i’)\g(q.bm
+uy_,(8)+ ... +u1(s))ds =0.
Finally, from this and (»4), (»9) it follows that

7
0 = X,(t) = ¥,(te) + [ (W) —rs(8))ds+ [ (&, (8) —ry(8))ds
‘o 7

‘
- ‘0

i
> XY;(ty) + f(u,(s)—'r,(s))ds+ f (u;(8) —1;(8))ds > 0.
t 7

This contradiction proves the lemma.

Lemma 4. If 0,() > 9,(%,) for some 1, € [0, T), then ©,(1) > v,(t) on
[ty I), 2,(T'~) > 0,(T—) and Y1(t)+ voe +Xo(0) > 0 for t e (1, T).

Proof. Let us suppose that there exists a &' > ¢, such that t' € (t,, T']
and o,(t') =0,(t') if t' e (ty, T) or 0,(t'—) =v,(t'=) if ¢’ = T. Let

1, = sup{t < ty5 4,(1) = 2 (1)},
ty = inf{t>1,; 6,(0—) = v,(t—)}.
If the first set is empty then we put ¢, = 0.
Note that
(1) B1(t) > v:(t) on (fo, %);
() Yi(te) = Ty(ty) = ... = Yp(ly) =0.

If {, — O the last equality follows from the assumption. If 7, > 0 then
#,(t;) = 9,(t;) implies ¥,(¢) = 0. Indeed, if ¥Y,(f,)> 0 then

L) = L) =A() = =5 (t) +htg<h() in (4 G+7)
for some 9 > 0, and thus ¥, (t) < v,(t) fort € (4,, t, + ), which contradicts (i).
It may be noted, moreover, that
(iii) X,(ty) = Xo(ty) = ... = X, (ty) = 0.
To prove this let us observe that Z‘Z_1 (t) > 0 cannot hold in any left-
-hand neighbourhood of #,, because if ¥,(t)> 0 in (t, — 7, t;) for some
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"

n> 0 then (4 —7) > v,(ly —n) implies
Aty —)=2(8) —0) < A (ty — 1) < A (ty —),

which contradicts the definition of #,. Therefore there exists a sequence
ta—tyy t, < t, such that ¥,(,) = 0 and, by Proposition 1, ¥,(t,) = 0 for
j=1,2,...,n This gives equality (iii).
(iv) If v, = », on the interval [#;, ¢;') then &, = %, on this interval.
This follows from (i), (iii) and Lemma 3.
(v) 0 =4, <%, on {t; v, < v} < (B, 1y ).
(vi) The set {t&(ty,% ); ¥» = vy} has positive measure, betause
Y,(t,) =0 and r > 0,
(vii) 9y(ty) = v,(fg) = ... = v,(t;) because Yl(t",) = 0. Thus, by (iv),
01 (tg) = Ba(ty) = ... = B,(fp) and Y,y(tg) = ... = X, (&) = 0.
(viii) Let f = sup{t;te[te,f); 1(2) = v,(ty)}. Thus ¥Y,({) =...
v.. = Y, (f) = 0.By (iv)also #,(f) = ... = 6,(f); hence ¥,())=... = ¥, ()
=0,
Therefore, as in the proof of Lemma 3, we obtain:

A 7
(ix) [ (#ea(8) —ws(8))ds = [ {iy(8)+ oo +p(8)—uy(8) — ..o
to to
l")’
=t ()} ds+ [ (@) —uy(e))ds = [ (Gy(s)—uy(s))ds+
7 {te(ty, 1); 3>y}

[ 144

+ [ (0(6:(9) — 2(vu(s)))ds+ [ (Ea(s)—us(8))ds > 0.

{6 ©y=v5) t
The last inequality results from the following facts:
(a) Y (t)) = Y, (ty), Y;(8) =X,(f) =0 for i =2,3,...,n.
(b) {8 & (f, £); 0a(t) > 02(0)} = UJ (84, by), With v1(a)) = vs(a); 0a(B)
= v3(b;) and v,(t) > v,(t) for ¢ € (a,, b;). Therefore, by Lemma 3,

by pb by
[ (ug(8)+ ... +up(s))ds = [ (@a(e)+ ... + i (8))ds= [ (ra(s)+ ...
a¢ o ay

cee F7q(8))ds.

(¢) By (vi) the set {f € (ly,1); v, = v,} has positive measure, On this
set 7, (2) > v,(2) = v4(t) = 0'(0); thus 8(5,(2)) > 8(v,(t)).
(d) On every (a;, b;) and on (%, t,) we have 0 = u, < #%,.
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From (ix) we get
'6'
(x) 0 = ¥,(1y) = ¥y(%) + [ (ita(8)—7y(s))ds
t
ty
> Yy (0)+ [ (wa(8)—ri(8))ds = Y,(t) > 0.

t

This contradiction proves the first part of the lemma.

- For the second part it is sufficient to observe that putting ¥;(f;") = 0
for some t, € (t;, T1and { = 1,2, ..., n one may obtain the contradiction
Y.(t") > Y,(t;"). The proof may be carried out as in (i)~(x) by putting
t, instead of ¢;’. (In this case the observation (iii) follows at once from the
assumption ¥,(t;”) = 0.)

5. Optimal solution of (1)-(3)

So far we have considered the set M of functions #(-) which satisfy (1)
and (2) and for which there exist functions A(f) and »(¢) satisfying condi-
tions (i)—(iii}) of Theorem 1. (In Z. Lieber’s paper [4] such functions are
called extrapolation.)

It is clear of course that an optimal solution of (1)—(3) belongs to M.
Moreover, it is not difficult to see that an optimal solution #«(f) of (1)-(3)
has to satisfy the terminal conditions

T
(4) CY(T) = f(u,.(s)—r,.(s))ds =0 for $=1,2,...,n.

PrROPOSITION 2. Let nonnegative constants b, B be such that b < r,(3)+ ...

. +r, ()< B for t€[0,T]. Let v be an optimal solution of (1)—(3) and
let Y be the corresponding optimal inventory. Then, in any interval {1,,1;]
< [0, T] with t,—t, = (¢’(B)—c¢' (b)) /by, there exists a point t, such that

Yl(to) = Yz(to) = e = Yn(to) = 0.

Proof. The proof will be given by contradiction. Let us suppose that
[t,—1ts| = ¢'(B)—¢'(b) and Y,(t) > 0 for ¢ € [¢,,t,]. Let

t, = sup{t < t;; X,(¢) = 0},
t, =inf{t > t,; Y,(t) = 0}.

By conditions (2) and (4), (¥,(0) =0, ¥,(T) = 0) the points ¢, t, are
well defined and, by Proposition 1,

0= Ty(t]) = ... = T,(t)) = Yu(t)) = ... = T, (1)

29 — Banacn Center t. 14
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In the interval (i,1,), 9,(f) = h,t+a, for some a,. Since ¥,(t;) =0,
vy(8) = ... = 1,(13) = ¢’(0) and thus v,(¢) > ¢’(0) on (i;, t,).

The function ¥,+ ... +¥, attains zero at the points #; and 1;; so
we have

¢(v2(8)) = 8((va(8)) = 7a(8) + ..o +7,(1) =D
and
8o, (1, —)) < (v, (h—)) < ra(t) + ... +7,(t) < B.
Therefore

¢ (B)—o' (b) = ¢ (ra(t)+ +ov +75(t)) = ¢ [ru(t) + oo +r74(8))
= "1(t;“)—”1(t;) = hl(t;—t;) > hy(ts—1,),

which contradicts the hypothesis and proves the proposition.

6. Horizon in dynamic family

So far we have dealt with one fixed problem (1)-(3).

Now let us assume that a family of problems (1)—(3) is given. It is
known that demand r is a continuous positive vector funection defined
in [0, +00) such that 0 <b<<ry(t)+ ... +7,(¢) < B for some known
constants b, B (which are independent of t and r). The class of such demand
functions will be denoted by R. A family F of problems (1)-(3) indexed
by positive numbers T and functions » € K will be called a dynamic family
with dynamic parameters T and r. Let up, be the optimal solution of
(1)—(3) for parameters T and r.

In the following an important property of optimal solutions of prob-
lems from F will be given. For this purpose the following definition of
a horizon due to Blikle and Y.06 [3] will be adopted.

DEFINITION. The number H > 0 is called a horizon for the dynamic
family F if, for all parameters T, T*, for all parameters r, r* € R such that
H<T<T' andr =r*on [0,T), and for all u,,, there exists a um .
such that

Up, (1) = Upe,e(t) for te[0,T-H).

Remarks. (a) By definition, if H is a horizon then any number H, > H
is also a horizon.

(b) Note that if a horizon H is known then for T* sufficiently large
an optimal solution %, on a subinterval [0, T—H) may be obtained
independently of the shape of the function 7* on the interval [T, T*).
It is sufficient to know the demand only on the subinterval [0, T).
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(¢) The existence of a horizon for one commodity problem follows
at once from Proposition 2 and the Optimality Principle. This fact was
proved in a different way in [3]. We will now prove a similar theorem in
our more complicated multicommodity problem.

THEOREM 2. Any number H > (¢'(B)—c’(b))/h, is a horizon for the
dynamic family F.

1
Proof. Let us consider H, T, T* such that —h—(c'(B)—c'(b)) <H
1

< T < T* and r, ¥* such that r = r* on the interval [0, T'). For simplicity,
put %* = Ugpe . and v = up,. Similarly, for the corresponding inventories,
put ¥* = ¥y ,.and ¥ = Y. Since ¥* and Y are optimal inventories,
by (4), Y(T) = Y*(T*) = 0. Moreover, by Proposition 2, there cxist
t,ta€[T—H,T] such that Y*(1,) = Y({,) = 0.

(a) If ¢, = ¢, then, by the Optimality Principle, the function

Lo fu) o [0,1),
v “)—{u*(t) on [t T

is the optimal solution (1)-(3) for parameters T* and *. This proves the
theorem in this case.

(b) Let us note that Y (T) = 0. So if ¥YI(T) = 0 then, by Prop. 1,
Y*(T) = 0, and putting ¢, =t, = T we have case (a).

(¢) Therefore let us suppose Y;(T)> 0 and let us take ¢, = T and
t,e[T—-H,T). Itis clear that v, u* e M (T, r). Let v, v* be the corresponding
adjoint variables defined by the conditions of Theorem 1 for # and wu*.
By Lemma 4 v, (%) > v} (¢) cannot hold for any ¢ € [0, T) because Y (7T) = 0.
Thus o,(!) < v}(t) on [0,T). Moreover, from the equality Y*({,) = 0
and Lemma 4 we obtain v,(t) = #}(t) on [0, t,]. Because ¥*(¢,) = Y (T)
= 0, and v, = v} on [0,?,], by Lemma 3 we get

{t € [0,4,]; o,(t) = v,(t)} = {t € [0, 1,]; o}(8) = o}(1)} = X.

Note that ¢ = 0 and ¢t = ¢, belong to X. For ¢ = 0 it follows at once from
the assumption that ¥ (0) = ¥*(0) = 0. Let us consider the case 1 =1¢,.

By Y*(t,) =0 we have o](f;) = v3(t,) = ... =v5(t,). Thus o}(1,)
= 9,(1,) and Y(T) = 0 implies, by Lemma 3, v,(¢,) = v:(t) = ... = 2,(t;)
=2](t) = ... = v5(t),andsot, € X. Hence Y (t,) = Y3(t,) = ... = Y (t;)

= Ya(tl) = e — Yﬂ,(tl) = O-
The set [0, ¢,]\X may be written as ) (a;, b;) with
T

01(a;) = vy(a;) = 'u}'(a,-) =v3(a), (b)) = ‘Uz(b;) = 'v:(bt) = ”:(bi);

v, > 1y, Vy>0; on (a;,b).
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Thus
bg bq _
f(uz(s)+ oo U, (8))ds = f (w3 () + ... +un(s))ds,
a; a4
f(uz(s)+ e U, (8))ds = f (w3 (8)+ ... +up(s))ds.
Hence

f(u,(s)-}— oo Fu,(8))ds = fu;(8)+ oo +un(s)ds.
X X

On every interval (a,, b;) we have u, = u] = 0 because v, > v, and v; > o].
Therefore
|
juz(s)ds = [e(or () —uz(8)— ... —un(s)
0 x
b
= f(é(vn(s))—uz(s)— —un(s))ds = f uy(8)ds.
X

By this we conclude that Y;(f,) = 0 implies Y,(,) = 0. Thus, by (a),
we have proved Theorem 2.

References

[1] K. J. Arrow and S. Karlin, Production over time with increasing marginal costs,
Studies in the Mathematical Theory of Inventory and Production, S8tanford Uni-
versity Press, 1958.

{2] A. Bensoussan, E. G. Hurst, Jr. and B. Naslund, Manaegement Applications
of Modern Control Theory, North-Holland, 1974.

(3] A. Blikle and J. Lod, Horicon in dynamic programs with continuous time, Bull.
Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 513-519.

[4] Z. Lieber, An extension lo Modigliani and Hohn's planning horizon results, Mana-
gement Seci. 20 (1973), 319-330.

{6] F. Modigliani and F. Hohn, Production planning over time and nature of the
expectations and planning horison, Econometrica 23 (1955), 46-66.

[6] R. Rempatla, 4 dynamic programming problem for lwo-commodity inventory model,
in: New Trends in Dynamic System Theory and Economics, Academic Press,
New York 1979, 269-280,



