DYNAMIC FAMILY OF MULTICOMMODITY INVENTORY PROBLEMS

RYSZARDA REMPAŁA

Institute of Mathematics, Polish Academy of Sciences, Warszawa, Poland

1. Introduction

A generalization of the Arrow and Karlin [1] model is considered. It is assumed that n commodities are produced. These commodities are identical with respect to production cost and different with respect to holding cost. The demand functions are positive and initial inventories are zero.

For a fixed planning interval [0, T] and given demand functions an optimization problem is investigated. Some qualitative properties of optimal solutions are given.

Next the endpoint T of the planning interval [0, T] and the demand functions are treated as dynamical parameters. The family of multicommodity inventory problems is considered.

The main problem which arises here is the following: what information about dynamical parameters is needed in order to obtain a solution which is optimal on a certain time interval [0, a) for all problems in the family? In this direction we establish the existence of a horizon in the sense of Modigliani and Hohn [5] and Blikle and Łoś [3].

The same problem for one commodity model was investigated in the above-mentioned papers [5], [3] and for one commodity model with backlogging in Z. Lieber's paper [4]. The problem for two commodities was treated in the author's paper [6].

In this paper the general n-commodities case is considered. In Section 2 the single optimization problem is described and all technical assumptions are introduced. The problem is formulated as a control problem with state space constraints. Control and state variables are, respectively, the rate of production and the level of inventory. In Theorem 1 some necessary optimality conditions obtained by the maximum principle are formulated. In Section 3 several properties of adjoint functions as well as of admissible solutions satisfying the maximum principle are given.

440 R. REMPALA

Some of these properties have a very clear interpretation. For instance, Proposition 1 tells that if the optimal level of the inventory of a commodity is zero then also the optimal levels of inventories with greater holding costs are zero. Section 4 is rather of an auxiliary character. Lemmas 3 and 4 are used in the proof of the main result, i.e., of Theorem 2, which is given in Section 6. Proposition 2 of Section 5 is also used in the proof of Theorem 2. Moreover, Proposition 2 has a very clear interpretation. Namely, it states that in every sufficiently large time interval there exists a point at which the levels of the optimal inventories of all commodities are equal to zero. The last section contains the definition of a horizon and the proof of Theorem 2.

2. Multicommodity inventory problem

The problem is formulated as an optimal control problem.

Let the vector of inventories $Y(t) = [Y_1(t), ..., Y_n(t)]$ be the state variable and let the rate of production $u(t) = [u_1(t), ..., u_n(t)]$ be the control variable. The state space constraints and the control space constraints are:

(1)
$$Y_i(t) \ge 0$$
, $u_i(t) \ge 0$, $i = 1, 2, ..., n$.

Let $r(t) = [r_1(t), ..., r_n(t)]$, the rate of demand, be a continuous and strictly positive function. The differential equations governing the behaviour of the inventory are

(2)
$$\dot{Y}(t) = u(t) - r(t); \quad Y(0) = 0.$$

The cost functional is given by the formula

(3)
$$F(u; r, T) = \int_{0}^{T} \left\{ c \left(a_{1} u_{1}(t) + \ldots + a_{n} u_{n}(t) \right) + h_{1} Y_{1}(t) + \ldots + h_{n} Y_{n}(t) \right\} dt,$$

where $c(\cdot)$ is assumed to be increasing, strictly convex and twice continuously differentiable; a_i and h_i are some positive constants.

For fixed r and T the problem is to schedule the production plan u(t) so as to minimize the cost functional F under the constraints (1) and (2).

The main problem of this paper is to give some property of the family of problems (1)-(3) indexed by T and r. For this purpose we first fix the function r and number T.

It is easy to see that without any loss of generality we may assume $a_1 = a_2 = \ldots = a_n = 1$ in (1)-(3). This will be done in the sequel.

In this paper we assume that $h_1 < h_2 < ... < h_n$ and $Y_i(0) = 0$. Let us now suppose that the function u is in $L^2(0, T; \mathbb{R}^n)$ and Y belongs to $H^1(0, T; \mathbb{R}^n)$. By the maximum principle (cf. Bensoussan et al. [2]) the following theorem may easily be obtained.

THEOREM 1. If $u \in L^2(0, T; \mathbb{R}^n)$ is an optimal solution of problem (1)-(3), then there exist functions λ_i , i = 1, 2, ..., n, such that

- (i) λ_i is non-decreasing and right-continuous,
- (ii) λ_i is constant in any time interval on which

$$Y_i(t) = \int_0^t (u_i(\tau) - r_i(\tau)) d\tau > 0,$$

$$\begin{aligned} & \max_{w_1, \dots, w_n \geqslant 0} \left[v_1(t) w_1 + \dots + v_n(t) w_n - c(w_1 + \dots + w_n) \right] \\ & = v_1(t) u_1(t) + \dots + v_n(t) u_n(t) - c \left(u_1(t) + \dots + u_n(t) \right) \end{aligned}$$

where $v_{i}(t) = h_{i}t - \lambda_{i}(t), i = 1, 2, ..., n$.

In the following we will consider the set M of functions $u \in L^2$ (not necessarily optimal) satisfying conditions (1)-(2) and such that there exist functions λ_i (and so also v_i) satisfying (i)-(iii) of Theorem 1.

3. Properties of elements of M and related functions

Let $u \in M$, Y be given by (2) and let v(t) satisfy (i)-(iii) of Theorem 1. It is easy to obtain the following

COROLLARIES. I. At every point $t \in (0, T)$ the function r_i has both one-side limits and

$$v_{i}(t-) \geqslant v_{i}(t+) = v_{i}(t)$$
.

II. If $v_i(t_0) < \max(v_1(t_0), \ldots, v_n(t_0))$ then $u_i = 0$ in $(t_0, t_0, +\varepsilon)$ for some $\varepsilon > 0$.

III.
$$u_1 + \ldots + u_n = \partial (\max(v_1, \ldots, v_n))$$
 where

$$\hat{c}(z) = \begin{cases} 0 & \text{for} \quad z < c'(0), \\ (c')^{-1}(z) & \text{for} \quad z \geqslant c'(0). \end{cases}$$

In the sequel $\max(v_1, \ldots, v_n)$ will be denoted by v_{\max} .

For the proof of Π and Π let W denote the set of vectors $w = (w_1, \ldots, w_n)$ which maximize the left-hand side of (iii). Let $I = \{i: v_i(t_0) = v_{\max}(t_0)\}$. Statement Π follows from the easy observation that, for every $\overline{w} \in W$, if $i \notin I$ then $\overline{w}_i = 0$. By this remark it is sufficient to consider

the expression

$$\max_{w_i \geqslant 0, i \in I} \left\{ v_{\max}(t_0) \cdot \sum_{i \in I} w_i - c \left(\sum_{i \in I} w_i \right) \right\}$$

instead of the left-hand side of (iii). From this III follows immediately.

LEMMA 1. If j > i then $v_i \geqslant v_i$ on [0, T).

For the proof let us suppose that there exists a $t_1 \in [0, T)$ with $v_j(t_1) < v_i(t_1)$. Then by I this inequality holds in $[t_1, t_1 + \varepsilon)$ for some $\varepsilon > 0$. Thus, by II, $u_j = 0$ in $(t_1, t_1 + \varepsilon)$ and

$$Y_j(t_1) = Y_j(t) + \int_{t_1}^t r_j(s) ds > 0$$

because $r_j > 0$ and $Y_j \ge 0$. Let $s = \sup\{t < t_1; Y_j(t) = 0\}$. Thus $Y_j(t) > 0$ on $(s, t_1]$ and, by (ii) and (i), $v_j(t) = h_j t + a_j$ in $[s, t_1]$, and for some constant a_j the hypothesis $v_j(t_1) < v_i(t_1)$ implies also that $v_j(t) < v_i(t)$ for $t \in [s, t_1]$. Indeed, if $v_j(t_0) \ge v_j(t_0)$ for some $t_0 \in [s, t_1)$, then

$$\begin{split} v_i(t_1) &= h_i t_1 - \lambda_i(t_1) + v_i(t_0) - v_i(t_0) \\ &= v_i(t_0) + h_i(t_1 - t_0) - \lambda_i(t_1) + \lambda_i(t_0) \leqslant v_i(t_0) + \\ &\quad + h_i(t_1 - t_0) \leqslant v_i(t_0) + h_i(t_1 - t_0) = v_i(t_1). \end{split}$$

Theorefore, by Π , $u_i(t) = 0$ on $[s, t_1]$ and

$$Y_j(t_1) = Y_j(s) - \int\limits_{-\infty}^{t_1} r_j(s) ds < 0$$

because $Y_j(s) = 0$ and $r_j > 0$. This contradicts (1) and so the lemma is proved.

COROLLARIES. Let $n \geqslant j > i \geqslant 1$.

IV. If $\lambda_i = constant$ on $[t_1, t_2)$ then $v_i > v_i$ on (t_1, t_2) .

V. If $Y_i(t_0) = 0$ for some $t_0 \in [0, T)$ then $v_i(t_0) = v_{i+1}(t_0) = \dots = v_n(t_0) = v_{\max}(t_0) \ge c'(0)$.

VI. If $v_j(t_0) = v_i(t_0)$ for $t_0 \in [0, T)$ then $Y_j(t_0) = 0$, $v_i(t_0) = v_{i+1}(t_0) = \dots = v_n(t_0)$ and so $Y_{i+1}(t_0) = \dots = Y_n(t_0) = 0$.

Proofs. IV: Note that, by Lemma 1, $v_j(t_1) \ge v_i(t_1)$ and moreover, for $t \in (t_1, t_2)$,

$$\begin{split} v_j(t) &= h_j(t-t_1) + v_j(t_1) > h_i(t-t_1) + v_i(t_1) \\ &= h_i(t-t_1) + h_it_1 - \lambda_i(t_1) = h_it - \lambda_i(t_1) \geqslant h_it - \lambda_i(t) = v_i(t). \end{split}$$

V: Let us suppose the contrary: $v_i(t_0) < v_k(t_0) \le v_{\max}(t_0)$ for some k > i. By Π and I, $u_i = 0$ on $(t_0, t_0 + \varepsilon)$ for an $\varepsilon > 0$. Hence, for $t \in (t_0, t_0 + \varepsilon)$, $Y_i(t) = 0 - \int_{t_0}^{t} r_i(s) ds < 0$, which contradicts (1).

VI: If $Y_j(t_0) > 0$ then, by (ii) of Theorem 1 and Corollary IV, $v_j(t_0) > v_i(t_0)$. This proves the first statement of VI.

To prove the second one, let us suppose $v_j(t_0) = v_i(t_0) < v_k(t_0)$ for some k > i. Then, by I, II, $v_j < v_k$ in $(t_0, t_0 + \varepsilon)$ for an $\varepsilon > 0$ and $u_j = 0$ in this interval. Thus, for $t \in (t_0, t_0 + \varepsilon)$, we have $Y_j(t) = 0 - \int_{t_0}^t r_j(t) < 0$. This contradiction proves that $v_i(t_0) = v_{i+1}(t_0) = \ldots = v_n(t_0)$. Now the last equality $Y_{i+1}(t_0) = \ldots = Y_n(t_0) = 0$ follows form the first part of this corollary.

A very interesting property of Y(t) follows at once from Corollaries V and VI.

Proposition 1. If $Y_i(t_0) = 0$ for $t_0 \in [0, T)$ then

$$Y_{i+1}(t_0) = Y_{i+2}(t_0) = \ldots = Y_n(t_0) = 0.$$

This property means that if the inventory of the *i*th commodity is zero then the inventories with greater holding costs are also equal to zero.

The next lemma will be of a more analytical character.

LEMMA 2. The functions $v_{\ell}(t)$ are continuous on [0, T).

Proof. In the proof we will consider three cases.

- (a) Let $t_0 \in (0, T)$ and $Y_i(t_0) > 0$. By (ii) of Theorem 1, v_i is linear in a neighbourhood of t_0 and so it is continuous.
- (b) Let $Y_i(t_0) = 0$ for i = 1, 2, ..., n and some $t_0 \in (0, T)$. By III, $\partial(v_n(t)) = u_1(t) + ... + u_n(t)$ and thus

$$\sum_{i=1}^{n} Y_{i}(t) = \int_{0}^{t} \left\{ \hat{c}\left(v_{n}(s)\right) - \sum_{i=1}^{n} r_{i}(s) \right\} ds.$$

The sum attains zero at t_0 , and so $v_n(t_0) \ge c'(0)$ and moreover

$$r_1(t_0)+\ldots+r_n(t_0)\leqslant \partial(v_n(t_0))\leqslant \partial(v_n(t_0-))\leqslant r_1(t_0)+\ldots+r_n(t_0).$$

Therefore $v_n(t_0) = v_n(t_0-)$. Hence, by Corollary V, $v_i(t_0) = v_n(t_0) = v_n(t_0-) \geqslant v_i(t_0-)$ and so, by I, $v_i(t_0) = v_i(t_0-)$ for all i.

(c) Let $Y_i(t_0) = 0$ and $Y_{i-1}(t_0) > 0$ for some $i \in \{2, 3, ..., n\}$ and $t_0 \in (0, T)$. By Proposition 1, $Y_j(t_0) = 0$ for j > i and $Y_j(t_0) > 0$ for j < i.

Then, by Lemma 1 and Corollaries V, IV, $v_n(t_0) = \ldots = v_i(t_0) \ge c'(0)$ and $v_i(t) \ge v_{i-1}(t) > v_{i-j}(t)$ in $(t_0 - \varepsilon, t_0 + \varepsilon)$ for $j = 2, \ldots, i-1$ and some

 $\varepsilon > 0$. Hence $u_1 = \ldots = u_{t-2} = 0$ in $(t_0 - \varepsilon, t_0 + \varepsilon)$. From this and III it follows that

(*)
$$\hat{c}(v_n(t)) = u_n + \ldots + u_{i-1} \quad \text{in} \quad (t_0 - \varepsilon, t_0 + \varepsilon).$$

Let us now suppose that t_0 is a discontinuity point of $v_n(t)$. This means that

$$v_n(t_0-) > v_n(t_0+) = v_n(t_0) = v_i(t_0) \geqslant v_{i-1}(t_0).$$

Since $v_{i-1}(t)$ is linear in a neighbourhood of t_0 , $v_n > v_{i-1}$ in $(t_0 - \eta, t_0)$ for some η , and so $u_{i-1} = 0$ in this interval. The function $Y_n + Y_{n-1} + \dots + Y_i$ attains zero at t_0 , and so by (*) and the above remarks

$$(**) \qquad \hat{\sigma}(v_n(t_0-)) = (u_n + \ldots + u_i) (t_0-) \leqslant r_n(t_0) + \ldots + r_i(t_0).$$

On the other hand, the inequality $\hat{c}(v_n(t_0)) < \sum_i^n r_j(t_0)$ cannot hold because it implies the same inequality in $(t_0, t_0 + \varepsilon_1)$ for an $\varepsilon_1 > 0$, and so we would have

$$u_n + \ldots + u_i \leq u_n + \ldots + u_i + u_{i-1} = \hat{c}(v_n) < r_n + \ldots + r_i$$

in $(t_0, t_0 + \varepsilon_2)$; $\varepsilon_2 = \min(\varepsilon, \varepsilon_1)$. This is impossible because $(Y_n + \ldots + Y_i)$ $(t_0) = 0$. From this and (**) it follows that $v_n(t_0) = v_n(t_0 -)$ and so as in (b), $v_j(t_0 -) = v_j(t_0)$ for $j = n, n-1, \ldots, i$. Moreover, the functions v_{i-1}, \ldots, v_1 are continuous at t_0 because they are linear in a neighbourhood of t_0 .

4. Relations between the elements of M

Let $u, \tilde{u} \in M$ and $Y, \tilde{Y}, v, \tilde{v}$ be corresponding inventories and adjoint functions.

LEMMA 3. Let $i=2,\ldots,n$ and $t_0 \in [0,T)$. If $v_{i-1}(t_0) = v_i(t_0)$ and $v_{i-1}(t_0) \leqslant \tilde{v}_{i-1}(t_0)$ and $\tilde{Y}_i(t) = \tilde{Y}_{i+1}(t) = \ldots = \tilde{Y}_n(t) = 0$ for some $t > t_0$, then $\tilde{v}_{i-1}(t_0) = \tilde{v}_i(t_0)$.

Remark. Note that by Proposition 1 for $t \in (0, T)$ one may put $\tilde{Y}_i(t) = 0$ instead of $\tilde{Y}_i(t) = \tilde{Y}_{i+1}(t) = \dots = \tilde{Y}_n(t) = 0$.

Proof of Lemma 3. The proof will be by induction on i. Let i=n. Hypothesis $v_{n-1}(t_0)=v_n(t_0)$ gives, by VI, $Y_n(t_0)=0$, and so

$$(*) r_n(t_0) \leqslant \hat{c}\left(v_n(t_0)\right) = \hat{c}\left(v_{n-1}(t_0)\right).$$

In fact, if $r_n(t_0) > \hat{c}(v_n(t_0))$ then, for an $\epsilon > 0$,

$$Y_n(t_0+\varepsilon) = 0 + \int_{t_0}^{t_0+\varepsilon} \left(u_n(t) - r_n(t)\right) dt < 0$$

since $\hat{c}(v_n) = u_1 + \ldots + u_n \ge u_n$ and $r_n > 0$. For the proof of the lemma let us assume for a moment that

$$\tilde{v}_{n}(t_{0}) > \tilde{v}_{n-1}(t_{0}).$$

Hence, by hypothesis and (*), $\tilde{v}_n(t_0) > \tilde{v}_{n-1}(t_0) \ge v_{n-1}(t_0) = v_n(t_0)$ $\ge c'(r_n(t_1))$. This gives $\tilde{u}_1 = \ldots = \tilde{u}_{n-1} = 0$ in $(t_0 - \varepsilon, t_0 + \varepsilon)$ for an $\varepsilon > 0$, and so $\tilde{Y}_n(t_0) > 0$ since $\tilde{Y}_n(t_0) = 0$ would imply $\delta(\tilde{v}_n(t_0)) = r_n(t_0)$.

Let $t_0' = \inf\{t > t_0; \tilde{X}_n(t) = 0\}$. By the hypothesis of the lemma t_0' is well defined. On the interval $(t_0, t_0'), \tilde{v}_n(t) = h_n t + \tilde{a}_n$ for some \tilde{a}_n , and so $\tilde{v}_n > v_n$ in this interval. Indeed, from $\tilde{v}_n(t_0) > v_n(t_0)$ we get $h_n t_0 + \tilde{a}_n > h_n t_0 - \lambda_n(t_0)$, and thus $\tilde{a}_n > -\lambda_n(t_0) \ge -\lambda_n(t)$ for $t \in (t_0, t_0')$.

Moreover, by IV, $\tilde{v}_n(t) > \tilde{v}_{n-1}(t)$ for $t \in (t_0, t'_0)$. Therefore in the interval (t_0, t'_0)

$$\tilde{u}_n = \partial(\tilde{v}_n) > \partial(v_n) = u_1 + \ldots + u_n \geqslant u_n;$$

hence

$$\begin{split} 0 &= \tilde{Y}_n(t_0') = \tilde{Y}_n(t_0) + \int\limits_{t_0}^{t_0'} \left(\tilde{u}_n(s) - r_n(s) \right) ds \\ &> Y_n(t_0) + \int\limits_{t_0}^{t_0'} \left(u_n(s) - r_n(s) \right) ds \geqslant 0 \,. \end{split}$$

This contradiction proves the lemma for i = n.

Assume now that the lemma is true for i = n, n-1, ..., j+1. We will prove it for i = j. The hypothesis $v_{j-1}(t_0) = v_j(t_0)$ gives $v_{j-1}(t_0) = ... = v_n(t_0)$ and $Y_i(t_0) = ... = Y_n(t_0) = 0$. This implies

$$(*_{\bullet}^{\bullet}) r_{j}(t_{0}) + \ldots + r_{n}(t_{0}) \leqslant \hat{c}(v_{j-1}(t_{0})) = \hat{c}(v_{j}(t_{0})).$$

Indeed, if $r_j(t_0) + \ldots + r_n(t_0) > \partial(v_{j-1}(t_0))$ then $r_j(t) + \ldots + r_n(t) > \partial(v_n(t))$ = $u_1(t) + \ldots + u_n(t) \ge u_j(t) + \ldots + u_n(t)$ in a neighbourhood of t_0 , which is impossible since $Y_i(t_0) = \ldots = Y_n(t_0) = 0$ and $r_j(t_0) > 0$.

As in the case i = n, the proof will be carried out by contradiction. Let us suppose

$$\tilde{\boldsymbol{v}}_{j-1}(t_0) < \tilde{\boldsymbol{v}}_j(t_0).$$

Then

$$\tilde{v}_j(t_0) > \tilde{v}_{j-1}(t_0) \geqslant v_{j-1}(t_0) = v_j(t_0) \geqslant c'(r_j(t_0) + \ldots + r_n(t_0)),$$

446 R. REMPALA

and so $\tilde{u}_1 = \tilde{u}_2 = \ldots = \tilde{u}_{j-1} = 0$ in $(t_0 - \varepsilon, t_0 + \varepsilon)$ for an $\varepsilon > 0$. Moreover, $\tilde{Y}_j(t_0) > Y_j(t_0) = 0.$

Indeed, if $\tilde{Y}_j(t_0) = 0$ then $\hat{c}(\tilde{v}_j(t_0)) = \hat{c}(\tilde{v}_n(t_0)) = r_j(t_0) + \ldots + r_n(t_0)$, because $\hat{c}(\tilde{v}_n) = \tilde{u}_j + \ldots + \tilde{u}_n$ in $(t_0 - \varepsilon, t_0 + \varepsilon)$.

Let $t'_0 = \inf\{t > t_0; \ \tilde{Y}_j(t) = 0\}$. Then

(*5) $\tilde{v}_j = h_j t + \tilde{a}_j$ for an \tilde{a}_j and $\tilde{v}_j > \tilde{v}_{j-1}$ and $\tilde{v}_j > v_j$ on (t_0, t'_0) as in the case i = n.

Thus by the induction hypothesis on the interval $[t_0, t'_0]$ if $v_j = v_{j+1}$ then $\tilde{v}_j = \tilde{v}_{j+1}$, because we have $\tilde{v}_j(t) > v_j(t)$ for $t \in [t_0, t'_0]$ and $\tilde{X}_{j+1}(t'_0) = \dots = \tilde{X}_n(t'_0) = 0$.

In particular, for $t = t_0$,

(*6) $v_{j-1}(t_0) = v_j(t_0)$, so $v_j(t_0) = v_{j+1}(t_0) = \dots = v_n(t_0)$ and thus $\tilde{v}_j(t_0) = \tilde{v}_{j+1}(t_0) = \dots = \tilde{v}_n(t_0)$ and $\tilde{Y}_{j+k}(t_0) = Y_{j+k}(t_0) = 0$ for k = 1, $2, \dots, n-j$.

Let $\tilde{t} = \sup_{t} \{t_0 \leqslant t \leqslant t'_0; \ v_j(t) = v_{j+1}(t).\}$ Then

$$\begin{array}{ll} (*7) & v_j(\overline{t}) = v_{j+1}(\overline{t}) = \ldots = v_n(\overline{t}), & \tilde{v}_j(t) = \tilde{v}_{j+1}(t) = \ldots = \tilde{v}_n(t) \text{ and} \\ & Y_{j+1}(\overline{t}) = \ldots = Y_n(\overline{t}) = \tilde{Y}_{j+1}(\overline{t}) = \ldots = \tilde{Y}_n(\overline{t}) = 0. \end{array}$$

Let $X = \{t \in (t_0, t'_0); v_j(t) < v_{j+1}(t)\}$. The set X may be written as $\bigcup (a_i, b_i) \cup (\tilde{t}, t'_0)$ where $(a_i, b_i) \subset (t_0, \tilde{t})$ with $v_j(a_i) = v_{j+1}(a_i)$, $v_j(b_i) = v_{j+1}(b_i)$ and $v_j(t) < v_{j+1}(t)$ for $t \in (a_i, b_i)$. By the induction hypothesis

(*8)
$$\int_{a_{i}}^{b_{i}} (u_{j+1}(s) + \dots + u_{n}(s)) ds = \int_{a_{i}}^{b_{i}} (\tilde{u}_{j+1}(s) + \dots + \tilde{u}_{n}(s)) ds$$
$$= \int_{a_{i}}^{b_{i}} (r_{j+1}(s) + \dots + r_{n}(s)) ds.$$

From Corollary II

$$(*9) 0 = u_j \leqslant \tilde{u}_j \text{on} \bigcup_i (a_i, b_i) \cup (\tilde{t}, t_0).$$

On the set $[t_0, t'_0) \setminus X$ we have $v_j(t) = v_{j+1}(t) = \dots = v_n(t)$ so $\tilde{v}_j(t) = \tilde{v}_{j+1}(t) = \dots = \tilde{v}_n(t)$ and by (*5)

(*10)
$$\tilde{v}_n(t) > v_n(t)$$
 for $t \in [t_0, t'_0) \setminus X$.

By (*5) we have, moreover, $\tilde{u}_1 + \ldots + \tilde{u}_{j-1} = 0$ on (t_0, t'_0) . Thus, using (*6)-(*10), we obtain

$$\int_{t_0}^{\tilde{t}} \left(\tilde{u}_j(s) - u_j(s) \right) ds = \int_{t_0}^{\tilde{t}} \left(\tilde{u}_j(s) + \ldots + \tilde{u}_n(s) - u_j(s) - \ldots - u_n(s) \right) ds$$

$$= \int_{\bigcup_i (a_i,b_i)} \left(\tilde{u}_j(s) - u_j(s) \right) ds + \int_{\{(t_0,\tilde{t}) \setminus \bigcup_i (a_i,b_i)\}} \left(\delta \left(\tilde{v}_n(s) \right) - \delta \left(v_n(s) \right) + u_{j-1}(s) + \ldots + u_1(s) \right) ds \ge 0.$$

Finally, from this and (*4), (*9) it follows that

$$\begin{split} 0 &= \tilde{Y}_{j}(t'_{0}) = \tilde{Y}_{j}(t_{0}) + \int_{t_{0}}^{\tilde{t}} \left(\tilde{u}_{j}(s) - r_{j}(s) \right) ds + \int_{\tilde{t}}^{t'_{0}} \left(\tilde{u}_{j}(s) - r_{j}(s) \right) ds \\ &> Y_{j}(t_{0}) + \int_{t_{0}}^{\tilde{t}} \left(u_{j}(s) - r_{j}(s) \right) ds + \int_{\tilde{t}}^{t'_{0}} \left(u_{j}(s) - r_{j}(s) \right) ds \geqslant 0 \,. \end{split}$$

This contradiction proves the lemma.

LEMMA 4. If $\tilde{v}_1(t_0) > v_1(t_0)$ for some $t_0 \in [0, T)$, then $\tilde{v}_1(t) > v_1(t)$ on $[t_0, T)$, $\tilde{v}_1(T-) > v_1(T-)$ and $\tilde{Y}_1(t) + \ldots + \tilde{Y}_n(t) > 0$ for $t \in (t_0, T]$.

Proof. Let us suppose that there exists a $t' > t_0$ such that $t' \in (t_0, T]$ and $\tilde{v}_1(t') = v_1(t')$ if $t' \in (t_0, T)$ or $\tilde{v}_1(t'-) = v_1(t'-)$ if t' = T. Let

$$t'_0 = \sup\{t \leqslant t_0; \ \tilde{v}_1(t) = v_1(t)\},$$

 $t''_0 = \inf\{t \geqslant t_0; \ \tilde{v}_1(t-) = v_1(t-)\}.$

If the first set is empty then we put $t'_0 = 0$.

Note that

(i) $\tilde{v}_1(t) > v_1(t)$ on (t'_0, t''_0) ;

(ii)
$$Y_1(t_0') = Y_2(t_0') = \ldots = Y_n(t_0') = 0.$$

If $t_0' = 0$ the last equality follows from the assumption. If $t_0' > 0$ then $\tilde{v}_1(t_0') = \tilde{v}_1(t_0')$ implies $Y_1(t_0') = 0$. Indeed, if $Y_1(t_0') > 0$ then

$$\lambda_1(t) = \lambda_1(t_0') = \tilde{\lambda}_1(t_0') = -\tilde{v}_1(t_0') + h_1t_0' \leqslant \tilde{\lambda}_1(t)$$
 in $(t_0', t_0' + \eta)$

for some $\eta > 0$, and thus $\bar{v}_1(t) \leqslant v_1(t)$ for $t \in (t'_0, t'_0 + \eta)$, which contradicts (i). It may be noted, moreover, that

(iii)
$$\tilde{Y}_1(t_0'') = \tilde{Y}_2(t_0'') = \ldots = \tilde{Y}_n(t_0'') = 0.$$

To prove this let us observe that $\tilde{Y}_1(t) > 0$ cannot hold in any left-hand neighbourhood of t_0'' , because if $\tilde{Y}_1(t) > 0$ in $(t_0'' - \eta, t_0'')$ for some

 $\eta > 0$ then $\tilde{v}_1(t_0^{\prime\prime} - \eta) > v_1(t_0^{\prime\prime} - \eta)$ implies

$$\tilde{\lambda}_1(t_0''-) = \tilde{\lambda}_1(t_0''-\eta) < \lambda_1(t_0''-\eta) \leqslant \lambda_1(t_0''-),$$

which contradicts the definition of t''_0 . Therefore there exists a sequence $t_n \to t''_0$, $t_n < t''_0$ such that $\tilde{Y}_1(t_n) = 0$ and, by Proposition 1, $\tilde{Y}_j(t_n) = 0$ for j = 1, 2, ..., n. This gives equality (iii).

(iv) If $v_1 = v_2$ on the interval $[t'_0, t''_0]$ then $\tilde{v}_1 = \tilde{v}_2$ on this interval. This follows from (i), (iii) and Lemma 3.

- (v) $0 = u_1 \leqslant \tilde{u}_1$ on $\{t; v_1 < v_2\} \subset (t'_0, t''_0)$.
- (vi) The set $\{t \in (t'_0, t''_0); v_1 = v_2\}$ has positive measure, because $Y_1(t'_0) = 0$ and r > 0.

(vii) $v_1(t'_0) = v_2(t'_0) = \dots = v_n(t'_0)$ because $Y_1(t'_0) = 0$. Thus, by (iv), $\tilde{v}_1(t'_0) = \tilde{v}_2(t'_0) = \dots = \tilde{v}_n(t'_0)$ and $\tilde{Y}_2(t'_0) = \dots = \tilde{Y}_n(t'_0) = 0$.

(viii) Let $\tilde{t} = \sup\{t; t \in [t'_0, t''_0); v_1(t) = v_2(t_0)\}$. Thus $Y_2(\tilde{t}) = \dots = Y_n(\tilde{t}) = 0$. By (iv) also $\tilde{v}_1(\tilde{t}) = \dots = \tilde{v}_n(\tilde{t})$; hence $\tilde{Y}_2(\tilde{t}) = \dots = \tilde{Y}_n(\tilde{t}) = 0$.

Therefore, as in the proof of Lemma 3, we obtain:

$$(ix) \int_{t_0'}^{t_0''} (\tilde{u}_1(s) - u_1(s)) ds = \int_{t_0'}^{7} {\{\tilde{u}_1(s) + \dots + \tilde{u}_n(s) - u_1(s) - \dots \}}$$

$$\ldots -u_n(s)\}ds + \int\limits_{7}^{t_0''} \left(\tilde{u}_1(s) - u_1(s)\right)ds = \int\limits_{\{t \in (t_0', t); \ v_2 > v_1\}} \left(\tilde{u}_1(s) - u_1(s)\right)ds + \int\limits_{7}^{t_0''} \left(\tilde{u}_1(s) - u_1(s)\right)ds = \int\limits_{\{t \in (t_0', t); \ v_2 > v_1\}} \left(\tilde{u}_1(s) - u_1(s)\right)ds + \int\limits_{7}^{t_0''} \left(\tilde{u}_1(s) - u_1(s)\right)ds = \int\limits_{\{t \in (t_0', t); \ v_2 > v_1\}} \left(\tilde{u}_1(s) - u_1(s)\right)ds + \int\limits_{7}^{t_0''} \left(\tilde{u}_1(s) - u_1(s)\right)ds = \int\limits_{\{t \in (t_0', t); \ v_2 > v_1\}} \left(\tilde{u}_1(s) - u_1(s)\right)ds + \int\limits_{7}^{t_0''} \left(\tilde{u}$$

$$+\int\limits_{\langle t;\ v_1-v_2\rangle} \left(\partial \left(\tilde{v}_1(s)\right)-\partial \left(v_1(s)\right)\right)ds+\int\limits_t^{t_0''} \left(\tilde{u}_1(s)-u_1(s)\right)ds>0.$$

The last inequality results from the following facts:

- (a) $Y_i(t_0') = \tilde{Y}_i(t_0'), \ Y_i(\tilde{t}) = \tilde{Y}_i(\tilde{t}) = 0 \text{ for } i = 2, 3, ..., n.$
- (b) $\{t \in (t'_0, \tilde{t}); \ v_2(t) > v_1(t)\} = \bigcup_i (a_i, b_i), \text{ with } v_1(a_i) = v_2(a_i); \ v_1(b_i)$
- $=v_2(b_i)$ and $v_2(t)>v_1(t)$ for $t\in(a_i,b_i)$. Therefore, by Lemma 3,

$$\int_{a_{i}}^{b_{i}} (u_{2}(s) + \dots + u_{n}(s)) ds = \int_{a_{i}}^{b_{i}} (\tilde{u}_{2}(s) + \dots + \tilde{u}_{n}(s)) ds = \int_{a_{i}}^{b_{i}} (r_{2}(s) + \dots + r_{n}(s)) ds.$$

- (c) By (vi) the set $\{t \in (t'_0, \tilde{t}); v_1 = v_2\}$ has positive measure. On this set $\tilde{v}_1(t) > v_1(t) = v_2(t) \ge c'(0)$; thus $\partial (\tilde{v}_1(t)) > \partial (v_1(t))$.
 - (d) On every (a_i, b_i) and on (\tilde{t}, t_0'') we have $0 = u_1 \leqslant \tilde{u}_1$.

From (ix) we get

$$\begin{array}{ll} (\mathbf{x}) & 0 = \tilde{Y}_1(t_0'') = \tilde{Y}_1(t_0') + \int\limits_{t_0'}^{t_0''} \left(\tilde{u}_1(s) - r_1(s) \right) ds \\ \\ > Y_1(t_0') + \int\limits_{t_0'}^{t_0''} \left(u_1(s) - r_1(s) \right) ds = Y_1(t_0'') \geqslant 0 \,. \end{array}$$

This contradiction proves the first part of the lemma.

For the second part it is sufficient to observe that putting $\bar{Y}_i(t_0''') = 0$ for some $t_0''' \in (t_0', T]$ and i = 1, 2, ..., n one may obtain the contradiction $\tilde{Y}_1(t_0''') > Y_1(t_0''')$. The proof may be carried out as in (i)-(x) by putting t_0''' instead of t_0'' . (In this case the observation (iii) follows at once from the assumption $\tilde{Y}_i(t_0''') = 0$.)

5. Optimal solution of (1)-(3)

So far we have considered the set M of functions $u(\cdot)$ which satisfy (1) and (2) and for which there exist functions $\lambda(t)$ and v(t) satisfying conditions (i)-(iii) of Theorem 1. (In Z. Lieber's paper [4] such functions are called extrapolation.)

It is clear of course that an optimal solution of (1)-(3) belongs to M. Moreover, it is not difficult to see that an optimal solution u(t) of (1)-(3) has to satisfy the terminal conditions

(4)
$$Y_i(T) = \int_0^T (u_i(s) - r_i(s)) ds = 0$$
 for $i = 1, 2, ..., n$.

PROPOSITION 2. Let nonnegative constants b, B be such that $b \le r_1(t) + \dots + r_n(t) \le B$ for $t \in [0, T]$. Let u be an optimal solution of (1)-(3) and let Y be the corresponding optimal inventory. Then, in any interval $[t_1, t_2] \subset [0, T]$ with $t_2 - t_1 \ge (c'(B) - c'(b))/h_1$, there exists a point t_0 such that

$$Y_1(t_0) = Y_2(t_0) = \dots = Y_n(t_0) = 0.$$

Proof. The proof will be given by contradiction. Let us suppose that $|t_1-t_2| \ge c'(B)-c'(b)$ and $Y_1(t)>0$ for $t\in [t_1,t_2]$. Let

$$t'_1 = \sup\{t < t_1; \ Y_1(t) = 0\},\$$

 $t'_2 = \inf\{t > t_1; \ Y_1(t) = 0\}.$

By conditions (2) and (4), $(Y_1(0) = 0, Y_1(T) = 0)$ the points t'_1, t'_2 are well defined and, by Proposition 1,

$$0 = Y_1(t_1') = \ldots = Y_n(t_1') = Y_1(t_2') = \ldots = Y_n(t_2').$$

450 R. REMPALA

In the interval (t'_1, t'_2) , $v_1(t) = h_1 t + a_1$ for some a_1 . Since $Y_1(t'_1) = 0$, $v_1(t'_1) = \ldots = v_n(t'_2) \ge c'(0)$ and thus $v_1(t) > c'(0)$ on (t'_1, t'_2) .

The function $Y_1 + \ldots + Y_n$ attains zero at the points t'_2 and t'_1 ; so we have

$$\hat{c}\left(v_1(t_1')\right) = \hat{c}\left(\left(v_n(t_1')\right) \geqslant r_1(t_1') + \ldots + r_n(t_1') \geqslant b\right)$$

and

$$\partial \left(v_1(t_2'-)\right) \leqslant \partial \left(v_n(t_2'-)\right) \leqslant r_1(t_2') + \ldots + r_n(t_2) \leqslant B.$$

Therefore

$$\begin{split} c'(B) - c'(b) \geqslant c' \left(r_1(t_2') + \ldots + r_n(t_2') \right) - c' \left(r_1(t_1') + \ldots + r_n(t_1') \right) \\ \geqslant v_1(t_2' -) - v_1(t_1') = h_1(t_2' - t_1') > h_1(t_2 - t_1), \end{split}$$

which contradicts the hypothesis and proves the proposition.

6. Horizon in dynamic family

So far we have dealt with one fixed problem (1)-(3).

Now let us assume that a family of problems (1)–(3) is given. It is known that demand r is a continuous positive vector function defined in $[0, +\infty)$ such that $0 \le b \le r_1(t) + \ldots + r_n(t) \le B$ for some known constants b, B (which are independent of t and r). The class of such demand functions will be denoted by R. A family F of problems (1)–(3) indexed by positive numbers T and functions $r \in R$ will be called a *dynamic family with dynamic parameters* T and r. Let $u_{T,r}$ be the optimal solution of (1)–(3) for parameters T and r.

In the following an important property of optimal solutions of problems from F will be given. For this purpose the following definition of a horizon due to Blikle and Łoś [3] will be adopted.

DEFINITION. The number $H \geqslant 0$ is called a *horizon* for the dynamic family F if, for all parameters T, T^* , for all parameters r, $r^* \in R$ such that $H < T < T^*$ and $r = r^*$ on [0, T), and for all $u_{T,r}$, there exists a u_{T^*,r^*} such that

$$u_{T,r}(t) = u_{T^*,r^*}(t) \quad \text{ for } \quad t \in [0, T-H).$$

Remarks. (a) By definition, if H is a horizon then any number $H_1 \geqslant H$ is also a horizon.

(b) Note that if a horizon H is known then for T^* sufficiently large an optimal solution u_{T^*,r^*} on a subinterval [0,T-H) may be obtained independently of the shape of the function r^* on the interval $[T,T^*)$. It is sufficient to know the demand only on the subinterval [0,T).

(c) The existence of a horizon for one commodity problem follows at once from Proposition 2 and the Optimality Principle. This fact was proved in a different way in [3]. We will now prove a similar theorem in our more complicated multicommodity problem.

THEOREM 2. Any number $H \ge (c'(B) - c'(b))/h_1$ is a horizon for the dynamic family F.

Proof. Let us consider H, T, T^* such that $\frac{1}{h_1}(c'(B)-c'(b)) \leq H$ $\leq T \leq T^*$ and r, r^* such that $r=r^*$ on the interval [0,T). For simplicity, put $u^*=u_{T^*,r^*}$ and $u=u_{T,r}$. Similarly, for the corresponding inventories, put $Y^*=Y_{T^*,r^*}$ and $Y=Y_{T,r}$. Since Y^* and Y are optimal inventories, by (4), $Y(T)=Y^*(T^*)=0$. Moreover, by Proposition 2, there exist $t_1,t_2\in [T-H,T]$ such that $Y^*(t_1)=Y(t_2)=0$.

(a) If $t_1 = t_2$ then, by the Optimality Principle, the function

$$u^{**}(t) = egin{cases} u(t) & ext{on} & [0, t_1), \ u^*(t) & ext{on} & [t_1, T^*) \end{cases}$$

is the optimal solution (1)-(3) for parameters T^* and r^* . This proves the theorem in this case.

- (b) Let us note that Y(T) = 0. So if $Y_1^*(T) = 0$ then, by Prop. 1, $Y^*(T) = 0$, and putting $t_1 = t_2 = T$ we have case (a).
- (c) Therefore let us suppose $Y_1^*(T) > 0$ and let us take $t_2 = T$ and $t_1 \in [T-H,T)$. It is clear that $u, u^* \in M(T,r)$. Let v, v^* be the corresponding adjoint variables defined by the conditions of Theorem 1 for u and u^* . By Lemma 4 $v_1(t) > v_1^*(t)$ cannot hold for any $t \in [0,T)$ because Y(T) = 0. Thus $v_1(t) \leq v_1^*(t)$ on [0,T]. Moreover, from the equality $Y^*(t_1) = 0$ and Lemma 4 we obtain $v_1(t) = v_1^*(t)$ on $[0,t_1]$. Because $Y^*(t_1) = Y(T) = 0$, and $v_1 = v_1^*$ on $[0,t_1]$, by Lemma 3 we get

$$\{t \in [0, t_1]; v_1(t) = v_n(t)\} = \{t \in [0, t_1]; v_1^*(t) = v_n^*(t)\} \stackrel{\text{def}}{=} X.$$

Note that t = 0 and $t = t_1$ belong to X. For t = 0 it follows at once from the assumption that $Y(0) = Y^{\bullet}(0) = 0$. Let us consider the case $t = t_1$.

By $Y^*(t_1) = 0$ we have $v_1^*(t_1) = v_2^*(t_1) = \dots = v_n^*(t_1)$. Thus $v_1^*(t_1) = v_1(t_1)$ and Y(T) = 0 implies, by Lemma 3, $v_1(t_1) = v_2(t_1) = \dots = v_n(t_1) = v_1^*(t_1) = \dots = v_n^*(t_1)$, and so $t_1 \in X$. Hence $Y_1^*(t_1) = Y_2^*(t_1) = \dots = Y_n^*(t_1) = Y_2(t_1) = \dots = Y_n(t_1) = 0$.

The set $[0, t_1] \setminus X$ may be written as $\bigcup_i (a_i, b_i)$ with

$$\begin{split} v_1(a_i) &= v_2(a_i) = v_1^*(a_i) = v_2^*(a_i), & v_1(b_i) = v_2(b_i^*) = v_1^*(b_i) = v_2^*(b_i); \\ v_2 &> v_1, & v_2^* > v_1^* & \text{on} & (a_i, b_i). \end{split}$$

452

Thus

$$\int_{a_{i}}^{b_{i}} (u_{2}(s) + \ldots + u_{n}(s)) ds = \int_{a_{i}}^{b_{i}} (u_{2}^{*}(s) + \ldots + u_{n}^{*}(s)) ds,$$

$$\int_{0}^{t_{1}} (u_{2}(s) + \ldots + u_{n}(s)) ds = \int_{0}^{t_{1}} (u_{2}^{*}(s) + \ldots + u_{n}^{*}(s)) ds.$$

Hence

$$\int_{X} (u_{2}(s) + \ldots + u_{n}(s)) ds = \int_{X} u_{2}^{*}(s) + \ldots + u_{n}^{*}(s) ds.$$

On every interval (a_i, b_i) we have $u_1 = u_1^* = 0$ because $v_2 > v_1$ and $v_2^* > v_1^*$. Therefore

$$\int_{0}^{t_{1}} u_{1}^{*}(s) ds = \int_{X} \hat{c}(v_{n}^{*}(s)) - u_{2}^{*}(s) - \dots - u_{n}^{*}(s)$$

$$= \int_{X} (\hat{c}(v_{n}(s)) - u_{2}(s) - \dots - u_{n}(s)) ds = \int_{0}^{t_{1}} u_{1}(s) ds.$$

By this we conclude that $Y_1^*(t_1) = 0$ implies $Y_1(t_1) = 0$. Thus, by (a), we have proved Theorem 2.

References

- [1] K. J. Arrow and S. Karlin, Production over time with increasing marginal costs, Studies in the Mathematical Theory of Inventory and Production, Stanford University Press, 1958.
- [2] A. Bensoussan, E. G. Hurst, Jr. and B. Naslund, Management Applications of Modern Control Theory, North-Holland, 1974.
- [3] A. Blikle and J. Łoś, Horizon in dynamic programs with continuous time, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 513-519.
- [4] Z. Lieber, An extension to Modigliani and Hohn's planning horizon results, Management Sci. 20 (1973), 319-330.
- [5] F. Modigliani and F. Hohn, Production planning over time and nature of the expectations and planning horizon, Econometrica 23 (1955), 46-66.
- [6] R. Rempała, A dynamic programming problem for two-commodity inventory model, in: New Trends in Dynamic System Theory and Economics, Academic Press, New York 1979, 269-280.