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On the difference between perfect powers
by

Jan Turk (Apeldoorn)

1. Introduction. The problem whether there exists a function ¢: N — N
with lim @{i) = ¢ such that

[ fad =]

{0) |x"—y™ = @(x" for all perfect powers x"s£ ™

is still unsolved (see [5], p. 66). Actually, nothing beyond |x"—3y™| = 2 for
sufficiently large perfect powers x" = p™ ([14]) is known when there are no
restrictions on the wvariables x, ¥, »n, m other than the obvious ones
(x,y.n,meN, nz2, mz2). :

When two of the four variables are restricted the following results have
been established (see Section 4.1 for more details).

Two restricted bases: for every x, ve N there exists a (large) number
¢ = c(x, ¥} such that (0} holds with (1) =1(2log 1)™"

One restricted base and one restricted exponent: for every x, me N with
m = 2 there exist (small) positive numbers ¢ = & (x, m), i = 1, 2, such that (0)
holds with @{1} =&, 1'%

Two restricted exponents: for every n, me N with n =2, m> 2 there
exist (small) positive numbers & = & (n, m), { = 3, 4, such that (0} helds with
(1) = e3(log )™ -

It is the purpose of this paper to obtain functions ¢ for which (0) holds
when only one of the variables is restricted. Our results are as follows (see

. Section 4.2 for more details).

One restricted base: for every xe N there exist (small) positive numbers
8, = 8,(x), i =1, 2 such that (0) holds with o(1} =3, ("2,

One restricted exponent; for every ne N with n 2> 2 there exist (small)
positive numbers & = &;(n), i=3,4, such that () holds with @t}
= 8, exp(3, (log log log(r+16))'").

The result for the case of one restricied base can actually be inferred
from the detailed results on the case of one restricted base and one restricted
exponent. The proof for the case of one restricted exponent depends on
explicit bounds for the solutions nz, x, y of the Diophantine equation F(x)
=ay™ (where ae Z and FeZ[X] are given) that we derive in Sections 2
and 3, thereby obtaining more explicit results than in [9] and [13].

The author thanks the referee for his thorcugh comments.
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2. Bounds for the solutions of the Diophantine equation F (x) = ay™, { In
this section we obtain an explicit upper bound for the exponent me for which
there exist x, yeZ with |y > 1 and F(x) = uy”, where FeZ[X] and ac Z
are given with @ # 0 -and F having at least two distinet zeros. The existence
of such a bound was proved in [9]. We use the following standard notation.
The height H{a} of an algebraic number « is the height of the minimal
integral polynomial that it satisfies (i.e. the maximum of the absolute values
of the coefficients) and [=] is the maximal absolute value of the conjugates of
x. We shall repeatedly use that H(x/f) < 4'max {[a], [F11Y for algebraic
integers « and 3 (# 0) with [Q(x, f): Q1< d. See e.g. [2], p. 67. Wo shall
also use the well known fact ([6], p. 135) that if FeZ[X] divides G Z[X]
then H(F) < e"H(G) if n is the degree of G. The numbers C and ¢ in this
paper may be different at each occurrence.

Lemma 1. Let K be a field with degree d > 1 over @, class number b,
reJularor Ry, discrimingnt D and rank of the group of units equal to r. Then,
Jor certain absolute constanis C, ¢

(1) hRy < C|Dj*? (log | D[~
(2) 1< hg D2 long[“ 1

(3)  there exist independent units wy, ..., n,, generating a group

¥

= ([T #¥: bezl,
=1
with the following properries:

(4)  for every nonzero xeK there exists an ne U with

i ot

1 \‘—N-;II—M ey for all automorphisms o: K— C,

where ¢, =exp(d“’ Ry) and N denotes the norm map from K to Q,
(5 [T log[n] < C*Rq.
i=1

(6) lloglon| < d“R,
(7) log|m| > d™*

Jor i=1,...,r and all o: K= C,
fori=1,...,r,

(8)  the absolute values of the elements of the inverse murrix of the {(rxr)-

mairix (¢, logloy ) are bounded hy (10d)*. Here o, ..., 0, are the
aytomorphisms ¢ K—-C with oK)= R and Oy s 5,1+1, cers
Oy +rys Fryap, hose with a(K)c;ﬁR while ¢, =1 for 1<i<ry and

g=2for ri<igri+r,—1=r
Proof of Lemma 1. See for (1): [12], Satz 1.

icm
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From (1) and the result [17] that Ry = 0.056 for any K, (2) follows
mmediately,

For (3), (5) and (8) we refer to [12], (39} and (45). From [4] it follows
that

) [9]=1+d°

for every unit in K which is not.a root of unity. This readily implies (7).
From (7) and (5) it follows that

(10) log{m] <d™R, for
Since Y.

s K€

Since for every nonzero we K there exist rational integers a, with

. oo

i;a,-log?crm log Nl <=

P==1, ..., 0.

log|ew| =0 this implies (6).

r
mdx|log|cr11,” for cedoy, ..., 0.}

we can infer (4) from (6).

LeMma 2. Let oy, ..., ty, where N = 2, be nonzero algebraic numbers with
heights at most Ay, ..., Ay (= 4), respectively. Let K be the field generated
over Q by oy, ..., ay and put

N-1

d=[K:0], =[] log A4;.
=1

For every B = 4 the inegualities

0 <yt oW — 1] < Sexp(—(16Nd)* ¥ Q' log @' log Aylog B)

have no solution in rational integers by, ..., by with absolure values ar most B.

Proof See [2], Chapter 1, Theorem 2.

LEMMA 3. In the situation of Lemma 2, let P be a prime ideal in K lying
above the rational prime p, with ramification 'index e,. Put

Qp=[%“f“‘3p/gp“‘1)]= G(P):NK[Q(PQF).(NKJQ(P)_I):

A=max 4;, C=(16(N+1)d)'™™ " T =CGP)Qlog @
J
and

where 0 <6 <1 is arbitrary.

h = [log(73)].
The inequalities
o0 > ordp(e! ..o lay—1) > max {hTlog A, 6B}

have no solution in rational integers by, ..., by~ with absolire values ar

most B.
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Proof. See [2], :Cl_]apter 2: tak.e in Theorem 3, by =1, B =1 then any : divide F (o)v! and p,, 5e10, 1. ... m—1i. Tt foliows that

§ with 0 <& <1 salisfles the requirements. )
THeoreM 1. Let Fe Z[X] be monic with at least two distinct zervs. Let (x—a)* = a, H b,

acZ be nonzero and suppose that F(x)=ay™ for certain x, y, meZ with : i=1

v = 1. Then where aq, m,, ..., m,, b are certain integers in Oy satisfying Nay = NA%, Nr;

= NP!" and Nb" = NB™. In view of Lemma 1 we can replace ao, ..., b by

4 Cedlm+ 2) Cd? (o +2)
m<Cn log H+n (Oé’ n*{C o+ 2) d X suitable associates (which we also call ag, ..., b) so that:

x| DFe+ 2 (log 31D 2 [T log p-(log log 3P(R)) -log 3al-(log log 3 |a)® .
_ PR (13) (x_a)uh — H Vi bm 1—[ ’71

where the parameters have the following meaning. The C's are certain absolute where the b;e Z, the n; satisfy the properties in Lemma 1, and
constanis: 0 is the degree of F and H the height. To deline o, R and D, let « be :

. : . : - I, _1 lof| L i '
a zero of F, of degree d and multiplicity v, with minimum polynomial F,. If d o {14) cl SW <e;  for all automorphisms o K — C,

1/dy

= =R, th adtant of — | — ) F(X) and F_. If F hus only zeros :

2 then R:= R, the resultant of o (dx) (X) an [f s only zeros for e {ag, 1y, ..., 7, b}, where ¢, = exp (d°!]D| /2 (log | DIy 1).
of degree d =1 then let o, and «, be distinct ones and R:= R, R,,. Finally, Assuming that
W = w(R)', D is {hfe.discriminam af the fiel(_l' Oz und P(R) denotes the largest (15) 1x 2 x, := maxlos] =:[z]
prime dividing R if IR| > 1 and | otherwise. _ o

Remark. The factor log 3|d)-(log log 3|a))* in the bound for m may be we have

omitted if R is replaced by aR. (16) [ND™| M == NB™H < | N (x —a)f*h < (2] x])™,

The following corollary of Theorem 1 gives a bound for m in terms of
the standard parameters of F, namely the degree n and the height H.

CoroLLARY 1. Let ue Z be nonzero and lei Fe Z[X] have ar least two INm{tH = NPH? < pt,
distinet zeros, degree n and height H. Suppose F(x) = ay™ for certain x, yeZ
with |y| > 1. Then:

IN“ ll[d NA.'u‘d < ]al"

where p; is the rational prime in P (1<ig s).'
We first show that

5 2 .
m < exp{mw?f—l—}-log 3|4l (log log 3al)? (17) . Bl <elog2lxl for j=1,...,7,
log{n log 3H) o :
where ¢; < dc‘*lDll"z(log|D|)d L :

where C is an absolute constant, Choose Gy, ..., 0, as in (8). For 1 <i<r we have, from (13),

Proof of Theorem 1. Let « be a zero of F, with multiplicity v Er:b log|a, 1,
(=w(a). Put K = @), d =[K: Q] dnd let D be the discriminant of K, h the = U
class number of K and O,c the ring of integers of K. We consider two cases. ‘ s '

First case. There exists an o with d > 2 (ie. K # Q). Write = vh logb‘““rad“iz1 Y logio; | —loglo; ag| —loglo; b = 4;.
(11) [x—a]" = AB™, . : _ loge, h
where A-and B are integral ideals in Oy with A m-free. Then, since n view of (14}, (16), (11) and (12) we have, with Co = log2 4 .
F(x) = ay", . : h h

14 < vk log 2ix] + Z B, ( 0g 1+ log NP) (log C1+d log NAO)
(12) _ A=4d, ﬂ Pl

. i=1 h .
where A, divides [a], Py, ..., P, are the distinct prime ideals in O that +(Iog ¢+ log NB )
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< vh log 2[x|+Co( Y, v, log NP,+log NAg+log NB"+2)

=1
< vh log 2|x|+ Co(log N [x—ua]"+2) < ¢3log 2]x],
where ¢y = vh+3Cqud < v-d® D)2 (log{D)~ 1.
Using Cramer’s rule to solve the b; from zr: bi(e;loglo; nl) = ¢ 4;
(1 <i<7) we obtain, by (8), that o
6] < r(10d)2 2cy log 2|x| < ¢, log 2|,

where ¢, < 2¢4d(10d)"%, which proves (17).
Now we reduce the b; in (13) modulo m and write:

(18) (x=o)"" = ag ™ [T n" [] .
: i=1 =1

r
where ¢ =4[] 7%/ """ |g) <m and b; and f; have the same sign
j=1
l<jgr).
We show that

(19)  log 4[7] < CT»; log 2[xl, where ¢, < nd%|D|(log|D))¥-2,

provided that

(20)° o [x] 2 x;:= max |f].
Fif=0

Fo.r every o: K— C we have, by (16), (14), (6} and (17),

1z '
log 4io¢| < log 4Iab|+;; 2 |by—= Bl [log |on|
. =

vh 1
< — log 2{x| +log 4¢y +—
m 1

J

bl d““ R,
=] ’
vh 1 o
£ - log 2|x/+log 4c, +-r—n-(dcz log 2|x)d“" R,.
In view of [y| > | and F(x) = ay™ we have
m < (log|F (x)|)/log 2 < {n log 2|x)/log 2

provided that (20) holds. Hence (19) holds with

n
log.2

Ca S vh+deyd Ry+—— log 4e; < n-d%|D|(log 3|D)* -2
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Now choose 6: K —+ C, ¢ not the identity on K. From (18) and the conjugate’
equation we obtain:

x—o vh g e\ s 7 i or 1; By
21 —I=—— - — ) —1.
o)) )
We shall apply Lemma 2 to obtain a lower bound for (the right side of) (21).
Note that (the left side of) (21) is nonzero if x # oo-(oo—a)/({,— 1), where k

s any divisor of vh and ¢, any primitive kth root of unity in the field
generated by « and oo, This is certainly the case if

(22) x> x5 t== k(lof +|ow]).

To apply Lemma 2 we need upper bounds for the heights of the numbers in
(21). We have

log H{ao/oap) < d*log 4fag| < d*(log ¢, -+ h logla)) < ¢s log 3 |a],

with ¢s < d“|D|"?(log D]y %, by (14) and (16) and Lemma 1.
log H (c/oc) < d?log 4[¢] < % log 2],

with ¢q = ¢, d> < n-d“|Dj(log|D))*~2, by (19).
log H(m/om) < d*log 4n) < d*(log 4c, -+ h Tog p) < s log p;
for 1 <i<s, by (14) and (16).

r

H log max {4, 47,1 < [] (d°log{n; ]
ed

¥
[] log max {4, H(y;/on)} <
j=1 ! =
5

J
d Ry < d|D|* 2 (log DY ! =1 ¢5,

by (7), (5) and (1).
The number of factors in the right side of (21) equals

2+s54+r € 2+do+d—1<d(w+2), where w = @(R),
' R = N(F®()/ul).

The field containing the algebraic integers in (21) has degree at most 4.
Assuming (22), we apply Lemma 2 now, with ay = ¢/oc. We obtain that the
right side of (21) exceeds the following quantity in absolute value

exp (—(Cd (@+2)d)* @+ D e log (3 a) [T (cs log py) x
i=1
s _ C
xep log{es ¢; ] (cs log p;)log(3 |al)) Eﬁ log(2|x]) ‘log m)
i=1

3 — Acta Arithmeticn 454
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This exceeds
GXp(— n (C ((l) :|" 2))Ca‘(m +2) dc‘dz(m+ 2) EDId((0+ 2) (lOg 3 IDDd(d— 1w+ 2) X
| xlog(3|al)-log log(3|a))-|] log p-log log(3P(R})-log(2|x]}-(log m/m)),
PR

for certain large absolute constants C. On the other hand we have, provided
that

(23) x| 2 x, = Co? A*(max (|, jow]})?,
that the left side of (21) exceeds exp(—3 log 2jx]) in absolute value: Since
1 . o — o -
(148 —1| < 2tlel for o] <71, te N, we have, provided I < (vh)" ",
that
(x_“ )ﬁh—1) < 2wh F“_“ 4
xX—ou x— oot
This is less than
4ok max {fof, loof}/3d < 12DV 0 x| 2 2o

and
|x| = 128 (vh max {|af, |oa|})*

Combining the estimates for (21} gives
(24) m<n log ?I(C (CO +2))Cd(m-1— 2) dCdz(m-F 2) |D|d(m+ 2) (l()g 3 IDE)dz(w+ 2) X
x(log 3|al)- (log log 3]a))> [ log p-(log Jog 3P(R)Y’,
PR .

provided that (15), (20), (22} and (23) hold. To treat the remaining cases we
observe that we have, trivially,
(25) m< log |F(x)| < log H+n log|2x|
log 2 log 2
Take x5 = Co® h*(max |B])*. Then (15), (20), (22) and (23) hold if |x| = xs.
Fiiy=0

Suppose now that [x| < x5. Since |} < nH for every zero f# of F we

obtain from (25), using also that x < Cn*|D|(log 3|D}}* H?, that

for |x < xs (=1}

(26) m < C(nlog n-+nlog H+n log|D|+nd log log 3|D)).

The bounds {24) and (26) are covered by the bound for m stated ir
- Theorem 1. :

Second case. All zeros of F are rational (K == @,d = D = 1). Let o
and o, be distinct zeros of F with multiplicities v; and v,. Now we hav

(x-a)’ =g B[] p?" for i=1,2,
pIR;

icm
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where~ R, = [] (B—w) and u,(dei0, 1,...,m—1},

Fp=0¢
B #e;

i=1,2 Let v be the least common multiple of v, and v, and w; ;= v/y,.
Then

while 4; divides a,

X0y

. ! wi
X —0y ' w1y —wq b]_ " oLy 701,{231«:7
——l—=1l=a;'-a, 3 -Hp Hp 1.

2 ARy PRty
We have
B < Pe—erl ™ < @I for (x> led, i=1,2.
Assuming that

(23)* Ix = Cv? ( max |2

Fpy=0
we obtain from Lemma 2 (take N =w+2, oy =a) -a;
B = myp) that

24*  m <v*(log 3v)*(C(w+2))

2 _ ¥ w2
, oy =btby 2

Clm+ 2)
(

log 3{al)(log log 3 |a)* x
x [] log p-(log log 3P(R))2.

. PR
If (23)* does not hold, then, from (25) and |f| < nH, we have
(26)* m < Cn(log v+log nH).

The bounds (24)* and (26)* for m are covered by the one stated in
Theorem 1.

Proof of Corollary 1. Suppose first that F is monic. Write F
= ﬁ F}i with Fy, ..., F, distinct, monic, irreducible in Z[X] and
mlj,z.l.., meN. Let o be a zero of Fy, so F, =F,, m; =v. Then the
parameter R = R, equals R = |D{F,)"}| f[ R(F;, F)", where R(F, G) is the
resultant of F and. G and D{F) the disc;i—r;inant of F(= R(F, F')). Note that
every prime divisor of R divides D(F*}, where F* = ﬁ F; (this also holds

=1

j
when R = R, R,)). So o(R) < w(D(F*). Also note that D|D(F*). By simply
bounding determinants we see that

D* 1= [D(F¥)| < (n*)>" (H*)>",

.where n* and H* are the degree and height of F*. Furthermore we have

w(m) < C{log 3m)(log log 3m)~!  for all meN.



49% J. Turk

icm

Hence

(Clo+2)"“ "™ <3D%  and ([ log p)-(log log 3P(R))’ < (3D¥F.

piR
Since d and n* are bounded by n we obtain the following bound for m:
Cr®{log nH*)?
log n+log log 3H*(”

Crlog H+cl(a) exp{

where c(a) = (log 3a|)(log log 3{a))* and the s are absolute constants.
Finally we use that H* < "H {since F*|F and degree F = n} to obtain a
bound

clajexp (Cn’(n+log Hy¥/log(n-+log H)!.

If F is not monic, F=a,x"+...4+4dy, 4, # 1 and F(x) = ay” then

Fla,x) =(a,x)'+.. .+ agal™ ! = gy™

with @ = aaj™" and F monic. Since |a,| < H it follows that the bound in

Corollary 1 for m holds if we choose for € some large constant.
COROLLARY 2. Suppose x"—y™ =k, where x, y, n, m, ke Z with k s G,

mz2 nz2 Then

(27) m < (n{kf)rew+ 3,

More precisely,

ﬂ2 £ -
(28) m < (n|k])"" T

+

where w, (k) is the number of distinct primes p thar divide k with v, (k) = v, (x").
In particular,

(29) m <@k if ged(x, y) = 1.

The C's denote certain absolute constants. -
Proof. Let F(X)= X"—k. The discriminant D of F satisfies
[D] = n™=* |k,
As observed in the proof of Corollary 1,
o(R) < o(D) = w(k) < 1+o(k)

since we may assume without loss of generality that » is prime. Now
Theorem 1 gives the bound (27). To prove the more precise bound we argue
as follows. .

The factor (3+ @ (k))n comes from the number s of distinct prime ideals
Py, ..., Py of bounded norm in (12) in the proof of Theorem 1. Of course

N (H P} divides F(x) and [T (NP)™~' but these are useless bounds in
i=1 = .

i=1

On the difference between peifect powers 259

general. However, when F(x) = x"—k we observe the following. Let plnk-and
suppose v, (k) # v,(x"). Then

v, (F(x)} L— min {v,(x"), v,(k)} < v, (k)

so N(I]* P} divides k, where the * indicates that the product is over

i=1
those P; for which p;eP; satisfies u,,[.(k)¢z:pl_(x"}. This gives the bound

[ o, (k)4 2 .
m < (n|k} "D where w,(nk) =} *1, summation only over those p

pink ,
with v, (x") = v,(k). Since n is prime this gives the bound (28). Finally we

note that if ged(x, y) =1 then ged(x* k) =1 so wy, (k) = 0. This gives (29).

3. Bounds for solutions of the Diophantine equation F (x) = ay", 1L
Suppose F(x) =ay™ where x, ye Z and F, « and m are given with m 2 3,
a## 0, F having at least two simple zeros. We shall obtain an upper bound
for |xl in terms of F, a and m,

‘A completely explicit bound was already obtained by Baker (see [17).
This bound has been improved considerably in {13], but that bound is not
completely explicit. We use SprindZuk’s method to obtain a completely
explicit bound.

THEOREM 2. Let Fe Z[X] be monic with at least two simple zeros, 2, and

;. Let aeZ be nonzero and let me Z with m 2 3. Suppose x, yelZ satisfy
F(x} = ay™ then

Lo . ‘ 3 _
!’CI < m_i_exp :(51 dl m)C.sldlm laI(BJ‘Z}(dl +dabm(m— 1)p(m) %

Ei4mdm= Dptmsydy | 14y - da 1203 dy 50203 2mim— 12
xlDl ng ']Dl D2 |( f2)m ‘P(m).lel RS ,(3.’ ym(m— 1) “p(m) %
3sydym2
x(1+loglaD, D, R, R,|)**11m7v™y

where the parameters have the following  meaning. Ler K, = Q(x),
J; = minimum polynomial of o; over Z, D, == discriminant of 4y, Ry = resultant of
Soand Fif,, s, =[K;: @, d;=[L: K], where L = Qlay, xa), for i=1, 2.
Finally [a, | is the maximum of the absolute values of the conjugates of %, and
C is an absolute constant,

CoOROLLARY 3. Let Fe Z{X] have ar least two simple seros, degree n and
height H. Let meN, m23 and acZ, a+ 0. Suppose F(x)= ay™, with x,
veZ., Then

31113111

|x| < exp {(CH)*™"" (|a (log 3 [af)")™" "

If F is monic then (CHY*™ " can be replaced by (c"H)™ ",

Proof of Corollary 3 from Theorem 2. Let

H;=max(H(f), H(F/f)) and n =max(s, n—s,).

;
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By simply bounding determinants we see that
DI<sTH(H™  and RIS (n+1)™HL.

Also note that
m% st Hif), s,

First suppose F is monic. Using the above we infer from Theorem 2 that

I < exp {(C" HY™ " (o} (log 3 |a)")

d<n—1, H<e"H, opm<m

3 u]

for some absolute constant C. To cover the cases F not monic it is sufficient
to replace in the above bound H by H" and a by af""'. This gives the
announced bound (with some larger C).

For the proof of Theorem 2 we need, besides Lemma 1 and Lemma 2 of
Section 1, the following lemma (cf. [7], Lemma 6).

LemmMa 4. Let K be a field and U a group of units in K as in Lemma 1.
Let a, fi, v be nonzero algebraic integers in K. Let H = 3 be an upper bound
for the heights of a, f and y. Then the solutions of

ax+fy =y
with x, ve U satisfy
“max {x], [y]} <
Jor some absolute constant C.
Proof. Write x=s;'...s;" and y =n}'. .. 7
oyt Py =y

exp{d“* R (log Ro)*log H log log H)

Y. then we have

Put X = max {|x], 2}, ¥ = max {|y|, 2} and Z = max {|x;— y|, 2}. For every
isomorphism ¢: K - C we have:

-

(30) _g%“ ('h)’“ o) =1 = )t (o)

We have
H () H(f‘l)< max {fol, [Ah4 < (87 1%,
of p

From Lemma 1 we obtain

[T tog max {4, Hm} < H log max {4, 4[5/}

i=1
S0 by Lemma 2 the left side of (30) exceeds
exp( (2d)*log H- R, log R, log Z).

< [] @ log[ 7 ) < d°R,.
f=1
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Taking logarithms we obtain

r 6‘
— ¥ y;loglon, +log é{ > —(2d)*log H-Rylog R, -log Z.
f=1

Since

Gy
— < d d
a/f\ d(4dHY we get

(31) ¥ yiloglan| < I log Z,
=1

where I' = d“log H- R, log Ry,
From

oyt T e (= g = B

we similarly obtain

r

(31)* Z

—y)loglen| < I'log X.

Writing a,{y} = ) y;log|on;| we obtain from (31) and (31)* that

j=1
la, (Y) < I log max {X, Z}.

Let (g;;) be the inverse of the (r xr)-matrix (e,loglan)) with ¢ =0y, ..., o,
as in (8). Then we obtain

vl €7 -maxiqyl-2 maxja,(y)] for 1<i<gr,
S0 _ - ’ .
 Y=max||yl, 2} <(10d)>7' 2 log max {X, Z} =:I*log max (X, Z}.
Since Z < X+ Y we infer

Y < I*log(X +Y).

From fy+ax =y we similarly obtain X < T * log(Y+ X). Assuming that

Y X we get X <I'*log 2X, hence X < Cl'*logl'™*, so

Y € X <d™log H log log H-Ry{log Rp)™
‘Finally,

r

[¥1< TT max [l o7 1 < TT G,

fas . fe=

which gives the assertion, by using Lemma 1 once more.
Proof of Theorem 2. The method of proof is as.in [13], to which we
refer for details. We have _ ‘

‘(32) . x—op =P8 (f=1,2),
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icm

where y,, & e K,, with ¢, integral, g, integral for some g;e N with g; < {D{™?
while [Ny, (v,) < la| [R (o)™~ 1Dy, where R(a;) is the resultant of f; and F' (so

R{a) = Dy R(f:, Fif) = D R)).

Put K = Q(acl,az,gimyhgz?/y:, {w), where £, is a primitive mth
root of 1, and let k=[K: @]. From (32) it [ollows that y, &T—v, &y
=u,—0, . Write

(33) -\/:}Jl &1 — \/—2 o Cm:

Since y; &

1<€i<m.
are integers also the f, are integers. We have
INg BI™ = [Ng (B1.-. Bl = INp o —a) M = N[SL]-

By Lemma 1 there exist units & 'e U = U(K) such that for A, = f,& !
have

(34) [ 2,1 NS exp (K R) < exp (k(Rq +log Ny ).

From (33) with i=1, 2,3 we get, writing §; = /83 (i = 1, 2),
A Cn O (1 + ) A58, = 4.

The heights of the nonzero algebraic integers —A1, ¢, (1+{,)4s, A3 are at
most

{4 max 2.,' }k
1€i€3

<exp(k™(Ro+1log Nyy)) =: H

By Lemma 4, therefore,
@5 max{5,1[5,]

<exp(k™ R3(log Ro)*(Ry+log Ny,)log(Re+log Nyj)).
The' integers u; = 8,4, (i = 1, 2) satisly, by (34) and (35),
(36)  max {1z )]

< exp(k“ R3{log Ro)* (Ro+log Nyz)log(Ry+log N,1)).
Observe that

U""l /-12 Cm l)m e
(1 m '3 ‘

Recall that &3 is a unit in K. Hence there exists an isomorphism ¢: K — €
with o8| < 1. Since x = a; +y, &7 and xeZ we infer that

lo .uzC o <7+ (2 max {[u], [ )"

| L (2 sin n/m)™

<oy [+m"max {ip |, [uo )™

el =

x| = Ile oo, +
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By (36), also using cm'® < @(m) < k,
< [y +exp (K R3 (log Ro)* (Ro+log Nyj)log(Ry+log N;,)).
It remains to bound k, Ry and N;,. We have, by Lemma 1,
Ry < C|D|"*{log|D]}~*
hence
olog Ry < CkID|*?(log |D|)*.
K is obtained from Q by adjoining the algebraic integers o, a;, g, 2 o
o2 \/)2, £ Hence D divides
D)™ D)™ g1 (N ()™ it
| X" (N, ()" 22 DL,
where 1, = [K,-(i'\‘/{:,f): Kl i= 1, 2. We have

kit; < spdimp(m),  kis; < d;m? ¢{m).

Also ‘
g <DP"?  and  [D(L) < mo™,
while
[Nk, () < la] [R{a)I™ 4Dy
Hence _
D} < |al™ D, D)2 1DV D IR (2,)™ Rioy)"d™* m",
with

ey ={dy+dym(m—Do(m), e =5m’(m—1)o(ms,d,,

e =m2m—1)p(m), eo=m(m—12o(m), es=3sd mp(m).

In particular, log|D| < Cm® syd, {1+log|aD, D, R{xy) R(w,)}). Observe
that Ny, <max{R,, Dy}: if fi # f; then Ny, = R(fi,/,) which divides
R(fy, F/f}) = Ry, while if f; = f, then N, = D,. Noting again that R (o)
= D;R; and combining the estimates gives the bound for |x| stated in
Theorem 2.

4. Lower bounds for |x"—yp™. In this section x, y, n, m are integers
satisfying

(37} x"#£y" nz2, m=z2, xzl, yzlL
4.1. Lower bounds for |x"—)™ when two variables are restricted
4.1.1. Two restricted bases. We have

(38) |x"—y" > x"(log x"™¢ for x, y,n, m, with (37) and x" > L,
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with ¢ = ¢ (x, y) = ¢olog x* log y*loglog min | x*, y*}, where x* = max {x, 4},
y* = max{y, 4} and ¢, is a (large) constant.

Since [x"—y™ = x"|y"x""—1| the lower bound (38) follows readily {rom
Lemma 2; it was already sssentially obtained in [15]. In [16] it is shown
that {38) is sharp in the sense that it fails infinitely often when ¢ is a small
positive number,

4.1.2. One restricted base and one restricted exponent. Clearly, the cases
with (y, n) restricted are similar to those with (x, m) restricted, so we may

restrict our attention to these latter cases. The fellowing inequalities {39) and .

(40) were obtained in [10]
(39)  Ix"—y" > (x)

where the g := g(x, m) are (small) positive numbers depending only on x
and m.

If m is large in comparison to x then g can be taken as 1 and &, close
to 1: ‘

(40) "=y > (x7)L~ cllogmyfm

for x, v, n, m with (37); provided m 2 3,

for x, y, n, m with (37),

where ¢ = ¢(x) is a {large) number depending only on x. Observe that for the
cases m = 2, x fixed we have not given a nontrivial lower bound for |x"— y™|
yet. It was shown in {8], Theorem 9, that |x"— y?| > Jexp(d (x)(log x")7) for
all x, y, n, (m=2) with (37), where d(x) is a (small) positive number
depending only on x. It was observed in [10] that the exponent 1/7 could be
replaced by 1—¢ for any £ > 0 provided &{x) would be replaced by a suitable
&(x, €). Due to an improvement by van der Poorten of a p-adic analogue of
Lemma 2 used by Schinzel, it is possible to prove that (39) alse holds for
m=2, as we show now. We are grateful to T. N. Shorey for providing
the basic ideas of the proof.

Proof that (39) holds for m = 2. Write y2—x"=k, where k < 0. If n
is even, or x is a square, then clearly |kj > 2(x")!2, so we may assume that
n=25+11s odd and that K = Q(\/;) is a real quadratic field. We may also
assume that [y-—x* \/)?I <1 (otherwise |k{ > (x"'?). Let 0 <z <1 be the
fundamental unit in the ring of integers O(K) of K and let Ry (= log &™) be
its regulator. We infer from (4), that y—x* \/— = Re' for some te Z and some
BeO(K) with C'! < |ofl < Cy [k|*/? for both automorphisms o: K — C, with
C, =explcy Ro), where c¢o, and subsequently ¢, ¢,, ¢3, ¢, are absolue
constants. It follows easily that |t} < ¢; (log y-+Ry). Lel ¢ be the nontrivial

“automorphism o: K — C. We have off (gs)f — f&' = 2x* \/;c Let P be a prime
ideal in O(K) dividing ./x. Then it follows that
age\ off

n < ordp(of(oe) — Be*) = ordp () +ord, ((—;—) e 1). '

icm
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Clearly ordp(f) < ¢, (log|k|+Rp). We use Lemma 3 to obtain an upper

geY o
.bound for ord, ((—;) —ﬁ——l). We have T< c3p*Rglog Ry where p is the

B
rational prime in P, and log A < ¢ (loglk]+Ry) and let 0<d <1 be
arbitrary, From the just mentioned lemma we obtain that
ae Y ap

ordp ((——) —E— 1) < 0|+ Tlog(T/d)log A

£ dcy (log y-+Ro)+ ¢, Tlog(T/8}-(log k| + R,).

Assume now that |kl < y*, where 0 <3 < 1. Then it follows that

n < (8e; +xcs Tlog(NH))log y+(de; +¢s Tlog (T/8) Ry
Choosing

§=(2c;,log x)7'  and = (2c; Tlog(Té)log x)_l

we obtain that
Cz = C; (.x) = (561 +C:5 T]Og(ﬂé))Ro ].Og X.

Hence (k| = yz—ec2 y, which exceeds y*, provided that y > yy{x). We
conclude that |k| > 3 when y > yq(x). Since y > (xmY?—1 this gives (39),
with &, x%x’, for some suitably small &, =&,(x) to include the cases
1<y <yplx). :

Observe that the positive numbers &, = &;{x, m) in (39) are very small
Using hypergeometric functions Beukers has obtained (39) for x =2, m =12
with a fairly large ¢,, namely with &, =&,(2, 2) = 1/10. See [3].

4.1.3. Twvo restricted exponents. We have
(41) "=y > g5 (log x7)"*
with & = ¢ and &, = (5Sm*n®)"!, where &, is a (small) positive number.

Proof of (41). If n=m=2 then |x*~»? > x> log x? so we may
assume that m = 3. Put F = X*—k, where k = x"—y™ (s 0). From Corollary
3 we infer that x" < exp((¢"|k[) 5"’5"3) for some constant ¢ (=eg ). This gives
(41).

log x" <log y+C, where

for x, y, n, m with (37),

For the case {n, m} = {2, 3} one may take g, = l—¢ for any e >0 in
{41) (then gy = &4(¢) > 0), as was proved in [18].

4.2. Lower bounds for [x"- ™ when cne variable is restricted.

4.2.1. One restricted base. The cases with y restricted are similar to those
with x restricted, of course. When x is restricted the inequalities (39) and {40}
in Section 4.1.2 immediately imply the following

(42) Ix"— " > 8, ("% for x, y,n, m with (37),
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@

where §;, = §, (x) and &, = §,(x) are (small) positive numbers depending only Im“

on x. .
Proof of (42). For i=1, 2 put §;(x) = min &(x, m){ < %), where the

minimum is over those m 3 2 with m/log m < 2c(x), where c(x) is the

constant occurring in (40). Then (39) and (40) imply (42).

4.2.2. One restricted exponent. Clearly, the cases with m restricted are
similar to those with n restricted, The results in Section 4.1 are not sufficient
to obtain a nontrivial lower bound for |x"— ™ when » is restricted. Bul we
also have the following nontrivial lower bound when m s large in
comparispn to n.

(43)  Ix"— )" > o, exp(o, (log m log log(m+1))'"%)
for x, y, n, m with (37),

where ¢, = n~! and o, = gon~% where g is a (small) positive number.

Proof of (43). Put k = x"—y". Since w(k) < C log 3]k {loglog 3|k|)™!
for all nonzero integers k for some absolute constant C, it follows from
Corollary 2 in Section 2 that for some constant C,

m < exp{Cn? log|nkllog 3 |k| (log log 3[k))"Y).

This implies (43) for some small .
We note that (43) also follows from a more general result in [117] but

that does not give the dependence on n. The inequality (43) enables us (o
prove our main result;

(44)  ix"—y" > 3yexp(ds(log log log x"Y3)  for x, y, n, m with (37)

and x" = 16,

where d; =n" ' and &, = S,n" !, with 8, a (small) positive number.

(45)  |x"—p" = &3 {log log x")éS for x, y, n, m with (37},

"2 4 and ged(x, p) =1,
2 with 85 a (small) positive number.

Proof of (44) and (45). Put x"—p" =k Combine the inequality

m < exp(Cn*(log nik))?) from the prool of (43) with the inequality from
Coroltary 3:

where 35 =dyn~

x" < exp (e k) ),
This gives
| x" < exp exp exp(Cn* (log n|k|)?),
which implies (44).

If ged(x, y) = 1 then we have a better inequality for m: m < (n|k|)"’" by
Corollary 2. This results in (44).
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