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On positive definite quadratic polynomials

by
R. J. Coox {Sheffield) and S. RagHavan (Bombay)

1. Iniroduection. Tt is well known that an indefinite quadratic form in 21
or more variables takes on arbitrarily small values al integer points (sec
Davenport and Ridout [8] for a full list of references). An analogous
problem for positive definite quadratic forms has been considered by
Davenport and Lewis in their interesting paper [7] which contains the
following

Turorem 1 (Davenport and Lewis). There exists an integer ny (absolute)
wirh the following property:

Let Q{x) =Q(X;, ..., X,) be a positive definite quadratic form with real.
coefficients and suppose that. n=n,. Then, if x¥, ..., x} are integers with
max |xF| sufficiently large, there exist integers X, ..., X,, not all zero, such that

{1 |Q (x+x*)—Q(x") <1.
In the course of their proof, Davenport and Lewis have however
overlooked the (trivial) solution x = —2x* for (1); indeed, their proof of

Theorem 1 assumes that {1) has no nonzero solutions and proceeds then to
obtain a contradiction. The object of this note is to show that the very same
analytic arguments used by them not only remove this lacuna but can also
be adapted to yield many more integer solutions x of (1).

In (1), the term 1 can be replaced by an arbitrary ¢ > 0, and the result
can then be regarded as a recurrence theorem. The quadratic form Q returns
to the ne:g,hhourhood of values it has taken. Examples such as @(x{+..
+x7) show that it is not possible to obtain a theorem of the form “Q takes
values close to all sufficiently large real numbers X" without some additional
condition, such as incommensurability of the coefficients of Q.

THEOREM 2. There exists an integer ny <995 and a constant © >0 with
the foliowing properry,

Let F(x) be a positive definite quadraric form with real wefﬂuenm and
suppose that n 2 ny. Then, if x{, ..., xi are integers with max |xF| sufficiently
large, then there exist at least [}x*l] integer points xeZ" such that

(2) ' |F(x+x9)=F(x%) <.



RPE

Davenport and Lewis did not attempt to give a bound for n,, but
inequalities |(73) and (83) of [7] suggest a large value like 17401; the value
995 in Theorem 2 seems to be just about optimal with the present techniques
although still far from the “anticipated value of 5",

We shall use |x] to denote max|x;] rather than the Euclidean norm; this
does not really affect Theorem 2.

Recently, we have considered the values of indefinite quadratic
polynomials (see [3] and [4]) and there are earlier results on inhomogenous
forms due to Watson [10]. Let x=(x,..., x,). We say that the real
quadratic polynomial

G) - F(x) = Q(0)+A(x}+C

is positive definite if the quadratic part Q(x) is positive definite.
It Is trivial to see that Theorem 2 holds aiso for positive definite
quadratic polynomials F(x).

2. A preliminary diagonalization. Let F(x) be a positive definite
quadratic polynomial, where )

{4) Qfx) = Zn: i O X5 X (Offj =),
i=1 j=1
) AW =3 4x:
. i=

and let B(x, y) be the bilinear form associated with Q. Then

(6) F(x+x*)—F (x%) = Q(x)+2B(x*, x)+ A (x) = Q(x)‘i"i V%,
say, where =

M v =X 42 Y Xt
=

We may refabel the variables so that max|vjl = |v,] and, replacing x by —x if
necessary, we may also suppose that v, < 0. Let :

(8) P= ——vi, Bz = “""Vz, ey B"= "‘Vn

“and

) G(x) = F(x+x*~F(x* = Q(x)= Px, By xp—...~ B, x,
. =0Q(¥)~L(x) '

say. We peed to show that there are many integer points x with |G(x)| < 1.
Since Q is positive definite, the matrix 4 is non-singular and, from (7), we
- have x* :A‘I(u{~ 4)/2 where v, i are column vectors with Vi eary v,,’zmcl

Ai, .-y A, a5 entries respectively. Now 4 and 4~* depend only on F(x) so P
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@
Im“ and |x*| are of comparable size. We shall suppose P to be fixed, but

arbitrarily large, and use the notation f <¢ to mean |f| <cg for some
number ¢ independent of P.
Under a linear substitution of rank 6

(10) xﬁy1Z1+...+y636=Ty,
we have ’
(1) Gx)=0(x)—-Lx)=2(—-F=H®

say, where

3 6 ) .
(12) D(y) = Z Z ey Yy ey Bl 2
i=1 j=1
and
6 s,
(13) Y =Y Wy, Y=L
i=1

Since T has rank 6, distinct values of y give distinct values of x, 50 it is now
sufficient to prove that for some 7 > 0 there are at least [P*] solutions of the

inequality
(14} [H(y) < 1.

Our first lemma is a generalized version of Dirichlet’s box pringciple, this
version is essentially the lemma of Birch and Davenport [2].

Lemma 1. Suppose that m <n, and let Ly, ..., Ly, be m real linear forms
in n pariables, say

n

(13) Lix)= Y px, 1<i<m.

i=t
Then, for any Z 22, there exists an integer vector z # 0 such that
(16) ‘ Iz} £ 2™,
and
(17} Li(z) < 2™ % Iygl,  l<ism.

J=1

We take z' =(L, 0,...,0) so that @y, =fy; and 4, = -P Having
chosen z'....,z"', we choose z' by applying Lemma 1 with m =},
7w POU L (z)=B(z,z) for i=1,....j—1 and Li(z) = L(z), where

C, = 4.0080563954 ..., C, = 6030266299 ...,
C, = 8.056630741..., Cs= 10.091195104..., Cg = 12.13402140609...
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We obtain non-zero integer vectors z/ (1 < j < 6) satisfying

{18) |21 < PO,

(19) [B(Z, /) < POOI-ud+80 (< <,

and

(20) |L(z'}] < POuX1=ah+1,

For »n = 995, we have

(21) max 0(H(t—n/H+0(H< -2 for 2<j<6

1€
and we note that
(22) G(2)+...+8(6) = Q/n

where 2 = 40.32016994707. ..

Let 7 be the nx6 integer matrix whose jth column is z/. The
transformation x = Ty takes G(x) to a polynomial H(y) which is almost
diagonal:

6 [
{23) Hy) = ) wyi+2 yeuniyi—Pyi—28Y;
i=1

%) 2

where y; 2 ¢ = c(Q) > 0 for every j, since z/ # 0 and Q is positive definite.
Indeed, we have

(24) 1 &y = B{z, 2) « P9, 1<j<g6,

25 8= B(Z,Z)=0(P™Y, i#],

and

(26) g =L{z) =0o(P7Y), 2<j<6.
For any solution p,, ..., ys of the inequality

(27) . i Y1+ e yo—Pyy) < 1/2

we have

H:J’12_<P.V1+i/2'

and g >0, so for P> 1 and any solution of (27) in integers y,, ..., y, we
have

O0<y, <P
Then

B2 V3+...+fte Ve € Py, < P?

icm
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and so

(28) y; € Pu M for  i<jg6.
From (25) and (26) we now have

(29) g yiyi=o0(l) and gy, =o0(l);

so, if P is sufficiently large, it is trivial to see that, in view of (24) and (25); T
has rank 6 and further |H (y)| < 1. Recalling the remarks preceding inequality
(14), it is clearly sufficient to prove the following Proposition 1, in order to

. establish Theorem 2.

ProrosiTion 1. Let p; 3 1 for j=1, ..., 6. There exists a constant © > 0
such that, for all large P, the inegualities

(30) i Y+ .+ Y — Pyy| < 1/2,

(31 IL<y <Pui? 1<j<g6,

have at least [P*] solutions in integers y,, ..., ys.

3. The apalytical argument. The next stage is to use the Hardy-—
Littlewood method to show that if the inequalities (30) and (31) do not have
enough solutions, then we have good Diophantine approximations to the
numbers o, j=1,..., 6, from some real «.

Following quite closely the arguments of Davenport and Lewis ([7],
§§ 3-9) while assuming that »n = 995, it is not hard to prove

Prorosition 2. Suppose that

(32) lgp €1, lt<gy for j=2..6
and
{33) PoIli=p ... U.

Suppose further that inequalities (30) and (31) have O(P" solutions, for some .
non-negative constant v < 3. Then there exists a positive constant § (< 31/176)
and a real number o > O satisfying

(34) PN gq < PP

such that there exist Diophantine approximations

(35} apy = a/q+f;, 1<j<6,
where a;, q; are integers with (a;, q;) = 1,

(36) 1< gy <" 2P,
(37) |ﬁ,;i & us #?14 P46-—2_
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Remarks. We note that from (22), JT = ... i satislies
(38) IT < p3om

and that inequality (49) in [7] holds for max || (< P23Imy < PE, Further, since
5 < 3, we have P = o(P*/II'?). A proof of the estimate in Lemma 10 of [7]
may also be found in Vaughan [9], Theorem 4.2. The condition § < 31/176
in Proposition 2 stems from the requirement on § >0 in the course of
proving Proposition 2, to be small enough to ensure that

(39) [T = o (P&~ 44943),
We shall enforce (39) at the end of the proof of Theorem 2.

4. Proof of Theorem 2. We shall need the following result on quadratic
equations; it is part of Theorem 1 of Watson [i1].
Lemyva 2. Let by, ..., bs, v be positive integers such that the equation
by x}+.. +bsxE=v

has no solution in rational integers, although there are integer solutions in
every p-adic field. Then for any e>0, there exists a positive number
C, = C, (&), depending only on &, such that

v‘<\C1b1-«.b4(b1+___+b5)l'f-a.

We use Lemma 2 to replace the inequality
(40) : Nt < Cyby...by{by+...+bs)?

occurring on the last line of p. 102 of Davenport and Lewis [7]. Repeating
the proof of Lemma 14 of [7], we obtain the following lemma.

Leumma 3. Given positive integers by,
positive integer

{41) . B < Cyby...bs max b,
i

v bs and any & >> 0, there exists a

where C, depends only on &, such that for all positive integers t, the equation
(42) byxi+...+bsx? = Bt

is soluble in rational integers,

Proof of Theorem 2. As remarked earlier, it is enough to prove
Proposition 1. Let Proposition 1 be false, if possible. Then, on applying
Proposition 2, with an n <min(r, 3), there exist 6 and a real number «
satisfying (34)-(37); on noting that 1 < aI7'/> P? by (34), we see, further, that,
for a constant C; < 3ol P™, the inequality

(43) lapsy i+ +opg yE—aPy,| < Ca I~ M2 P77

icm

has at most O(P") solutions in integers y,, ..., ys in the box (31) and a
fortiori, such y; with y; = g;z; with integral z; for 1 < j < 6. Replacing then
y; by g;z; in (43), we have at most O (P7) integers z,, ..., Z¢ in the box (31),
such that

(44)  laygizi+.. +asgezg—oPq z 4+ By gizi+. .+ Beqdzd
< C Y2 P,

For small 7, we shall get, in the sequel, a contradiction to the last assertion,
thereby upholding Proposition 1 and along with it, Theorem 2 as well,
For any ¢ > 0, therc-exists, by Lemma 3, a positive integer B such that

{45) B <a,...a5q;...qs max(a, g\

<0’y .. e 45 .. .qe max (ap, g7)" < I1° P7%
and, moreover, for every positive integer t, the equation
(46) Uy 4y 75+...+agqezi = Bt

is solvable in rational integers z,, .
(37) and from q,, .

.., Zg. Further, in view of (46), (36) and
..» g = 1, we have

(47) S gl < Y Bl Bt < BuUItpUtt § g
18j86 2£7€6 2556
But, by (24),
(48) W <P (2)<6)
and therefore, if
(49) t < Huzs,'zt P2~0(6)/2—9$6,
then (47) entails that _
(50) 2<Z<6|ﬁj gz}l =o(II~ 12 P77,
PR
If now _
(51) . z, € [T~ /8 pt=143

‘then we have

(52) ﬁl q% Z% & Hl/d- P46~2nP146H~7/4 P2-—28.§
= o([T"Y*P~7%, clearly.

For z, of the form Bu with integral u, condition (51) will certainly be fulfilled,
if u satisfies the inequality

(53) |H| <H—47/8 Pl—BD:i’

on taking (45) into account.
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Let us suppose now that ¢ and u are positive integers subject to (49) and
(53) respectively. For any such f, we may invoke a solution in integers
Za, ..., 2¢ Of (46) and with z, = Bu, rewrite inequality (44} as

54 lay gy Bu + t—aPq,u| € B™1I1~ Y2 p=7%,

In view of (45), inequality (54) will be satisfied by every such ¢ and u as
above for which :

(55) lt+ay 4, Bu?—aPgyul < [T~ 1/ P83,

We know thai, for any ¢ > 0, Dirichlet’s box principle yields [P?]
integers u for which

(56) 1 <u s H11/2 PSZM'H:

and further,

(57) laPy; u—ov) < JI~ 112 pm83s

for some integer v. For each such pair w, v, let us define
(58) r=p—a, g, Bu®.

Now {39) implies that

(59) [{14/2 pB3d+a . yy—47/8 pl-905

provided that 91€/(4n) < 1—1736 —¢ and in such an eventuality, the integers
u just chosen certainly satisfy condition (53). Inequality (55) implies that

(60) t—ulogy P—ay gy Bu) = o{l),
while by (32), (35), (37) and (38), we have

|Bl q, P[ <<:H3"4‘L£}"4P11'5"1 < nS/d-PI 16—17 < P3Q/(Zn)+116~1 < P.
Thus, for the positive number ag, P, we have
{61) gy P =(ay P+, 4, PYpy > a, P.

Since, moreover, for n > 995,

1668 +¢ < 1738+ < 1-22Q/n,
we have _
.(62) a gy Bu <€ a, 1! P1888te = o(g, P)

which implies, for a; 0, that t > 0; if al =0, then ¢ =
that » > 0. Also,

v and (57) ensures

(63) , ot @quiPu-kal q, Bu*
<og, u(P+q, Bu}

WAL PUSHAVE BEJLRILE QUOUWTULIC  JULYRUTHGES oy

<aquP, by (32),
< JI6 p1+916te

(36), (45) and (53),
by (32), (34), {36) and (56).

The validity of {49) may therefore be ensured, provided that
HG P1+1866+Q @ H—ZSM-PZ—B(é)fZ

or if
{64) P49QI(2n]+1865+Q <P1_0(6”2.

For n 2z 995, we have Q =40.320169%4... and (64) is fulfilled for g = 7/103
and 8 = 1/106 indeed, for this choice of ¢ and &

60 < (8—4dd)n,  91Q/4n) < 1—1735—o,
220/ < 1—-1665—g, 49Q/n < 2—(0(6)/2)— 1865 — o,

guaranteeing the validity of (39), (59), (62), (64) and hence of (49). For these
values of ¢ and & we have therefore [P?] pairs of positive integers f, u
satisfying (49), (33) and (55), and consequently, (43) has at least [ P*] solutions
y in the box (31). Proposition 1 is thus proved with t =7/10% and so is
Theorem 2.
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Factorisation of x"—q over Q
by

Henk Hovoomann (Issy les Moulineaux)

1. Introduction. It is well known that the cyclotomic polynomials @,(x)
(ne N) are the irreducible factors of binomials x¥—1 (NeN} over @[x]. In
this paper, we determine the irreducible factors of binomials x"—¢ {4y Q,
NeN) over Q[x].

It turns out that besides polynomials of the form @,(x™/a) there are
exactly two other families of polynomials in O[x] which divide some
binomial. In fact, under certain conditions on n and s there are irreducible
polynomials &, (x) and ¥, (x) such that

@n,s (X] @n,s( - )C) = <pn (XZ/S) and !Pn.s ()C) TPI.S ( - x) = q)n (754/ - 452)

(here [(x) = ¢g(x) stands for f(x) = cg(x) for some constant ¢, a convention
used throughout this paper) and the polynomials of the form @, ,(x"/a) and
¥ (x"/a) constitute the other two familics.

The polynomials @, ,(x) and ¥, ,(x) are not new, they can be obtained
from certain polynomials defined in [9]

We shall use the following notation:

Let Q be a field, & its algebraic closure. {y is a primitive root of 1 of
degree N and Qy = Q({x). .

For ve{l, @ a field such that Q £ Q'S 3, we denote the minimal
polynomial of v aver Q" by m(v, 2'; x). Its degree is the degree (or dimension)
of v over . The order of v over €' is the smallest N > 0 such that v¥ e, (If
no such N exists then the order is taken to be «.) Let F(x)ef2[x]. The
order of F(x) over @ is the smallest N > 0 such that F(x) divides some xV —¢
with ge 2. (Again taken to be o if no such N exists.} Remark that if F(x)
has order N over @ then F(x") has order nN over £2 (note that F{x")|x™ —b
(he ) implies n|M) and F{x)|x™—b (beQ) implies by a standard argument
that N|M. We shall make a frequent use of these results in the text.

Let F(x)eQ[x] have order N over Q. The dimension of F{x) over Q is
the dimension of.any of its zeroes over Qy. (Note that this s a proper
definition: If v is any zero of F(x) then the other zeroes all have the form
CNV for some i)



