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1. Introduction. Numerous papers have been written concerning poly-
nomials which commute under composition, see for example, F131,
[8]-[10], [14], [17]. Because of the following result, the classical Chebyshev
polynomials T, of the first kind in one variable are of special interest. In [1]
Bertram showed that over an integral domain of characteristic zero, fnz=2
and the polynomial f of degree k > 1" commutes under substitution with T,
then f = T, if n is even and f = £ 7 if n is odd.

In the present paper we shall consider the problem of commuting
polynomial vectors in two variables, In particular, in Section 3 we shall
determine all polynomial vectors in two variables which, under component-
wise composition, commute with two dimensional generalizations of the
Chebyshev polynomials which were first considered by Dunn and Lidl [4],
[5] and Lidl and Wells [13]. In Section 5 we present some results which
extend to several variables, some of the ideas of Wells [17] and Mullen [14]
concerning polynomials over finite fields which commute with linear permu-
tations.

2. Prelimiparies. If R is an integral domain of characteristic not two, let
R[x, ] denote the ring of polynomials in two indeterminates x and y over
R. If f;eR[x, y], define the degree of f; to be the total degree of f;. If
11, faeRIx, y] then let f ={f1,f)e(R[x, y])* and define the degree of f to
be the maximum of the degrees of f; and f.

We say that f, ge(R[x, y])* commute if

(2.1) fog=gof
where o denotes componentwise composition. Thus (2.1) implies that

f1(g1, 92} = g (fi,f) and (g1, 92) = 92 (f1, f2)-

The classical Chebyshev polynomials in one variable defined by Tp = 1,
T, = x, and T(x) = 2xT,- 1 (¥)— T,-a(x) for n 2 2, were extended to several
variables in a series of papers [4}-{6] and [12]-[13]. Before proceeding with
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our investigation of commuting polynomial vectors, we shall list some '
properties of the generalized Chebyshev polynomials that will prove to be
useful in our later work.
If neZ let P,(x,y) be defined by the functional equation

P,,(x, y) =y U"~|*~W"
where
and  www =1,

Xx=u+v+w, ¥=ul-+uw-ow,

Using the notation of [4], P,(x, ) may also be defined by
P,(x, y) = (1/2) P (x, y; 1)

where P, L/ is given in Definition 2.1 of [4]. The polynomials P,(x, y) are

known as generalized Chebyshev polynomials in two variables. Multi-dimen-

sional Chebyshev polynomials have been studied in [4] and [12]-[13].
Similarly if neZ™*, let Q,(x, y) be defined by

Qu(x, y) = u"+ 0"
where

x=u+v and y=uwuw.

Again following the notation of [4], @,(x, y) = P, ” (x; ¥). In Lausch and
Nbauer [10], the notation g,(y, x) for y =asR has also been used for these
polynomials, called Dickson polynomials.

Several results concerning these polynomials will prove to be useful.
These results include

(22) Pn(xs y) = P—-—n(y: x)n
i) 3]
(2.3) Polx, )= 3 ¥ dyx"HTNY neZt,
. =0 j=0
where
J =M(__I}‘ n-—-i——Zj)l(iu}-j)
i —i=2f \ ij SN
is an integer with dog =1 and d;p = —n.
' %2
(2.4) (x, V} Z o, X" 3 yf
where
. muzq( )
_ | n—i i
_is an integer with ey =1 and e, = —n.
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For these and other details regarding generalized Chebyshev poly-
nomials, the reader should consult Dunn and Lidl [4}-[5] and Lid! and
Wells [13].

Throughout this paper let G, = (P,, P_,) and H
the few values of n we have

» = {(C,, ¥") so that for

n P, P, Q. ¥
0 |3 C 13 2

1 |x ¥ X ¥
2 3\.3»-»7} pre-2x x* =2y y?
30| x*~3xy+3 y-3xy+3 X =3y y®
4 |t —dxtp+ 2t x| P —dxy? R 2xP Ay | xtedaly 42t |

We note that in the notation of [13], G, =g{2, n, 1)-and H, = g(2, n, 0).
If o(x,y) =(x+y+{xy)"" x"*+y ' +xy) then it is easy to check that

@)™t ¥) = o(x, ()77
and from. the definition of G, it can be seen that

(26)  Gop(x, y) = ("+y"+() ™" x Ty ) = ¢

o(x, ¥) = @y, x) =

(x", ¥".
Similarly if d(x, y)
an

= (x+y, xy) then
0(x, ) = 6(y, x)

and from the definition of H, we have

(2.8) H,0f(x, y) = (x"+y", x"y") = 6(x", y).

3. In the first part of this section we will determine all polynomial
vectors over R which commute with G, where n 2 2. We will then determine
all polynomial vectors over R which commute with H,. First however, we
prove a lemma which will be very useful in our later work. If peZ and
geR(x, y) has degree stricily less than p we will write g(x, v} = C(p). As
usual, the dégree of a rational function g = r/s is defined as degr—degs. We
now prove .

Lemma 3.0 0f
= X

P+jsm

ayx'y'eR(x, y)

has only ﬁmtely many terms, is of degree m =

Fx" Yy =

1 and has the property that
LS Gx, y)I"+ O (mn—p)
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where n = 2, the characteristic of R does not divide n, and p =1, then there
exists an integer r with 0 <r < m such that

flx, §) =ax’y" ™"+ 0(m—p)

where o' =1,
Proof Let f(x, )= Y, ayx'y so that

itism

3.1 Y oayxmyt =3 ayxt V1" 0 (mn—p).

Since f has degree m the set {i| & p.;# 0} 15 non-cmpty. Let r be the
minimal element of this set. By equating coefficients of x™ y"™ *? in (3.1) we
have df -, = 1.

Suppose there is a pon-zero term of degree greater than or equal to

m—p. Choose (s, 1) (r, m—7) so that thy 5% O s-kr is maximal, and s

minimal. Consider the coefficient of (x" y* """ 1(x*y") in (3.1, We have
(r(n—1)+s, (m—-r){n—1)+1) # (ns, nt) # (nr, n(m—r))

so that the coefficient of this term on the left-hand side of (3.1} is zero. The
degree of this term is '

Cm(n 1)+ {s+1) > m(n—1)+(m—p) = mn—p

so that the coefficient of it on the right-hand side of (3.1) is na’,t . dy,
which is non-zero. This completes the proof of the lemma,

We will now prove the following result which is analogous to Beriram’s
result in [1] for the classical Chebyshev polynomials of the first kind.

TueorREM 3.2. Suppose n = 2 and the characteristic of R does not divide n.
If fe(R[x, y])? is of degree m = 1, then f commutes with G, if and only if f is
of the form

3.2) f=(aPy, 0 Py)  or  f=(aP.y, 0 Py
where @ =1 if ns£ 1(mod3) or o =1 if n = 1(mod3).

Prool. For necessity, it is shown in Section 5§ of [13] that G, commutes
with G, so that by (2.3), we see that (aP,, a® P_,) commutes with G,. Hence
if /= (f1,/2) commutes with G,, then using (2.2) we have

fl(Pm P"n) = P—n(fiyf?.) = Pn(fi:fl)'
Similarly '
fl (Pnr P"n) = P-n(f;l’fl)

so that (f,, f;) commutes with G, and thus (a® P_,, aP,) commutes with G,.
Since a® = | we see that (xP_,, o> P,) commutes with G,.
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Conversely, suppose that f ={f,, f2) commutes with G, for n = 2 where
n does not divide the characteristic of R. For i = 1, 2 let the degree of f; be m,
and let m = max {my, m,}. Since foG, = G,of we have

3.3 JoG, 00 = G,cfop.
From (2.6) we see that G,0¢(x, y) = @{x", ¥") so that if we let h = fop then
(3.3) becomes
(3.4) h(x", yy = G, oh(x, y).
Let k= (hy, hy) where for i=1, 2 the degree of k; is p. We shall now
consider three cases:
Case 1: py>py- Let
h2 (JC, y) = Z

—2m2$i+j~<.p2

aijxiyj

s0 that the second component of (3.4) becomes

(3.5) Za,-j x"iy”j = P—n(hla Z al-j xi}‘i).

In P.,, the coefficient of y"~! is zero and thus (3.5) yields

(3.6) Y ayxmy = (3 a;x'y) + 0 (p2(n—1)).

Since #;(x, ¥) has the form given in Lemma 3.1, we may apply the lemma so
that there exists an integer r with 0<r < p, such that a7, , =1, and

moreover if i+j = 0, and (i, j) # (r, p;—r), then a; = 0. For simplicity of
notation let a, ,,_, = j so that

(3.7) hy=gx"y?" Y

L 2mp KIS0

a;x' y

where "1 =1. .

Since @(x, y) = @(y, x) we have h;(x, y) = hy{(y, x) and thus a,, .,
=a,,,-, 7 0 so that p,—7 =r and hence 2r = p,.

From (2.5), the coefficients of (xy)™"y" =x"" and x"(xy})™" =y~ are
equal to the coefficient of x"y" which is f. Suppose that g+ 0 for some
i+j<0 with (i, ) (0, —r) or (—r, 0). Then the coefficients of x™7)/~?
and x'~/y~/ are non-zero so that either j—2i =0 or i—2j = 0. Thus
either r = —i or r =j—i which implies that (i, j) = (—r, 0} or else r = —j
or r=i—j so that (i, /) = (0, —r). In either case we have a contradiction,

Substituting into (3.7) gives '

(3.8) by = B(x"y 4-x""+y""

where "' =1 and 2r = p,. From (2.6) we have h, = §P_,op so that f,

= fP.,. Since the degree of 1y is my = r we see that

(3.9) Jo=PPom,
where "t =1.



150 R. Lid! and G, L. Mullea

Now let [=(l;, I} where I{x, y} = h{x™!, y~'). Hence from (3.8) and
{(3.9) we obtain

(3.10) I = B{x"2+ "2+ () ")
From (3.4)

h(x™", ™" = Gyoh(x™ !, y 1)
so that
(3.13) I(x", ¥ = G,ol{x, y).

Let Iy = Y byx'y be of degree g. From the second component of
itjgy

(3.11) we have
G2 By ™)) = P, B4 0™
= B x4y +(xy) "]+ O ((n— 1) max {my, g} +1).

From the coefficient of x" ™2 "2 in (3.12) we have 0 = nf"+k for some

constant k so that k= ~nf s 0. For n 2 2, (n—1)¢ = nm, so that g > m,.
From the first component of (3.11) we have ‘

Y by xyt = Py (X byxy, B(x" " 4 (xp) ")
= (¥ byx' pY'+0((n—1)q)
since g >m and the coefficient of x""! in P, is zero, Thus by Lemma 3.1
there exists an integer s with 0 < s < ¢ such that bj; ;=1 and by, = 0 for

(i, d # (5, 9—5) with i+j= 0.
Similarly using (2.5) we obtain

(3.13) ll = a((xy)ml +x—m1 +y_m1)

where 0"~ ! = 1 so that hy = a(x"* +y" +(xy) ") and thus f; =P, . Com-

bining this with (3.9) we have _
(3.14) | f=(@Pu, BP- )
where a""! = "1 = |, '

We now show that m; = m,. To this end, consider the first component
of (3.13) so that h (x" " = P,(h, h;). Hence

(315} (X" "+ ™17 (o) ™™ = @ (U Y™ () T Y ey B
ij<n
=axml"+mxm1(n l)ym1+
where each ¢;;e R. Since nx 5 0 there exist integers i and j with i+ < n such
that ¢; # 0 and

ml(n 1) ”‘1

X — (xml)‘ (xy)mzj — xmli-i-mzj ymzj'
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Thus my(n—1)=m i+ m,j and my = m,j so that i =n—2 Since i+j<n
and j# 0, we, have j=1 and thus m, =m,,

From (2. 5) we know that ¢, ,; = —n so that the coefficient of
XM 1)ym1 in (3.15) is 0 = —ne+ne"" 2§ and hence § = a?. Since P,(x, y)
=P_,(y, x) we have « =% so that a® =1 If n= 1(mod3)} then (3.13)
implies that o = 1. This completes the proof in Case 1.

Case 2: p, < p;. If we consider the transformation k = (h,, k,) then we
can use an argument analogous to that used in Case 1 to show that f must
be of the desired form.

Case 3: p, =p,. In this case equation (3.6} becomes
(3.16) Y oagxtyy =3 a;x' V) +0(pa(n~1)+1).

Using Lemma 3.1 and an argument analogous to that used in Case 1, we
obtain

(3.17) . hy = B0 +x "2y "2 +ky)

where "~ =1 and k,e R. Applying the same argument to the first compo-
nent we have

(3.18) hy = () +x "4y

n—1

"t ky)

where «"" ' =1 and k,eR. Since p; = p, we have my =m =m.

As in Case 1, let I{x, y)=h{x"1, ™!} where the degree of I is gq.
Arguing as in Case 1, we can sec that g > m,. Hence my = m; = g, which is -
a contradiction. Thus f cannoi be of the correct form and the proof of the
theorem is complete.

- 'We now prove a result analogous to Theorem 3.2 for the Dickson
polynomials. In particular, we will prove

- TreoreM 3.3. Suppose n = 2 and the characteristic of R does not divide n.
If feR[x, y])* is of degree m = 1, then f commutes with H, if and only
if is of the form

(3.19) =@, 2> y™

where o1 = 1.
Proof. In Section 5 of [13] it was shown that H,, commutes with H,. If

f has the above form, then substituting into (2.4), we obtain

QnOf Ye @) H @y =3 " O 2y
=ay ¢ Qn-# y™ = aQ,0H,, = 2@, cH,.

Hence Q,of =fioH, and (x? y™)" = (™" so that f commutes with H,.
Conversely suppose f commutes with H, where the degree of fis m. For
simplicity of notation let g = (g,, g,) = H,. Then we have

(3.20) fogol = gofod.



152 R. Lid! and G. L. Mullen

Let h = fo0 where the degree of i, is p; fori=1, 2. From (2.8) and (3.20) we
have
(3.21) hix", ) = goh(x, ).

From the second component of (3.21) we obtain
(3.22) ha (%% 3" = ga (b (x, V), ha (%, ) = [hz(x, p)Y°
and from Lemma 3.1 we have

(3.23) By, y) = B 972 0 (py—pam) = px" ¥

where ' =1 and r is an integer such that 0 <7< p,. Using (2.7) we see
that hy (x, y) = by (y, X) so that 2r = p,. Substituting into (3.23) gives hy(x, v)
= fx'y" so that f,(x, y)=py". Since the degree of 2 is my we have

(3.24) Jo=py"*

" where g7 = 1.
Let y =0 in the fist component of (3.21) so that

(3.25) By (7 0) = g (hy (x, O), by (x, 0)) = g1 (A (x, 0), 0).

Hence from [13], g, (x, y) = P Y2 (x; y) and furthermore g, (x, 0) = x". Sub-
stituting back into (3.25) yields

(3.26) hy (x", 0) = [hy(x, 0)]".

If we let y = 0 in Lemma 3.1 we clearly have h (x, 0) = ox” where o
=1 and 0 < r< py. Since @ is symmetric, hy is symmetric and thus h; has
the form

(3.27)

for some le R[x, ¥]. ‘
Let hi(x, )= Y ayx'y and let g=min{i+j} ay# 0} Assume
i+j<p1
that g <m, and that p, >m,. Then

(3.28)

r

n- 1

by (x, ¥) = a{x"+y)+xyl(x, ¥)

hy (e, y) = oy XTY Y ag ) Y o

where «, and «, are non-zero and r and s are minimal among the non-zero
terms of degree p; and g respectively.
From the first component of (3.2{) we have using (24) and (3.23)

. [n/2] _
hl (JC"= yn) == gl,(hla ]12) = Z e hfi—-zk(ﬁxrymz ")k'

fe == &

(3.29)

If we now substitute (3.28) we obtain
(3.30) w x"ry"(h”r)";_z auxm' ynj+a2 xnsyn(fl'*s)
=Y oy x Yy TTHY ayx y +ax’ yq_s)"m“ (Bx Y™

iom
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Since go =1 and py > m,, the coefficient of xy*1™™ is 4, =7 s0 that
ai”' = 1. Moreover since ¢ <m,, the term of smallest total degree is
x™ y"a=) whose coefficient in (3.30) is o, = «f, whence a3t =1.
Assume that there exists a pair (r, u) (s, g—s) with t+u-{:m and
ay, # 0. Then the coefficient of [x*y*""~*(x*1*) in (3.30) is 0 = na"" a,,.
Since each of these factors is non-zero, we have a contradiction.
Similarly there can be no pair (¢, w) # (r, p, —r) such that t+u > m and
a,, # 0. Hence substituting into (3.28) gives
(3.31)

and by the symmetry of h;, we have r = p; —r and s = g~s.
Clearly my # 0 so that p; 0 and thus r ¢ 0. Hence (3.31) contradicts
{3.27) and therefore the assumption leading to (3.28) is incorrect. Hence ¢

2 my and py <my. But p, > g so that p, = ¢ = m,, which combined with
(3.27) yiclds

By(x, y) =y x" "t oy xFpaTE

mo =1

(3.32) By (%, p) = ax™ + i; By =i X V"2 oy

Assume that there exists an integer i with 1 <i<my—1 such that
B myi 7 0. Letb j= mlu{i‘l @,my-1 7 O} Substituting the expression for h,
given by (3.32) into (3.29) it can be seen that if, on the right-hand side, k £ 0
thenntzuc 1r)n:)wer of x is greater than or equal to m. Thus the coefficient

23 e - . — - -
of y *y"d 4s 0 =na"'a;,,, a contradiction since each factor is
non-zero, Hence A =oa(x"2+)"%) and thus f, =af}, . We clearly have
wp = my wom, $0 that
{(3.33)
where o' ! = Pt =, '

Using (3.29) and the fact that (Q,,, ¥") commutes with g, we have

o) e O (Y = 3 ey (0@ 2 (B

J = (0Qn, By

and thos

o Z ekQ,r:‘M 2k(xmym)k = Zan"" 2k ﬁkf-’k Q:u; Zk(xm ym)k.

Since ¢; = ~n( we have o" *f =¢«. But also a"" ' =1 5o that f = &?
which completes the proof.

‘ 4, In t!nis section we determine all lingar commuting polynomial vectors
in two variables over R = GF(g) the finite field of order g. Suppose that

g= (g, ga)  where g =ayx, a5+ for i1, 2

- where we assume for simplicity, that each a;, # 0. We wish to determine all

S =(f1,/a) where [fi=bhyx +byx,+d  for i=1,2
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such that
' fog = gof.
To this end, let
D ={ay;, —1){aza—1)—ay,ay,.
We now prove

Treorem 4.1. (A) If D0 then fog =gof if and only if the by
(i,j= 1,2} satisfy

(4.1) byy+[(azp—ay Yas 1byy —baq =0,
4.2) | biy—(ayafdz1)byy =0
and

dy = [{ag =) x—a,y)/D,  dy=[(a;;—1)y—ay x]/D

where
x=(by;—1)ey+biyc; and  y=bhy e +H{bar—1)cy.

(B)If D =0 then fog = gof if and only if the by (i, ] =1, 2) satisfy (4.1),
(4.2), the equation

(4.3) ' dy1 X ={ay —1}y
and dy and d; satisfy
44 (ag —tdyta,dy =x,

Proof. The vector equation fog = gof is equivalent to the following
system of equations in the unknowns by, by, by, byg, dy, and dj.

—ty1 byy +ayabyy =0,
~ayabyy @ )by, tay by = (),
—e by, —C3byz Hay ~1)d, Fagpdy = —cy,
a3 by, @2z —ay )by =gy by = (),
O3 byg =8y, by = (),
meyhy  —lzhy 'l-a;, dy gy — Dy ~ gy,

The theorem follows upon row reduction of the above system.
We note that if D 0 then there are ¢* such pairs f = (f), fa).

5. In this section we extend some results of Wells [17] and Mullen [14]
concerning polynomials over finite fields which commute with linear
permutations of the field. We restrict our attention to the case where R is the
finite field GF (g) of order ¢ = p" where p is a prime and n > 1.

In [14] Mullen characterized and enumerated those polynomials over
- GF(q) which commute with linear permutations, i.c., he characterized those
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polynomials f{x) over GF(g} for which f(bx+a)=bf(x)+a. There are
several ways to extend these ideas to commuting polynomials in several
variables. The Lagrange Inlerpolation Formula for a finite field states that
every function from GF(y) into itself can be represented as a polynomial
over GF(q) of degree less than ¢. The above enwmeration was obtained by
using the Lagrange Interpolation Formula and the following combinatorial
result. If 0 i a permutation of a finite set D where 6 has type (¢, da,...)
then the number of functions /2 D — D for which f(0) = 0{f) is given by
- L iy
(5.1) il (;/dj) :
i Jld
We first consider the case where the commutivity is coordinatewise. In
particular, il fii R—R and O{x)=bx+a for i=1,...,m let f
={f1s - frn) and O=(0y, ..., 0, Then we say that f commutes with 0,
written f{ == 8f, il [;( = 0;f; for i= 1, ..., m. Suppose
Sy = e el x+ L+ x4
for {=1,.,.,m Using an argument similar to that in [14], we may state
TueoreM 5.1, The polynomial vector § sarisfies £0 = 0f if and only if for i
=1,...,m

g1
A =1y = ~a+ Y, ai,
= 1

N e
] b 1y s Y }_‘ ( )c?’aﬁ"" (t<s<g—1).
P U

Suppose b; 1 for the subscripts i, ..., i, while for the remaining m—e
subscripts, iy = 1. For j=1,...,¢ let k, ] be the multiplicative order of &;.
Then using (5.1) we have

CoROLLARY 5.2. The number of polynomial vectors f satisfying f0 = 6f is
given hy . _
52 R | WA

,' N

it should be p»:"sinted out that (5.2) counts the number of polynomial

veelors '

.f = (flﬂ "“.!;}l): R" - R™

where f;: R— R and fj0; =0, for i=1,...,m; not the total number of
functions g: R™-» R" such that gf = 0g. To count this total number of
fungtions g one might proceed as follows.

Let 0 be a linear permutation on R™ defined by

O{x;, ooy X =b(xg, o0y X+ (dty, ooy Q)

§ = Aetn Arithmetion XLYL2
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where 0 # be R has multiplicative order k- We note that this is a special case
of the previous situation where b =b; = ... = b,. We now count the total
number of functions g: R™— R™ such that g0 = 6g. The cycles of 0 consists
of m-tuples and @ has type (d;, d,...) given by

d;=0 for i£p if
dy = (g™ —1)/k i

b=1,
b1,

d, = ¢"fp and
dl == 1 ?lnd

Thus using (5.1) again we may prove
TueoreM 5.3. The number of functions g: R™ - R™ such that g0 = Og is
given by
S
granT ke

We note that if m=1 the results of this section reduce to those of
Mullen [14].
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