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Galois representations of Iwasawa modules
by

Rosert Gowp and Manonar Mapan (Columbus, Ohio)

1. Introduction. A finite group of automorphisms of an algebraic function
ficld of one variable over the complex numbers operates in a natural way
on the space of holomorphic differentials. The representation thus obtained
was given by Chevalley and Weil [1]. Iwasawa [5] obtained analogous
results for p-adic galois representations in number fields. In his sitvation,
L/K is a finite p-extension of Z -fields of CM-type and Gal{L/K) operates on
Ap, the minus part of the pclass group of L. Iwasawa determined the
representation on A; &, @, (Th. 4, Th. 5). His immediate object was to give
a proof of a theorem of Kida [6]. The classical Riemann—Hurwitz genus
formula and the well-known orthogonality relations on characters are the
critical tools in the treatment of Chevalley and Weil. Kida's theorem is an
analogue of the genus formula and it can be proved easily. In Section 2, we
give a unified proof of Iwasawa's two theorems in the spirit of Chevalley and
Weil, This is Theorern 2. In the special case when [L:K] = p, we determine
even the integral representations, i.e. the structure of 4; as a Z,[G]-module,
G = Gal(L/K). This gives in parlicular the basis for induction in the proof of
Theorem 2. - :

In Section 3, we determine the modular representations in the case when
I/K is a cyclic p-extension and the module consists of elements of order
dividing p in A;. This result is analogous to the one proved in [4] for
function fields.

To generalize Theorem 1 to arbitrary p-exiensions is an interesting open
problert. For the special case when G is cyclic of order p? the
indecomposable Z,[Gl-modules have been classified. Using this, we have
been able to extend Theorem 1 to this case, Theorem 4 in Section 4.

We are particularly indebted to Alfredo Jones for the information
summarized in Table 1.

2. Let p be an odd prime. Let @, be the unique cyclic extension of
degree p"~! contained in the cyclotomic field of p™th roots of unity and Q,
= ) @, A Z,field is the composite of @, with a finite extension of Q.

n»0
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A Z,-field of CM-type is 2 totally imaginary Z,-field which is a quadratic
extension of a totally real Z,-field. Let L/K be a cyclic extension of degree p
of Z,-fields of CM-type. Let G = Gal(L/K) and Ag (resp. A;) be the minus
part of the p-primary ideal class group of K (resp. L). As in [5] we let 4,
denote the trivial G-module Q,/7, A, denotes the divisible regular
representation

(Qp/zp) [X:I/Xp_ 1 »

and A4,., denoles the divisible faithful representation
(Q/Z)LXYX7™ + X724 L+ X +1).

Any divisible Z,[G]-module of finite rank is isomorphic to a direct sum of
indecomposable modules

AV @A @A
for uniquely determined a,, a,-,, 4.

TueoreM 1. Assume that L/K are as described above, u(Ag}) = 0, and 1 is

the number of non-p-primes of K= which ramify in L'/K* and split in K/K*,
As a Z,[Gl-medule, A; is isomorphic to '

Af@ATY i >0

aned

A4l =0

where 2z = A(Ag) and 8 = | if K conrains a primitive p-th root of unity, 6 =0
otherwise.

Proof It is known (e.g. [6]) that p(Ag) = 0 implies that (A7) = 0 and
consequently that A; is Z,-divisible. Thus '

SV A = AV @A @4y
and we need to compute the exponents.

Let H(G, ). i= —1,0:j=1, p~1, p. denote the usual reduced or Tate
cohomology groups. Tt is straightforward to compute the entrics in the
following table:

A= A Ap-1 A,
HYG, A= 0  Z/pz, 0
H™YG, Ay= Z,/pZ, 0 0

The exponents in (1) can therefore be determined from the p-ranks of A Iy
HO(G, A7), and H'(G, A]). '
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The rank of A is A(4,) = A7 which by Kida’s Theorem ([6]) i5
prig +ip—1(x=9).
Next we Iock at the cohomology groups. We start with the canonical short
exact seguences :
O - P, - 1
(2) 0 - E, — L

— 0,
- 0

- C
- Py
whose terms arc defined as in [5]. As usual H™YG, I,;) =0, giving rise to
(30 -HHG, C) HG, Py -HOG,T) - HYG,C) - H'(P) 0.

In addition H '(G, L') = 0 and, since L/K is an extension of Z -fields, and
pis odd, HY(G, LX) = 0 (see {51, [3]). Hence H°(G, P,) = H™'(G, E;) and

H~Y(G, P;) = H%(G, E,). Since L and K are of CM-type and p is odd, we
may take minus parts. Letting W = the p-power roots of unity in K, we have

4 HYP)™ =H '(E) = H (W) =(Z/pZ)’,
“ H™' (P & HO(E,) = HO(W) = 0}.

Take minus parts of (3) and replace C,, by its p-primary component to
obtain
5) 0= H UG, A7) = (Z/pZf 5 H(G, 1)™ — H°(G, A7)~ 0.
Recall next that every non-p-prime of K which is not ramilied in L/K is
completely decomposed in L/K (see [3]). Therefore

HO(G, 1,;)” = (I§/NU)) =¥ =(Z/pZY.

Next we will show that [ is injective if 7 > 0:"

- HYG, P,)” - HYG.I,)”

@hz 2z

Of course, we assume that 4 = 1. _

Let oel be such that (meKer(f), ie. (weN()=1I¢. By Kidas
Proposition 1 in [6] we see that if T > 0 then (a) as an element of I is
already principal; {x) ={f) with" feK". As noted above, K* = N(L").
Therefore ffe N (LF) and (w) = (f) is trivial in H°(G, Pp) = PYIN(P). N

We conclude that if © > 0, then H™(4;) =0 and H(A[) =(Z/pZ)"".
If r = O then clearly H™'(A]) = (Z/pZy and H®(Ar) = 0. Thus all necessary
pranks have been determined and the proof 15 completed.

For any divisible Z ,-module M of finite rank, we let

V(M) = Homzp(M', Q,/Z,) gz, Q.
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a finite dimensional @,-vector space. If M is a Z,[G]-module for any p-
group G, then V(M) is naiurally a Q,[C]-module.

Tueorem 2 (Iwasawa). Let p be an odd prime and L/K a p-extension of
Z fields of CM-type such that px = 0. Let G = Gal(L/K), V, = V(A ), and
nix the p-representation of G on GL(Vy). Then

(%) “QK“‘S’W1@(AE—5)'KG@(§2+ 75:,+),

where m, is the trivial one-dimensional representation, mg is the regular
representation of G, and w4 is the complement in wg; of the representation
induced from the trivial \-dimensional represeniation on the inertia subgroup of
vt in G(LTJK*) = G(L/K) for every non-p-prime v* split in K/K™,

Proof. Assume first that G has order p. From Theorem 1, the fact that
V(4,) affords =, V(4,-,) affords ng—=,, and V(A4,) affords ng, and for any
ramified prime w, = mg—n;, we see that (x) holds in this case.

. Now assume that G is cyciic of order p" and that () is true for cyclic p-
extensions of degree < p"~!. Let ®;(x) be the cyclotomic polynomial of the
p'~th roots of unity and let ¥ = @, [x}/(®;(x)). Then ¥ may be viewed as an
irreducible @,[G]-module by means of the maps

Q,[G] = @, [x)x"" — 1) Q,[x)/®:(x).
As a Q,[G]-module, ¥, has a unique expression as a direct sum of
irreducible modules: ¥V, = @ V.

i=0
Let G; be the subgroup of G of index p’ and for any Q,[G]-module ¥,
let ¥ denote the subspace pointwise invariant under action of G,. It is not
hard to see that

it follows that

1>j:| j:()r"'nna
isj f=0,..., a

J
dim(V9) = ¥, a ().

=0

Selving for a; we get

(6} . a = (dim V@ —dim V¥~ 1y,

1
o(r)
LemMa 1. dim(V®) = A~ = A(Ag) where K, is the fixed field of G,.

Proof. Since‘V, = V(4y) is finite dimensional, dim V5’ equals the rank
of the maximal divisible submodule of (4;)*. Using (2) we have

0 Eff o L PYUos HY(G,, Ep) o O
%
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and
0 Py 1= CYs HY(G,, Py).
This gives in turn '
PPy, = H' (G, Ey); oﬁpuwxﬁfLﬂa~*q¢aH(G“Pa
Taking p-primary and minus parts we obtain {(cf. (4)
n 0~ H'Y(G;, W) ”"”’(ILL/PKi "= (47)" - 0.

In view of the sequence

0~ Ag, = (IZYPe)™ — Ig)™ =0
and the finiteness of H'(G;, W) and 1 L'/I x; We see that Ag, and (47 )G" have
the same maximal divisible rank, A(Agy),
Let T be an inertia subgroup of G for some prime v™*. Assume T = G,
the subgroup of index p’. The representation of G induced from the trivial

J
one dimensional representation of T is the sum @ V, i.e. the representation
i=0
of G arising from the regular representation of G/T. Since the regular
n

representation of G is realized on V; = P V., the representation LA
i=4
afforded by

D K= & W

i=n—ordpe(u"")+1
We can now rewrite (+) as

n

(%) n=wev ed® & &

ut i#n—nrdpe(v+)+1

Il we let 7, i =0,..., n—1, denote the number of v* with ramification
degree exactly p”~! (ie. inertia field equal to K;), this becomes
i= 1
2o o
=V @D K

(8) w=vev* 'adk
i=1

By the results of Kida we may write
”*p(ik-~5+2( w, K /KY)~1)+8.

Consequently
i~2

"-é)+ra 1p' Hp- 1+Z Tt A

=0

W

J'Ef——}*;(-i_l (p)(

4 — Agpi Arithmelica XLV (1986)
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From (6) and Lemma 1, we have

TPl

1 S
b= i =5t X up (g, iz
§ fp(p),;o g
| i-1
mlg—bt— ¥ =P T = A =6+ ) 1
o) z

while ay = Ag = Ag,.

These are precisely the exponents occurring in (8), thus confirming the
theorem for cyclic G,

Now let G = G(L/K) be an arbitrary finile p-group. We will show that
{*) is valid for such G as a consequence of its validity for cyclic G. Let y, be
the character of the representation =,. It will suffice to show that

=0 11 (@) +(k =3 @+ 2. 1+ (@)

vtk

Xkl

for every et geG.

Fix g+ e, let §={g> =G, and let E be the fixed feld of §: K € E < L.
Then we know
xyxlg) = 1yelo) =

Op %1 (@) +(Ag ~ ) as(g) + Z X:,»r,s(g)

vtgt

with x/ . ; taken with respect to the extension I/E. Note that

k=05 Ae@=150)=0 (g#e), y+=x-Indf (to7,4):
and '
X:,+'S = Zs““lndg"v,r S (ZO,TU+ sl
Furthermore,
Ind"(x0 g xo(h™1ghy  when (k) = 0. he T,
E |;,§G ° ol wl =1, her,
©)
|T| | T]-# {w| wplace of L, wo, w totally ramified in L/E'
since
# ™ gheT .} = #1h gehT B0 = g (R (w*) T ramified in L/E)

=[T|" # {w" totally ramified in L/E}.

A similar analysis shows that
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Endg"ns(XO 1‘(13)(‘7
e # Fu | u
= # {w}

as in (9}, This ends the proof of Theorem 2.

place of E, u*|v™, u™ totally ramified in L/E)

3. We continue to assume that p is an odd prime and L/K a p-extension
of Z fields of CM-type. We assume in this section that G = Gal{l/K) is
cyclic of order p* and we let X denote the subgroup of elements of order
dividing p in A7 . We will describe the modular representation type of G on
X, ie. the situcture X, as a F {G]-module.

For i=1,2,...,p" let L(i) be the indecomposable F,[G]-module of
F-dimension i, so L{i) = F,;{x]{(x—1). As above, 7, is the number of
non-p-places of K* with ramification degree p"~% in LF/K* and split in
K/IK*, i=0,1,...,n—1.

TugoreM 3 Let m=max!jl i< je1, =0 0<m<n then

10y X, =g —aL(p@oLp"—p" "+ 1)®
n—1
(TS L(P"—p"" "D D 1r;L(p"—lif)-
i=m+t
Proof. Let y be a generator of G. We define
Kp=tlxeXy < =1 j=0,1,..p"
Thus
anL = Xy, 1 XL = Xcﬁa XL = {1}
Let d.,i=1,.... p", be the number of times L'(i) occurs in the deconipoéitio_n

of X;. It is easy to see that
dpn == dimﬂ-‘p (pXL/(pll; 1)X
and
(j l) dj ES dim.ﬁ’p(jXL/(jw'1jXL)—dime((j+1)*XL/J'XL)1

for j=1,2,...,p"—1.
Note that this last eguation implies that

(12) [jXL H g l.)-XL] ; [(Jd' 1)XL | jXL:] for .I, pn —-1.

As earlier, we let G, be the subgroup of G of index pl and K, its fixed
field, Thus &, is gunerated by q" and [K;:K] = p'. We will need the facts

j=1,..

- listed in

Limma 2. Given the notation described above

. -1 .
(@) (1=g)" " = Ng;= 3 ("),

i=0.
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b) Xn=Xi'
(© If L/K is unramified, then dim ,X;' =iz,

(d) If i = m, then the map X} — Xy,, induced by the norm, is surjective.

The extension map e: Xy, — Xy is injective and e(Xy) = Ng (X ).
(€) If L/K is vamified of degree p then X§ has dimdx—3+1.
Proof of Lemma 2.

@ (1—g)" " =(1-g")"71, on X,

_(=g? T At e
S =g 1= ano @)
=NGJ‘ )

(b) Xy =Ker(1—g)” = Ker(l ~g?y = X,
(c) For unramified L/K, {7} reads

05 €8> Ag - (AD) 0,
Therefore, since Ay, is divisible,
Ag = (40",
Consequently, .
Xy, = pAz; = (AD)™] = X7

(d). It suffices to prove the assertion for K;/K;_, of degree p. By Kida’s
Proposition 1 [6], ¢ is injective. As shown in Theorem 1 for a ramified
extension of degres p, H"‘(A,}j)mo and HO(AEJ)’_L:C;,"". Taking the
cchomology of the sequence

we deduce that
H_I(Xxj) = HO(Xxj) = HD(AEJ) =Cy
In particular dim(Xg/N(XKJ)) =7~—3. But
dim(X‘,Z'/e(XKj_l)) == dimXﬁjwdim e(Xg,_ )= (4 +1~8)—Ag.

Thus dim N(Xy ) = dime(X,_,) and, since clearly N(Xx) s e(Xx,_ ), they

_ar(.:' equgl, Since N = eon where n: X ;™ Xk, 18 induced. by taking norms,
n is surjective.

{¢) We rewrite the sequence (7) as

0— Cf,——» Ag ®C, & (AD)¢— 0.
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Again by Kida, e|, 1s injective. So
. -G - - - Ag —d+
ADf 2 Ax®Cy? and X = (A7) =X
We treat first the case L/K unramified, ie. all 7, = 0. Consider the chain of
subspaces for n = 1,

(13) pwXe R K22 e Xe 2 22X 20 2, X0

By Lemma 2 parts (b} and (¢)
dim X, = A5, =(p' -0 —9)+iz,

this second equality by Kidas formula. Since by (12) the dimension of
consecutive quotient spaces is nonincreasing from right to left, the only
possibility to satisfy this formula for dim p,rX Lfori=0,1,....,nis

By (11) then d;=0 for ! <j<p" while d; =0 and d,= A —9.
Therefore

for i=2,3,...,p"

Xz -8 L@ o L{1),

confirming (10),
Next assume L/K is ramified at some non-p-prime which splits in K/K*

or, in other words, some t; is nonzero. Consider the chain {13) from a

different point of view: '

(14)  aXKp... 2

= (p"—p'")X" e 2 (p"-p"'*l)X“ 2 (1!"~~JJ"‘1)XL = p””XL

. DX 2 X2l
By Lemma 2 (a) we see that

-y X1 = Ker(Ne)

By (d) we see that 0— Ker (Ng) = Xy~ Xg,— 0 is exact for j = m. So we 3
have

on X;.

dim 'J}XLmdimXL—dimXKj fOI‘ j; m,.

(pfl...

or, better yet, _ ,
d1m (p"-pl)XL = )LE '—‘AEJ,, J = m.

By Kida’s formula we can write this difference as

-1

F=1 n .
(15) dim X, = A7 — g, = ("= P)Ax —0+ T -w)+ T wl"=r).



Lo d La I, A FOIU Ald LVEL IvLauc L

Nexi consider the space

X, for jzm

(pt=pl o pd T4
This is the set of xe X, annihilated by
(L=l P (1—g?’ ™ = (=g P (1—g? ™,

In other words, it is the set {Lemma 2 (a)) of xe X, such that N (x) is fixed

by G;_. Since NG is surjective for j = m (Lemma 2 (d) and has kernel
]XL, we have
Lommpi =0 Xe T e i X0l = IX & Tood=man

Furthermore, we know that

(16)  dim Xgi~! m{’“«'mn j=m (Lemma 2 {c)),

My =8+ T(KyK o), J>m
and
=1
T(Kj/Kj—1) = Z 4
So for instance, let j =n—1. By (15) we have
(47 dim, e Xo = ("= p ) —é+z DT (= )

fmm

nek

k—0+ 3 T

i=m

=( "o n-I)

By (16) with j = n, we get

el
=K, = 5-{«2 7

i=m

dim

m - 1)

) =1 . LR
=" O =00+ Y (" =) =5+ T wp
i=m 1 py
n-
=P 0k ~6+ T 1),

{a=m

' Re_calhng that in (14), consective quotient spaces have noninereasing
dimension, we see that

1

ig—=d+ Y 1

I=m

= d.im(,-XL/_(,'— 1jXL)

for all 0 <ig p"~p"',
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In the same manner one can show that

. i-1
dim(X /e, X} =4 -8+ 3 1
for p'=p'+igigp'~p"  j=m+1,... n—1.

L

It remains to delerrnine dim (X /., X 1) for p"—p" < i< pt

By (15) we have

dim( Xp)=A[p =4,

(pn_.pm)

while by (16},
dim((pn_pM+pm~l)XL/(
Since dim( wX1) = AL
dim( XL/

X)) =2, =" 1) ig —)+ 5.

pi- ™

Xp) =g, =" =14 —é)+Ag.

Since (1) there are p™ consecutive quotients from p,,X L to
p"~! consecutive quotients from . o, m-1, Xz 10
P

(P p™)
n_pm,XL and
e pm Lo (2 the
dimension of consecutive quotients is nonincreasing, and (3) 0<d <1
follows that

(e

ig —d  for

(X -
dim (X /-1 Xp) {AE for_

[=pt—p"+1,
" Thus we have determined dy for i=1,...,p"
dnp= Ag —0,
dp,,_p,. =y f=m+l,0,n—1,
dp,,“pm =T, —0,
dp"m-p"'ﬂ =4,
d, =0 otherwise .
from which (10) follows.

4. In Section 2 we determined the integral representation type of Ap
over G = Gal(L/K) for G =C,. In this section, we will do the same for

G =C,;. So assume G = C; and let H =G be the subgroup of order p and
let E be the fixed field of H. The decomposition of A; as a Z,[H]-module is
given by Theorem 1, as is the decomposition of Az as a Z,[G/H]-module.
The following lemma is crucial to the analysis of A7 as a Z,[G]-module. Let
h generate H.
LemMMa 3. As modules over Z,[G/H], Az and AL KAL)~
Proof. Let # =ny: Af — A7 be induced by taking norms of ideals

from L to E. Since Ay is divisible and Im(n) clearly has finite index in Ag, #
must be sur_]ect:va Let ae I, be such that the class of a is in the kernel of #.

b are isomorphic.
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Thus n(a) ={a) for ac E*. Recall that every element of E* is a norm [rom
L* {e.g. [3]) and let a = n(b). Replacing a by (h™!) a, we see that every class
in Ker (i) is represented by an a such that #(a) = (1). Consequently, a = b'~*
for some be I, and the class of ais in (A7) "% So Ker{n) ={4;)' " and the
converse is obvious. Hence # induces an isomorphism Az f(47)' " A; and
commuies with the action of G/H.

Let us pass again to the duals ¥, = Homzp(A}f, Q,/Z,) and the same
for ¥z, Y. Also let ¥, = Homzp{A,-, Q,/Z,)lori=1 p—1 p Then Lemma 3
asserts that Y, and Y are isomorphic as G/H-modules. Theorem 1 tells
us the H-structure of ¥ and the G/H-structure of Y, = Y,. We can deter-
mine the G-structure of Y, in terms "of Reiner's classification of
sz-indecomposables ([2]). Let us summarize that classilication. Let £ = Z,
with trivial G-action; & =Z,[G/H]: R, =Z, [x]/cbﬂ,-(x), f=12; where
thF(x) is the cyclotomic polynomial and a generator of (¢ acts on R, via
multiplication by x. Up to isomorphism, the 4p+1 indecomposable Z ,-free
Z,[G]-modules are given in column 1 of Table 1. The notation {N, L;¢)
denotes a module M determined by L= M" 0— L— M- N~ 0is exact,
and reExtép[G}(N, L) is the extension class of M.

Column 2 of Table 1 gives the structure of M/pM as an F,[GJ-module;
L(n) denotes the module F,[x]/(x—1)". (We are indebted to Alfredo Jones for
the data in this column.) From this information it is easy to compute the
form of M/pM over F,[H] and, subsequently, the decomposition of M over
Z,[H]. This last is given in column 3.

Tueorem 4. Let L/K be a cyclic extension of degree p* of Z -fields, p odd,
of CM-type. Let G = Gal(L/K), t, (resp. T,) = number non-p-primes of K"
which are split in K/K™ and totally (resp. partially) ramified in L/K. Assume
that py =0. As a Z,[G)-module, A7 is isomorphic to

RE@(Ry, Ry; AP @(R,, &3 2% for 1450,

P B R, 2y WP OR,, & YK for =0, 1, 3 0,
and . '

Z'G(Ry, &5 2K for

Remark. (R,, &; 1% = Z,[G].

Proof. We sketch out only the first case: t, > 0. By Theorem 1 and the
dual of Lemma 3, we see that as a Z,[H]-module

TO=‘L’1 mo,

Y= YV E @y
where © = 74+pry while as a Z,[G/H]-module

(18) -

(19) AR ey A
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Now we search Table 1 for those indecomposable M for which M™ does not
involve X, and which over H do not involve X,. There are only three
possibilities: Rz, (Ry, Ry; A%, (R,, 4 A0.

From Y, = RE®(R,, Ry; AY@(R,, ¢ A% we deduce that

YW axR@®F =Y ,@Y;

while over H,
Y2 YZ @ T e e Y

Comparing these expressions with (18) and (19) (recalling that 1y = pig
+(p—1)(to—8), we determine x, y, z to be as stated in the theorem.

Tahle 1
MH=Y @Y  ®Y

MG M/pM over F,[G] / (a’”b, o = e
R, L{pt-n 0. p. 0)
R, Lip=1) (¢, 0, p—0)
Z L 0,01
& Lip 0,0, p
(R, Z) Lip*=p+1) (Lp=LO
{Ryn Ryp A, 0€i<p-2 L{p*—i~t}@ L(i) (p—i=1,i+1,1)
(Ry, &3 M, 087 p—1 L ~)@ L (p—iid
Ry, ZBRy; A, 0€igp~2  Lip*—~i—-1@®LE+1) (p-i—1,i+1,i+1)
Ry Z& & M, 1gisgp-2  L(P=)@L{E+]) (p—i i, i+1)
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