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On primitive divisors of Mersenne numbers
by

Cart PoMERANCE* (Athens, Ga.)

An interesting source of problems in number theory is to study the
restriction of a familiar function to a special set of integers. For example, it is
common in the literature to see papers which study the various divisor
functions at polynomials evaluated at natural numbers or at primes. In his
interesting paper [2], Erdos considered the divisor function

o-,(m= Z 1/d

dlm

restricted to Mersenne numbers; that is, numbers m of the form 2"—1.
It is well known that

g.4(m)=0(loglogm).
Thus letting m = 2"—1, we trivially have
g-1{2"—1) = Oflogn).
What Erdos proved in [2] is the surprisingly difficult result that the logn can
be replaced with loglogn:
o_1(2"-1) = O(loglogn).

It is not so hard to see that this result is best possible.
For d an odd natural number, let {{d) denote the exponent to which 2
belongs modulo d. That is,

2= Imodd and 2'# Imodd for all [, 1 << [(d).
Let
Em= > 1/d.
ldy=n

* Research supported in part by an NSF grant.
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The function E(n) is connected to Erdds’s result via the identity

o (=1} =Y E(m).

min

In another paper [1], Erdds showed that

Y Em<clogx, ¢ =3 ljd{d=3 E(mn<oo.

nsx dodd n
(The latter result had been shown earlier by Romanoff [9] by a complicated
argument; Frdds’s argument in [1] gives this as an easy corollary of the
former result, which itself is not so hard.) The proof of the former result
actually gives
(1) by E(n) (e’ +o(1))logx,

nEx
where y is Eulers constant. These results are of interest in that they
immediately imply that
ZCT'_l(Z"—].)"‘sz as

nsx

X—= 00,

Thus the maximal and average orders of ¢_,(m) for m a Mersenne
number have been satisfactorily handled. It is to be remarked, however, that
the situations for J(m), o (m) are much harder and are far from resolution.
Here d, o respectively count the number of natural divisors and the number
of distinct prime divisors. : _

The function E (i), which proved a useful tool in Erdés’s papers [17, [2],
seems interesting in its own right. In fact, in these papers, Erdds asks for the
average order, normal order, minimal order, and maximal order of E(n).

Concerning the average order, we trivially have

(2 g Emz= 3}

nEx d< x4 odd

1/d > Llog x.

In [2] Erdos conjectures that there is a ¢; with

Y E(n=(cs+o(1)logx.
nsx
I am unable to prove this conjecture, but I show below that the constant ¢
in (1) can be replaced with a smaller constant. Probably the “correct” value
of ¢y is 1/2. _

In view of (1) and (2) it seems natural to measure E(n) by its ratio with

1/n. Thus in [2] Erdds suggests that nE(n) has a distribution function and
that

(3) limsup nE(n) = oc, liminfnE(n) =0,

- (4) Amy: = )
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The first limit was also conjectured in [1]. Erdds states he can prove E(n)
=¢(1) and even that

1/d = o(1)

d2t—1.den
but he gives no explicit function tending to 0 as n— co. He suggests that for
every &> 0,

(5) Aln)=0(n"1"e).

Below I establish the limits in {3), but show that nE(n) does not have a
disiribution fonction. In fact I show that there is a set § of natural numbers
of logarithmic density 1 such that
(6 lim nE{n) =0.

neS, n oty
Recall that the logarithmic density, should it exist, of a set of natural
numbers 4 is

1 i

lim -.
x'*mlogx nsA,néxn

Probably (6) holds for a set § of natural density 1, but T have been unable to
show this.
I establish a more quantitative form for the limits in (3) by showing that

nE(n) 2 exp {(1+0(1)),/loglog n},

cach hold for infinitely many n.
The relative logarithmic density, should it exist, of a sct of primes B is

1 1
Xk lOg IOg x pEB,prp-

I show that (6) holds for a set S of primes of relative logarithmic density 1.
This is accomplished as a corollary to a result of independent interest: the
set of primes p with I{p) prime has relative natural density 0.

I strengthen (4) by showing

nE(n) < ¢, (logn) 1724

Aln) < exp(—lognlogloglogn/2loglog 1)
for all large n. Probably this result is near to best possible. A heuristic
argument which implies that
E(n) = exp {—(1+0(1))log nloglog log n/log log n}

for infinitely many r is presented. If this conjecture is to be believed, then (5)
fails for every ¢ < 1, .
Throughout, the letters p, ¢ will always denote primes.
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THEOREM 1. There is a set of natural numbers S of logarithmic density 1
such that

lim nE(n)=0.

neS,n—w
Proof. We will show the equivalent assertion that for each & > 0 the set
T'(2) of n with nE(n) > ¢ has logarithmic density 0. For each prime g, lot
P(g)={pprime: p= Imodg, 2 is not a gth power modp}.

Note that if pe P (), then ¢|I(p). By the Prime [deal Theorem of Landau [6],
the number of members of P(y) not exceeding x is

I x o Cjif
glogx “\log?x /)

%) M < L2 0, ((log xy i),

< i
pExarin P pEx pePly '

Thus

For each ¢> 0 and prime ¢, let T,
nE{n}>¢ and g n. Then

1
_..<1 Z

nele ), nEx n L nel' (e ), nEx

1 1 1 1
i d et

&ty S v qrli) d 8 plde Hpy S, gt i)

g) denote the set of n with

En) < -} E(m

S X, g4

_1 : n

Eum<xarit P 1

We now use the trivial fact that the number of primes p with /{p) = d is less
than d. Thus the number of primes p with {{p) € x is less than x* which iy
less than the number of primes p < x3 w1lh q A4l ( ) provided x = x,(g). (To
see¢ this last assertion, note that for ¢ = 3, if p# 1modg, then ¢ FI(p), while
for ¢ =2, if p=7mod8, then 2 ¢l{p).) Thus for x 2 xq(y),

.1. 1_ | Foo l 1 14
! I e 0, (;-: (log.x) ¢

< -
n ’ pEXY grim 2

by (7). That is, the logarithmic density of T'(s, g) is 0 for any choice of &, ¢.
But

{8)

nel(g,q), nSx

(%) Te)= Tie, q)ugN,

so that the upper logarithmic density of T'(z) is at most 1/g for any ¢, g. It
thus follows that the logarithmic density of T'(g)is 0 for any e, which was to
be proved

icm
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CororLary 1. limsupnE(n) = oo,

Proof. If not, then there is a number M such that nE(n)
Then from (2)

(10 jlogx< Y E(n

nEx 1Skl £ 1/4

M
<Y — =}
Z 4’1 + 2 (4 + @

nx nsxneli1ja) 11

< M for all n.

E(n)+ Y E(n)

nEx,nE(n)> 1/4

(1)) log x,

a contradiction.

CoroLLARY 2. There iy an infinite sequence of integers n on which
n(logn) 72 E(n) is bounded.

Proof. From Gdoni [7],

T x X
1=m~m~+o( |
< gmm 24 log x log? v)

Using this in (8) with g = 2, we have for x > 2

(log x)712*

neT(e 2}, nm.\.” 5
uniformly for any &> 0. Thus if ¢, is a sufficiently large constant and
& == ¢4 (log x)” 1724, then for x 22

¥ Im<ilogx.

nel(e,2), nsx

1/4

Thus for x = xq, there are at least x*** values of odd n< x such that

ng T(g, 2), thal is,
nkin) <
CoroLLARY 3. Let 8(n) |0 arbitrarily slowly. Then the set of n with

eq (log x)~1712* < ey (logm) 17124,

nE (n) < (togn)~ "

has logarithinic density 1.

Proofl. This result follows immediately from (8) and (9).

Qur last corollary of Theorem 1 requires a little more work. It is a
quantified version of Corollary 1.

CoroLiary 4. There is an infinite sequence of integers n for which

nE(n =z exp {(1 +o(1))\/rog logn}.

Prool. Lel r = 2 be arbitrary. We apply (7), (8), (9) for each prime g < ¢,
so that for any ¢ O0<c< 1,

(1) y ! %2 [T -2 +([]9) toex.

nef (), nsx p<xd P g5t
PER(G) :
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From Lagarias and Odlyzko [5], we have for each & > 0 an x,(8) such that
for all x = x4(8) and primes g < (logx)'/¢~?,

pSx, pgPla)
Thus inifermly for g < {log x)*/7,

11 (1
LY 1+ﬁfZ T idy

psupeP P X psy perig) g Y psyperw
x X o

1g—1 y ( ( oy 1y
_ U S . A 8] . d 0 [N 7 1)
f.vz g logyiw P iogry ™ * y* log_v(“)

2 3 :
g—1
=-——-loglog x+ O (log q).
4
It thus follows that uniformly for each g < (logx)!/7,
(12 H L = (log x)(‘l* 19724 qU(l)'
p<x pepia P 1

Let t = \/@gg_}-. Then
ITa=cxp{(1+o1)) \/ngiogx}
q<t

and from (12),

Zﬂm

g%t p\x
pﬂ'(ql

log xexp {— (1+o(1))\/13;1:z_ﬂ)g;}.
Thus from (11),

[ 1 L —
Yy -« - log xexp {~(1+o0(1) \/10g logx}.

nEx, neT'(o} n

We apply this inequality with & == 1/4. If M(x) is the maximum value of
nE{n) for n < x; then from (10) we have

s0 that’

M (x) = exp {(1 +o(l
Thus our result is established.

\/log logx1
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Tugorem 2. For all large n,
Y, 1/d < exp(—lognlogloglog n/2loglogn).
d|2"=1,d>n

Proof. Recall that we have denoted the sum in the theorem A(n) For
each mln, let
Agm= Y 1/d

Hy=m,d>n
s0 that
A =73 A,(n.
m|n

Theorem 1 in [8] asserts that there is an x, such that for all x =
any m,

xq and

. 3+logloglogx
# {d < x: [(d)=m} < x.exp(—log‘xw .
Thus by partial summation,
1
A, )= J-——i Y 1dx
X pedgx li)=m
o0

1 3+log log log x
— d>

< J.xexp( log 210g10gx *

34 log loglogn
2loglogn xlog x

3+logloglogn
2loglogn

< (logn)* exp ( —logn

= lognexp (—log R

for all n = x; = xp. Therefore

Am) =3 Anin

m|n

I+logloglog n)

mlog nexp (_ log 2loglogn

for n = x,, where d(n) is the number of divisors of n. Using the well-known
fact that

d(ﬂ) \<‘ 2(i +o(1))logn/loglagn,
we have

Ainy < expi h—lognlogloglog nf2loglog n)

for all large n, which is what we wanted to show.
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In [8] and in several papers mentioned there, a heuristic argument is
presented that implies for each x > 3 there is an n = n(x) < x such that

#1d < x: [{d) = n} > xexp {—(1+o(1))log xlogloglog x/log log x}.
It therefore would follow that
E(n) 2 exp [ —(1+0(1))log xlog log log x/log log x}.

It does not seem unreasonabie to ask also that for an unbounded set of x we
have n(x) 2 x' "%V, It thus would follow that for infinitely many n,
E(n) 2 exp {—(1+0(1)) log n log log log n/log log nt.

I conjecture that this is the true maximal order of E{n} and -also that
Theorem 2 can be strengthened to

A(n) <exp {~(1+0(1))log nloglog log n/log log n}
for all n.

THeOREM 3. There is a positive constant cs such that

2 Eln) <{e’—cs+o(1))logx.

nEx

Proof. Let ¢ >0 be arbitrarily small, but fixed. Let
Ale) = {p: 1(p) < pH@+2a
Thus the number of pe A(e) with p < x is O(x1*2), Wrie

(13) S Em=Y 1/d=8§+8S,,

n€x I(d) € x
where in S, each d is divisible by some prime pe 4 (s) with p>xand in §,

the remaining d’s}a.re considered. If d is counted by S, then d is of the form
pdy where pe (), p> x, and I(d,) < x. Thus by (1)

(14 i< 2 U Y 1d)<xlogx = o(i).
peA{r), p>x Uy = x
We now consider §,. Note that for every d counted by S5, if p|d, then
Hp) < x and I(p) > p'2+2 5o that p < xUT*s),
For each prime g, let
w,(m)=" % 1.
pin, Up) =0modg

We have
(15) 8= S30821+8,,,
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where

in S0, eachd has ¥ a,(d) =0,

a> vx

in §,,, ecach d has Y wdd)y =1,
gz x

in 8,4, each d has 2 w,(d) = 2.
g~ X

Let P(m) denoie the largest prime factor of m and let

¢g(x) = Il p/p—1).
psalFe) pupy s Jx

Then

(16) ¢ = Hm infcg(x) > 1.

To see (16), note that it is a consequence of the Bombieri-Vinogradov
theorem and the Brun-Titchmarsh inequality (see Goldfeld [3] that there
are positive constants ¢,, ¢z with

|
péz, Plp—1)>z1/2+ey
for all large z. (In fact, frotn recent work of Fouvry, we can take
¢ > 1/6) But

logz

Z 1 :O(ZI—ZC';I},

pSa,i(pecliZmey
so that

1= Y 1— y [ 2 (cg+0(1)

- logz
pSo, PU >z W2+ e Pz, Pp-1)>22+ ey pszim<zl27e7 g

We apply this estimate for x' ™% < z € x where ¢, = 2¢,/(1-2¢5). For z in
this interval, z'/**%7 >\/x, $o0 that

dz 2z —cglog(l~cg) +o(l),

=3 -

X
1 1
)
- -
p&x Py » X P 2 g1t epgy

=176 pugy > VF

which implies (16) with ¢g = (1 —¢g)” 8,
We have

(17 8§30« >
dispi 2(1 +¢) 2(P$x2(14'a)
<= Pliiph < vx

by Mertens’ theorem,

= T ﬁ_l = e7c ()" {142 +o(1)logx,

[
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Let
o= 3 1p.
psx2(1+)
P> vx

Thus 19 ~ ¢ (x) as x— oo. If d is counted by Sy, then d is of the form
pd; where p < x*4*9, P(1(p)) > /x, and d, is counted by 810 Thus by (17),

(18) 8,1 < ro(x)Ss0 < S ‘c"%" (1+&+0(1))log.x
3}

_ mbg(ﬁ(x)(l+z,+o(1))logx
eg(x)

Suppose d is counted by S, ,. Then d has two prime factors p;, p, with
P(l(p)) \/1 Since {(d) < x, we have P{l(p,)) = P(i(p,)). Therefore

. i 1
S22 4( Z__ Z - )( Z ")
e>vE  ppagxita PiPz/ \adrs d

PQl{p) ) = Pillpad =g

1)\ 132
4(2_( > ”))IOg-‘CS(Z ( ¥ ))logx
g e pgx.Z(l YL q)./\: lqm\x2(1+,}?n

Pli(p) =y m e lmedy
log x\? i
< 2 [/ Hogx < x"Hlog® x = o(1).
g=vx v 4
Putting this estimate in with (15), (16), (17), and (18), we have
(19) S; < (1+logcﬁ(x)) o )(1+5,+0(1))10gx

< (1+logcﬁ)§~(1+1:+o(1))logx
6
=(e"~cs)(1+e+o(1))log x
where ¢s = e"(cs~1—logeg)/cs > 0. Since &> 0 is arbitrary, our theorem

follows from (13), (14), and (19
THEOREM 4.

#{p<xi I(p) is prime} =0 xlogloglog x ’
log xlog log x
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Proof From Brun’s method, the number of primes p < x such that
p—1 is divisible by no prime from the interval 7:= [loglog x, (logx)¥"] is

(x log loglog x
log xlfoglogx )

Thus we need only consider primes p < x such that p—1 is divisible by at
least one gel. For each gel, let N, denote the number of p < x such that
I{p) is prime and p = 1 mod g. Thus if p is counted by N,. then either I(p) =
or 2 is a gth power mod p. As in the proof of Corollary 4 of Theorem 1, we
may use the results of Lagarias'and Odlyzko [5] to show that

1 X X
20 N, € —— O =z
0 1S qla-Tiogx 17T (qzlogzx)

uniformly for each g in I. Thus

x
N, =0{————),
q{‘; ! (logxloglogx)

which implies our theorem.

Remark. Assuming the Extended Riemann Hypothesis (ERH) it is
possible to show that

. . xloglogx
# {p<x: I(p) is prime} = O (-lwi).
log”® x

This result is accomplished by changing I in the above proof to [log x, x¥/%]
and using the fact that the ERH implies (20) holds uniformly for ¢ < x'%* (see
Hooley [4], Ch. 3). Presumably, the “true” order of magnitude of
#{p<x: l(p) is prime} is x/log?x,
CorovLary. There is a set P of primes of relative logarithmic densiry 1
wweh that
lim pE(p)=0.

peP p—=m

Proof. This result will follow if we can show

213 > E(p) = o(loglog x).
pEXx
Sor if (21) holds and &> 0 is achitrary, we have, using the netation of

Theorem 1, ‘
1 1
<= ¥

. T esxc P € per(),psx

E(p) = o{loglog x).

Thus all we need do is show (21).
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We first note that

(22) E(p) =

~en{ 2 reo( 2 () )

Next note that since 27— 1 has fewer than p prime factors and they are all

lmodp, we have
1 log 1
l(q):pqu i{p"‘p P '

1 log?p
E(p) = —+O( .
t(q)zmpq P2

Thus from (22)

It follows that

1 log?; 1 |
Y E@)=TY ( 2. 40(_%"“)): g0
pEx pEx lay=p4 P 1f§§?a§|:cq

< ¥ £+o(1) = O((log log log x)?)
a€x
I{g)prime

where we use Theorem 4 for the last estimate. This shows (21) and thus the
theorem.
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