icm

ACTA ARITHMETICA
XLV {1986)

Some (-theorems for the Riemann zeta-function
by

KAtmAN Tsang (Princeton, N. J)

1. Introduction. Let N (1) (r > 0) denote the number of zeros g = f+iy of
“(s) in the rectangle O0< f< 1, O0< y< 1, It is well known that

11 N(r)m-zilog——+2+3( )40 ),

wvhere
St =n"'Imlog{(4+if),

he branch of the logarithm being determined in the usual way. The behavior
of S(t) is thus closely related to the distribution of the imaginary parts of the
.eros. For instance, S (f) has a jump of » when ¢ is the ordinate of » zeros and

t is smooth with derivative ~ —;;nllogr elsewhere. Concerning the order of
:(t), Bicklund [1] has proved that
S(t) = O(logz),
= O(logt/loglogt), assuming Riemann Hypothesis (RH).
a the other direction, Selberg ([6]), Theorem 9) has proved that

1.2) S() = Q, (log1)*? (loglog 1)~ "),
£.3) = Q, ((logt/loglogt)'?}, " assuming RH.

Jthough there is a considerable gap between the O-results and the Q-results,
sere are heuristic arguments suggesting that (1.3) & closer to the truth.

In this paper, we shall prove several new Q-theorems for S{t} and some
slated functions by refining the arguments of Selberg in [6]. Corresponding
v (1.2), we have

TuEOREM 1.

4 | 5() = Q4 ((log t/loglog 1)'?).
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More generally, for e [4, 1], we can define

S(a, ) =n~ ' Imlog{(o+it)

so that S{(f)= 8@, 1)
Theorem 1 is a particular case of .
THEOREM 2. There exists a positive constant ¢ such that when T— w

sup +S5(q, 1) 2 c(log Tloglog T)'?
te(T,27T]
for + <o <4+ (loglog Tlog T)'3,
> c((c—%)log Tloglog T)'/?

for $+(loglog Tog T)'? <

This theorem can be compared with a result of Montgomery ([4],
Theorem 1) which says that: for fixed o > %

S(o, 1) =, ((c—H"2 (log 1) ~"(loglog 1)™*).

For small values of h, the function S(z+h)— S (t) measures the variation
of §(t) over short intervals. There is not much literature about this function.
Selberg (unpublished) has proved that, assuming the RH, there exists ¢ > 0
such that when T— oo,

o< i+(loglogT)™!

sup +{S(t+h)—
1T, 27]

for any hel[(log T) *, (loglog T)~'].
Without assuming the RH, we shall prove
TueoREM 3. There exists a positive constant ¢ such that when T— oo
sup +{S(t+h—S(0)} = c(hlog T)?

. 1e[T,27]

for any‘ he[(log T !, (loglog 7)™ 1.
To prove this theorem, we shall need ancther result concerning S(t+h)
—~S(1).

Tucorem 4. Let a> 3 T°<H< T and O0< h< 1. For any positive
integer k, we have :

5(1)) = c(hlog THYM?
/

T-+H

(1.5) [ [(SG+h)-S)**dt

= A, H {log (2-+ hlog n}+0 {H (ck)* {k*

where ¢ is a positive constant and

+(log (2+ hlog TY™ 121},

(2k)!

1o - AT EE
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Fujii ([2], Main Theorem) has proved, among other things, the same
asymptotic formula but with a worse O-term given by H(ck)*™(log(2+
+hlog I~ "2, The proof of Theorem 3, however, requires the sharper
estimate given in (1.5).

The integral of S(¢), namely,

t) = _I[S(u)du

is also an interesting function. Selberg ([6], Theorems 10, 11) has proved that

S.(t) = 2. ((log ) (loglog 1) ™*)
and '
Sy (£) = Q- ((log " (log log )~ 1°3).
By exiending our method, we obtained the following results.
THEOREM 5.
(1.7 $1(t) = 2, ((log1)* (log log ) ),

5, () = Q.. ((log )** (log log 1)~ *7?)

and, assuming RH,
Si(r) =24 ((log t)”z(log logt)~37).
(1.7) is remarkable since it has already come very close to what we can
prove using the RH.
THeorREM 6. There exists a positive constant ¢ such that when T — o0
(1.8) sup +{S,(t+h)— S1 (1)} = ch(log T/loglog T)'7,
T, 2
> ch(log T/loglog T)''%, assuming the RH,
for any hel0, (loglog T)"'].
Here we note that Theorem 1 is a direct consequence of (1.8) because -
t+h .
sup +Sw=ht [ +8(uydu =h“1'—_+-f81(t+h)—S1(r)}.
uel,2 1+ K]
The proofs of our thecrems (except Theorem 4) fo]low the same basic
idea of Selberg in [6], § 7. Consider, for example, the proof of (1.4). By taking
the convolution of log¢ (4-+it-+iu) and a kernel V(u), we get (see Lemma 5)

| S{t+u) V(u) du = W)+ R(1),
where W(z) is a Dirichlet serics and R{z) is 2 sum over those zeros of {(s)
with § > § (if there is any). We then choose V{u} to be an approximant of a
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Dirac é-function, so that the integral approximates 5(t). To preve the desired
Q-resulis, we look for values of te[T, 2T for which W{(f) (er —W(?)) is
large and, at the same time, R(t) is of lower order. To this end, we use
arguments different from those in Selberg’s paper. Our key idea is that (see
Lemma 4), if

ar 2T

[{Widt = TM™  and | [R(P*FHdr < TEMYHT,
T r

then there exists te[T, 277 for which
WO~ IR @) = iM

Sa, it becomes a problem of finding good lower and upper estimates for high
moments of W(r) and R(t) respectively. The estimation involving W(r) is
fairly effective because W () is a rather well behaved Dirichlet series (or even
a Dirichlet polynomial). However, due 1o the very limited knowledge about the

distribution of the zeros, the estimation of j" [R(D))*"1dt is more involved

and is the most difficult part of the proof. We do this by means of a zero
density theorem. In case RH is true, R(z) will be zero and the conditional Q-
results come out easily.

As an illustration of the above ideas, we shall work out the details of
Theorems 2 and 5 (in § § 3 and 5 respectively), In each case, we consider only
the Q, part, the proof of the {_ part being the same. Theorem 4 is a
consequence of a result of Selberg and will be proved in § 4. Finally, in
addition to the above ideas, the proof of (1.7) requires a more advantageous
choice of V{u) and some careful treatment of the remainder R(1). We shall
come to this in § 6.

Throughout this paper, we always assume T to be a large positive
number. We shall use p, g to denote primes and use k to denote a positive
integer. ¢ and ¢;, ¢, ... ete. will denote some unspecified absolute constants
which may not be the same at each occurrence. The constants implied in the
symbols O and < are absolute and, in particular, do not depend on ¢ and k.
Finally, as usnal, ¢ = B+iy denotes a typical complex zero of {(s).

2. Some preparations.

Lemma 1. Let {a,} and 'b,} be two sequences of complex numbers. For
any real numbers T and H, we have

T+H
(2.1) [ [Eann2dt = HY ja*+0(3F nla,?)
T n n n

aned

T+H

0D [ Can ) Sbr N = HY a0 {5 ala 3 (5 n b))

n H
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Proof. (2.1) is a consequence of a refinement of the Hilbert's inequality
given by Montgomery and Vaughan. See [5}, p. 577.

(2.2) is a generalization and can be derived from (2.1) as follows. For any
two complex numbers # and », we have

(2.3) ut = S (lu+ o] = |u—o? +i|u+vi]* —iju—ri?).
Write
=Yamn " and V(1)
H

_ _p
=3 byn "
i

For any 4> 0,

G0 ﬁ%@-wm
leVﬂ—H E+z'LVi

i AR )

Integrate both sides of this equation with respect to t and apply (2.1), we
have

Tvovau=niz(s

T

2 2
E--|—;tV - —i

ywm/’LVi
A A

it

2 2

TR BTN %+lb"i

—i

2
; i >+ remainder term.

By (2. 3) the main term is equal to H E a,b,. The remainder term, according

to (2.1),
2 2
+%‘—ibni )

2 2 a
+ =+ Ab, i

=+ 1b, p

<Zn(

< AT T nja P+ 2 L nlbf?
< (Y nia )2 (X nib,?)

= (. nla, 2/anb j2)i#*, This proves the lemma.
L
Lamma 2. Let {ap} be a sequence of complex mimbers and f (1) be the real

part or the imaginary part of 3. a,p ~it. For any real numbers T, H and any
P

'-n—"zbn

by taking A

positive integer k, we have

(f (O de =27 Cf)H% e P+ 0 (¥ (pla,)

T+H

(24 |
T
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and
T+H .
(2.5) J- {f(t)}zwl di = O(kk (Zplaplz) +1f2)'
T P

Here p denotes (py, ..., p), 0, =4, ...
number of permutations of py, ..., p,.

Proof. Consider the case f(t) = Re} a,p™" Write 2, =% a,p™" so
» r

a,, and P(p)=P(py, ..., p) is the

that /(1) = 4(Z,+Z,) and

{ 12k -2k & sk 2k=m (5 ym
'1f(t)1' =12 Z ( )Z: (Z)m.

m

m=10
Therefore
T+H ,' 2
(2.6) [ {f@*de=2-% ( )Im,
T _ m=g \
where
T+H

In= | ZF™@)yd for m=0,1,..., 2.
T

For any two non-negative integers ¢ and v, {2.2) yields

T+H
.[ ZHE)dt = HZA"'E"-}-O {(anA”;Z)IIZ(Zn,B"IZ)'UZ}’
T . T ~ -
where
Anz{al’l'_"aprp(pl"“’P‘) for n=p...p,

0 ~ otherwise,

and similarly for the B,s. _
By uniqueness of integer factorization, we see that

ZA B { Z lapl"'aprlzP(pl.a“-1Pr) vfor T=1V,
n D = L PLowy
" 0

otherwise.
Moreover,

rnldlr < Y P Bl . ap P = 1!(Y pla,?F
ol

n Pis-nrlp
and

B < v (S play).
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Thus .
HY |a? P(p)+0 (k! (T pla?))  for m=k,

I — r P
" Yo (S @k—m)Tm! (3 pla,)) for m #k,
P

and (2.4) follows by substituting this in (2.6). The proof of (2.5) is along the
same line. It has no main term because there is no middle term in the
binomial expansion of {f(2)}***'. The other case is similarly proved.

Lemma 3. Let k be a large positive integer, A = 2klogk and 54 < x¥*, Let
fa,l, e, be a sequence of complex numbers and A = 1 be an absolute consiant
\“pinp
such that

2.7 A <laya)l < A
for any p, qef2, x**], g < p < 2q
Then both ‘
2r o Jar '
{{Re Y a,p™™}*dt and [ {Im } a,p~*}*dt
T pEx - T PEX )
> T k(T laF 00X plal)
A< pgxdit pSx
Proof. In view of (2.4), what we have to prove is that
k .
2.8) 2*2"6 )Z|ap|2P(p] 2 A2k T |
k P A<p€x3/4

Define the following sequence of abutting sub-intervals of (1, x]:
L= (710,201 j=1,2,..,m
where m satisfies
XML 2L < 263,
Let j=(j;, ..., ;) and let : ‘ .

l!{J = Z |a‘p‘2P(P,)=
_pEIj

where pel, means pyely, for v= 1,2,..., k. For a fixed j if |a,] is the

smallest one among all the |a,|, pe[,, then ;

W, 2 lagl® 3 Pp)

pefj ‘

2 k!(a?( Y 1)x(chance of having a pel, with all entries distinct).
pel )
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The chance of picking a pel; with all entries distinct is higher when j
has more distinct entries and when I; (v=1,2,..., k) contains more
primes. Since I, is the shortest sub-interval, it contains the least number of
primes. Indeed, if 7 is the number of primes in Iy, then

A A
= =k
! logl+0 (log%)

when k is sufficiently large. The chance of choosing k distinct primes from I,
is equal to
Hi—1)...(l—k+ D)™z e 0 > o7,
Thus,
W, = el ke (Y 1),

pEl_,-
The assumption (2.7) guarantees that for any p, p'e !,
A7  <layfa,l < AS
So,
¥, 2 kle ® A7 Y |a,)?.
pel;
Summing over all j with entries in [1, »], we have

Sla PPy 2 S0, 2 kle™ A7 Y |a | =kle ™ 473 (T |a,|?),
P Joo P P

and (2.8) follows immediately.
The next lemma contains the key idea that leads to the improved
Q-results.

Lemma 4. Let k be a positive integer and ler W (t) and R(t} be real valued
Sfunctions satisfying the following conditions:

2T

@ [ (wm)*dz TM,
T
ar

(i) | (W@}t di| < 3TMP*Y,
T

2T
(i) [ IR dr < TM3H,
T

(iv) M, = 2M,.
We have

sup W)+ R} > 3M, —M,.
1T, 27T}
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Proof. Let W, (t) and W_ (t) be respectively the positive and negative
parts of W(t), that is

W, () = max{W(n), 0}, W (t) = min] W), 0}.

Conditions (i) and (i) imply that W () has to be large in both directions.
Indeed, by (i) and Cauchy—Schwarz inequality, we have

27T

i‘ W (D2 de = TMETE

T
From the definitions of W, (1} and W_ (1),

27 ar
(W @ dr =5 [ (WO dt+3
r T

2T
{ W{t)}2k+1 dt
T

and
2T 27 o 2T
j‘ |W_ (l‘)|2k+l dt :% j |W(t)}2k+l dt—1% I {W(t)}zm—l dt.
T T T

Thus, in view of (ii), both
2T 2T

j |W. (r)12"“ dt  and j W (t)[Z"H dt > %TM%kﬂ-l.
T ¥
Let
27 |
(2.9) . I |W+ (t)|2k+ i dt - TM§k+ 1
ST

so that M, = 4iM,. Write m=2k+1. By Cauchy -Schwarz inequality, (2.9)
and (iii), we have

2T
[ W, (O VIR ™ dr < TMET MY for v=1,2,0,m.
T

Hence
2T .
T(M3—M$ < | (W Q" —IR@)I")dt
T
2T m
= [ (Wa @~ ROV, (Wi I IRl
T =

< sup (W, G—RO(E TMZ ™ My~?)
[ T,2T] . v=1

< sup {WEO+RO} T(MF—MP(M;—My)™"
te 7,271
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That s,
sup [W(O+R()} =

tefT.2T]

M3—M2 Z%MI—MZ‘

Similarly,

sup —{W({t)+R (1)}

tel T, 2T

> %Ml - Mz .
LevMa 5. Suppose oe[4, 2]. Let V(x+iy) be an analytic function in the
horizontal strip: o2 < y € 0 satisfying the growth condition

(2.10) sup

T—28yS0

[V (x+ip)l < (I log?|x]}™".
For any t # 0, we have

(211 af log {{o+i(t+w) V {u)du

il logn B o
; ogn ( 2Ttg ) " H+2nﬁ§; [ Vl=t=iogdat O™,
Proof. Let Z be a large number. From the rectangle with vertices at

otiZ, 2+iZ, we remove the stretch joining o and ! and all those horizontal
stretches joining o+iy to f+iy for any zero ¢ = f+iy lying inside. Designate
this domain by R. From the definition of log{(s), we see that logl(z) V{—t
+ic—iz) is a single-valued analytic function in R. Its value at the upper and
lower side of a cut differ by 2niV(ywt_i(oc—U)), ¢ 5 a < B Using Cauchy’s
theorem on R, we have

Z-t )
(2.12) [ logl(o+i(t+uw)V(u)du
—Z-1
Z—t
[ logl(2+i(t+uw) V(i(o~2) +u)du
-Z-t
Y .
+2n Z,, Viy-t—ila—o)de—2n | V(-t—i(x—0))d
-«zd:y:szd min(1,a)

2
+i [ {log{(a+iZ) V(Zut—i(ama))—logC(a—iZ)V(mZ—-t——i(ama))}dtx.
It is well known that (for example, from Theorem 9.6 (B) of [7])

(2.13) jllogC(a+1r)l do. = O (logt)).

icm
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Thus, in view of the growth condition (2.10), the last integral in (2.12) {ends

. : o Aln) n2-

to zero as Z — oo, Since logl{(2+i(t+u) = ZI
n=2 ogn

Dmchlct series converges absolutely, we obtained from (2.12), by letting

Z — oo, that

etul - and the

T log {(o+i(t+u) ¥ (u)du

(2.14)
_ v Al % p- 2=
2 zlognwrm V{i(oc—2)+u)du
p-v 1-a
+2n )y [ Vl—t—igyda—2n | V(-t—ix)do.
a<fi 0 min(1—a,Q)

Finally, by Cauchy’s theorem and (2.10), we can shift the path of

integration so that
—logn
)
This together with (2.14) proves our lemma.
The next lemma gives an upper estimate to a sum involving the zeros of
{(s). Its proof makes use of the following zero density theorem of Selberg
([6], Theorem 1):

(2.15) N{o, T+H)~N(o, T) < HH//T)**~log T

for any T'?** < H< T, ¢ > 0 and any oe[4, 1]. This result is particularly
good when ¢ is very close to 4. However, our subsequent applications of this
lemma do not require the full strength of Setberg’s result.

LEMMA 6. Let 3 < X < TY® and £ < ¢ < 1. For any non-negative number
v, we have ‘

ot oo
[ n 27OV (ie—2)Fu)du= [ n7omHH V(u)duzn“"”“f/(

bl o

Y (8-
pra
T<ys2T
Proof. Let 6, =1 or 0 according as v equals to zero or not. Clearly,

(B—a) XU = Z { j d(u’ X¥)

ar T<-p<2[‘

O,)\rX(ﬁ*a) < T1+(1/2—a)j4(10g T)l—-vcvr(v_’_l]‘

q

fi>
<

r<y

oA

i—a

= [ X (wu

0 fratu
T<yxR2T

YTLXY 4w X log X) du

+9, {N (o, Zﬂ—N(a, )
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1-o

can rewrite (3.3) as
= [ {N(o+u, 2T1)—N(o+u, T)} (v X0 XV og X} du Thus, we ite (3.3)
0 i 2u .
15N, 2T)-N(o, T)! (34 | S(n, t+—;)u"2sm2udu-t W+ R()+0(logt),
Vi 2 H - —
Using the estimate (2.15), this is where . _
{=a 1-q , W) =1Im ) (1-t 'logpp "
g Tz~ ateg T{ | T HXT Y dutlog X | w’(XT7 Y4y du} psst
‘ o ' o and ‘
+8, TIt/2 a4 o0 T : s . .
v g (3.5 RO=1 Im sin (1 (y — £ —ioc)/2} Zdot
& TV Jog TV Ve (v +1). - ' =, Tly—t— a2 ’
3. Proof of Theorem 2. We shall prove that It is easy to show by standard methods that
(3.1 E[S;I?T]S(U 1) = c(log T/log log TH'? ‘ S{a, )< logit] as |f|— oo,
i
for 3 <o <4+ (loglog T/log T)*3, This implies ®
> c((o—1)log T/log log T)”2 s (a, t+-2—u>u'zsinzudu < J(log T+loguu2du <1.
T
for -+(loglog T/log T)"* < o < 3+(loglog T)™". Jul > log T iog T
Throughout this section, we assume oe[4, 3+ (loglog T)™'], te [T, 2T “n the other hand,
and .
W\ g
— t+— du< sup S(o, 1.
(3.2) 1=2loglog T, J S(a, + I)u sin® u du 'dmgﬂ (o, 1)
Let V(z) =(z/2)" ¥sin?(tz/2). Clearly, it satisfies the growth condition jul SlouT
(2.10) and its Fourier transform is given by Cherefore, we deduced from (3.4) that
P(v) = 2nmax {0,z — | 2mv]). 1.6) sup S{g, ) = W()+R()+0(logz) for all re{T, 2T].
18T/2,3T)
With this particular choice of V{(z), the imaginary pa.rt of equation (2.11) L o
becomes Let k be a large positive integer satisfying
I < pltf3 d ekt < T1’16.
(33) [ Imlog{{o+i(t+uw)V (u)du 37) 10klogk < e an _ .
h A{n) -a Our W(z).is of the form Im 3 a,p™" and we see easily that, for the
—g—i get
= 2rim nggrl__é_(r logryn™*" "+ 2 pz;} § Im VGt —ja) duO(T™), bove choice of k, Lemma 3 is ;pplicable with 4 = 3. Thus,
.. . . ) . . . 2k
For the_ Dll'lChlet' polynomial on t_he right side, the contribution of those (W) dt > T(ck)k{ Y p? (1_log p) } —O0 {(ck)*( ¥ p"‘z’)"}.
terms corresponding to n s prime is _ 2kiogk < p < 314 T p<et
< Y <t Yy p ¥ <rloge. ince 0< o—1/2< (loglog 7)1 = 2/1, the sum in the main term, by the

T 2 . .
n3s pse rime number theorem, is -
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3t(g— 1/2)/2
dw - - 9
> 3 pFzed —=0 ) =elogz—-0@ ) = ¢
2013 < p p3cit w 8
4tz 1/2)/3

The sum in the remainder term is simply < ¢. Hence,

ar
i (W@ dt = T(ck).
T

On the other hand, by (2.5) and (3.7),

2T
j‘ {W([)}Zk-)-ld[ < kk( Z ﬁl*—lﬂ‘)k-l—llz < kkeZkr g Tl/ﬁ kk.
T pEet

In view of Lemma 4, what remains to be shown is that, for some suitable k
and a sufficiently small ¢,

T
(3.8) [ IR@P dt < T(e, k-
T
We would then have
sup S(o, 1) c\/k

‘ T, 27
If RH is true, then R(r) =0, and (3.7) allows us to take
k = [, log T/log log T
for some sufficiently small ¢,. This gives

sup S(o, 1} > (clog T/loglog T)"/?
tdT,27T)

for 05[1/2, 1/2+(loglog T)"'].
Without assummg the truth of RH, we shall use Lemma 6 to estimate
the integral j (R 4,

First of a]] we can show that for any real x, T,

- (sm(x-l—:y)

2y 2 2
e ) < Y M1+ X2+ 7).

Moreover, e’/(1+x?+y? is an increasing function of y.
Define for te[T, 277,
8,(0) = max (B—0) and 0, =0,(1/2) =  max (f~1/2).

ly~tl<log27 [v1| Slog 2T

By (3.2),
(3.9)

R-theorems for the Riemann zeta-function

< 10,—16,(0) S 1(0—-1/2) < 2

it follows {from (3.5) that

-

R@) <z ), | e (14(/27 (0" + (027}~ do

B>a

< L (B-a)? &Py 4 (=0 +(F—0)

oo

< 02(o)

D (AU

f>c
|yt <log2T

+er N (y—p7?

lp=1¢| >]ng2T

<O @™ Y Py —nre62)

The sum Y

E'y > log2T

p>1/2
lv—¢| Slog2T

+logT 3  (y—0)72

ly=1|>log2T

(y—12)* < (log T)™* because N(t+1)~N(1) < clogt.

To estimate the first sum, we quote a result of Selberg from [6], § 7,

namely,

)

(2P +Hy—1)2+00 " < tlog T,

B>1/2
Iyt Slog2T

Thus,

R(1) <€ 02(0) ™ tlog T+ 1 < <02 (¢) ™ log T+1,

by (3.9).

By definition of 8,.{c),

ar
J- { 03( Je r(Jz[U)l 2k+1 df < c)t/2 log}! T Z (ﬁ_ﬂ_)ﬂ-k-{-l pAkup —a
r

uzqsu

< L2 - aya (ck)‘”‘(log ﬂ—4k+1 et 1Og2 T

by Lemma 6 with X = ¢**. Therefore

2T

j‘ |R (T)|2k+ i dr < Lo 112)/4 (ck)4k (T.‘ 10g T)2k+ 1 (]og T)—4k+ 2
T

6 — Acta Arithmetica XLV 4

- »1—'-1 (g 1/2)j4 (Crszlog T)2k+ 1 log* T,
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It remains to specify k so that, in addition to (3.7), the inequality
Sk > (etk?flog TH(T ~te™ U3 jag# Tyiizke 1
is true for some large constant e

For 1/2 < 0 < 1/2+{loglog T/log T)'/*, we take

k = [¢'(log T/loglog V3], where ¢ is small.

For 1/2+{loglog T/log T)'7 < ¢ < 1/24-(loglog 7)1, we tuke

k= [(a—1/2}log TH16loglog T)].

I is easy to verify that the preceding choice of k satisfies all the
requirements. This establishes the inequality (3.8) and hence proves (3.1),

4. Proof of Theorera 4. Assume

a>1/2, T <HLT and &=(a—1/2)/20.

Lemaa 7. For any positive integer k, we have
T+

J

Procf. This is equation (5.3) of [61, but with the error term made
uniform in k. It is slightly better than a corresponding result of Ghosh ([3],
Lemma 3), which has H(ck)y* on the right side instead. The improvement
here came from a sharpening of his Lemma 2. See [8], Lemma 5.2,

Let 0< h<l, xme TOX

Q) = S()—n " m ) prtA-n

St~z *im Y pm 2 g = O (H (k).

prHlk

pPEX

and

P(y=n""Im ¥ opmraigin g,

) pEX
By (2.4),

T H . o ) | ')
@[ PO =R OOR T 14l Pe+O (L plalP)
pax o

" wheve g, =nT T 3 (pT% ) for p < x. Using the prime number theorem,

we can show that

2 ~2f Tyl P R
Lladt =272 LY pT - Y p o (hlog pit
pEx pEx pEx

=217 log(2+hlog T)+ 0 (log k).

icm
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The sum in the main term of (4.1} is equal to

KUY lal? =0 kY a,l?)

rEx

(¥’ denotes the summation over those p whose entries are not all distinct}

=KL la =0 k(T {a ) (T a2

pEx pPEx pPEx
Thus,
T+H
‘ 2i)!
4.2) - j PO} dr = %;%Hlog"&-l—hlog T
T
+ 0 {H(ck)*logk{log" ™1 (2+ hlog T)+(log k)*~ M
and
T+H .
4.3) § (P} dt < H(ck)*{log(2+hlog T)+loghk!.
T . )

By Lemma 7,

T+H

[ 1O} dt < H{ck)*.
7

IF we write U (1) = Q(t+h)~ (1), then

T+H
(4.4) [ (U0 dr < H(cky™.
T
Now,
THH T+H
[ ASG+R=8m}*dr = [ {Qit+h-Q0+P(@)}*di
T T
T+H
= [ {P{y**dr
T
THH I+H

+0 [c* ][ ;E(r)]z’“llU(r‘}|dr+c" l [U ()} dt).

By Cauchy-Schwarz inequality, (4.3) and (4.4), the first integral in the Q-lerm
is

THH T+H

€ ([ PO U0 as
T ¥

< H{cky* {{log(2+hlog T)}* "+ {log k}F /2]
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Thus, in view of (4.2) and (1.6), we have

T+H
[ {SU+n—Sup*d

T
= A, Hlog"(2+ hlog T)+ O {H (ck) {k* +(log (2 + hlog T))*~ e

This proves Theorem 4.
- 5. Proof of Theorem 3. We shall prove that, as T — o0,

sup {S(t+m-S()}

te[T,27]

for any he[(logT)™*, (loglog T)" 7.
The idea of the proof is very much the same as that of Theorem 2. The

= c(hlog T

est1mauon of [ IR(})*** " dt is slightly more complicated and makes use of
Theorem 4. In fact, as we shall point out later, it is actually the proof of

inf (S@+K—S()) <

te[T,27T)

—c(hlog T)*3
that needs Theorem 4.
First of all, we assume that
BllogT) ' < h< (loglogT)™!

for some suﬁﬁcnently large absolute constant B. This is no real restriction,
because if

(logT)V"* < h< B(logT)™'" and

then there exists n < B such that

S(t+Bm—-S(t) = c(Bhlog T)'/3,

S+nh)—St+(n—1)h) = (Bhlog Y ULES

"B"
For this section, we let
(5.1 : T = 3/(2h).
In Lemmp 5, we take ¢ =1/2 and
Wz) = (2/2) " 2 sin? Gz/2).

Replace ¢ by t+h/2 and r—Hh/2 successively, the imaginary part of the
difference of the two equations arising from (3.3) can be written as
o

[ S+ h/24 2ufr)— S (t — h/24 2uj))

- an

72 V{2u/t) du

icm
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M_Q_Z

(n lo
( g )sm(zhlogrz)n 12 cos(t log n)

ngat
A—1/2
+rT [ Im VG2 —ia) = Viy—t+ 2= i) dat O(T ™),
B>1/2 0

Following the same type of arguments that lead to (3.6), we deduced

that
sup {S(+M—S80} = WH+R(—0(1) for all re[T, 2T,
e[ 772,371

where

. ] . 1 s

W)= —2Re 3 sm(—%h}ogp)(l—wof—p)p‘”‘ i

pset

and

5= 172
(32) Ry=7"" Y | Im{V(y—i—h2—ie)—V{y—t+h2—ix)} dot.
A>1z

Let k be a large positive integer satisfying

(3.3) 10klogk < ™3 and &7 TV,
Our W(r) is of the form Re ) a,p™" with
' pset

a, = —2p~ sinEhlogp){1—z "t logp).

7

For k satisfying (5.3), Lemma 3 is applicable to W(t) with 4 = 4. Thus,

ar
O TER Y a@f-0 (S pdf)
T ’ . Sklagk < p<edT4 Pée“
T{ck)* y h?p~tlog? p—O0(kFe™)
21132 g oYt

> T(cky,
by (5.1). Also, by (2.5), we have

2T
I{W(t l2k+1df<kk( Z pa k+1t’2< T1/24kk

pse’

At this point, if RH is true, then R{#) =0 and we would have
sup {S(+h-S@) > sup WH-0(1)=c /%,

 te[T/2,37) tel T, 27
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‘ logT h
- .
ke [soz] [75 OgTJ

(which satisfies (5.3)), this gives the unpublished result of Selberg,
Without assuming RH, we shall prove that

by Lemma 4. Choosing

A 1 C,kz 2k L
54 At S T ,
54 flR(r)l d T(hlogT) ‘
T
provided
(5.5) (hlog 'Y* < k <hilog T,

When B is sufficiently large, the choice

o)

will satisfy (5.3), (5.5) as well as the inequality
ck?*/(hlog T) < \/k
for some large constant ¢. We would then have, by Lemma 4,

sup {S{(t+m—-S@®) = sup (WO +R1) —0@)

te[T/2,37) te(T, 27]
2 c/k = c(hlog T)'3,
So, it remains to pfove (5.4). ' '
Let '
f(2) =z"%sin?z,
For any real numbers u, v, 4, 6 >0, we have

Wt s
Im{f(u+5+iv)—f(u—5+iv)} = [ Im f'(x+iv)dx.
s

Since f'(x) is real,
e | Il
/(e +in)] < | f (4 i0)— £ (9)] < [1f"(x+ip)l dy.
D
It is_ easy to show that

T 0xiy) = f"(z) = 27*{(22% = 3)cos 22— dz sin 27+ 3} < P12 pY).
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Hence,
u+¢5}p‘§ . P
Im{f(ut+o+ivy—flu—b+i)) < [ [e*(L+x 4y 'dydx
n—~d 0
ut-g§
< Jple®™ | (1+x240%) tdx
A :

< 8ol e (1 + ),

if & < 1/2. Thus, in view of (5.1} and the fact ¥(z) = r* f (xz/2), we deduced
from (5.2) that
p 152

Rin<t Yy | aht?e™ {I4{c(y—1)/2) +{zz/2)*} " dot
prirz 0
€ Y, (B—1/22 PR 0 H(y— 0 H(B - 1/2PF) T
B> 172 :

S M e G

142 {2
E?ﬁiﬁlﬂl ITEEH>TI?
The second sum, estimated crudely, is
< Y -0 T Y (-7

|p—t|=Tj2 lp—1}>Tf2
By a familiar argument,
(y—t)"2< T 'logT

ly—t>7y2
Thus,
(5.6 Ry <1+ 3 (B=122" 0+ (-0} %
ﬂ>y2 i
ly—1)=T/2
Let

CR(= Y HG-0f T
wEadin

Lemma 8. For any positive integer v, v < 10hlog T, we have
ar ‘
(5.7 [ IR, (1)"dt < T(ch™'log T)".
7
Proof, By Cauchy-Schwarz inequality,

r ) iz # 2v 31172
[ IRy dt < T2 { | Ry (5)]> de}'72.
T T
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So, we may assume v is even. From ifs definition,

[1/+h]
Ry ¥

=0 m<|y-i<(nt+ 1k

h+H(y—1)) 7+

o AT (=072,
vh<ly—1l €1 t<|y—t <7/2
Since both
1 and 2 =07 <logt<logT,
ly—tls1 1<[y—1|
[1/R]

N(t +nh)+ N(t—nh)

(58) R, < Zjﬂ (W17 R (N (k- (n+ 1) h)—

~Nt—(n+D)h)}+h"iog T
For any uE[T 2T7, (1.1) implies
(5.9) 0< Nfu+h)—N ()< hlog T+S(u+h)—S ).
If we want to prove '
sup -[S(t+h)—-S(t}} =

te[T,27]

¢(hlog T)'2,

we certainly may -assume
S{u+m~8w < c(hlog T)
It then follows from (5.8) and (5.9) that
[1/~/Ai

Ri)< 3 (n
n=Q

This leads to (5.7).
However, for the proof that

inf {8 (u+h)— S (u)}
ue{T,27T]

for all ue[T, 27T7.

DT R (hlog T)+h"og T < h™log T,

< ~c(hlog )7,

the above argument does not work, in particular, we cannot assume that
sup {St+h-Su) < c{legT)

1e[T, 27

As an alternative, we use Theorem 4 which says that, on the average, S{u-+ h)
—S8(w) is small,
From (5.8) and (5.9), we have

Ry <h ' log T+h™ ¥ n™2 S+ nh)=S(r +(n—1) B
: . B 1vh
S (= (n=1) )= (1= k).

]
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Thus, by Cauchy-Schwarz inequality and Theorem 4, notice that v is even,
ar o
{ IR (01" dt < T(ch™ log TV +(ch™2*( ¥ I
>

n=1
27

”z(i |S{t+nk)— S (t+(n— 1) B)"de

ar

+ [ IS{t—~(n—1)h)—

T
) {v'+v*"2 (log(hlog T}

S(t—nh)|* di)}

€ Tlch™*log TP+ T(ch™?

< T{ch™log T)".

This proves the lemma.
If R,(T) is the sum on the right of {5.6), we have by Cauchy-Schwarz

1nequahty and the above lemma,

J‘ iR t 2k+1

2T A(2k+1) ,2(2k+1 1/2 2 21 -111/2
< [IR(@FTYEL 3 (B D 2O IR (p2 L (yg)?} 1) 2 gy
T ]wETI}'E/%‘IZ

T 2T

(B_%)4(Zk+ 1) 62(2k+1)r(ﬂ— 1/2)

S{JIR@¥ a2 L] ¥
r T IVE?IQIZU‘Z
X{h2+ —E)Z}_l dt}uz
\<\ { T(Ch—l 10g T’)4k+1}1/2 { Z 1(6 )4(2k+ 1) 2(2k+ 1ye(p— 1/2)}1/2
T/,g:;"szn
provided
: k< hlogT

. To estimate the sum over the zeros of {(s), we use Lemma 6 with
X =% (which is < T'® by (5.3)) and ¢ = 1/2. This yields

_[ |R (t 2k-i 1dt {T(Ch 110g T)4k+1 T(]og T)—Bk 3]1 lkak}l}1

- ck? 2k+ 1.
hlog T
In view of (5.6), this proves (54) and hence completes the proof of
Theorem 3. 4
6. Q. result for S, (r). We shall prove that
(6.1) ~ 8¢() = Q4 (log )'*{loglog )~ %%).
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Let te[T, 2T] and
(6.2) t=loglog T
We choose in Lemma 5
Viz) = rexp(—r 2.
its Fourier transform is given by
| \/TEBXP(—'L'Z 23,
With this V(z), the real part of equation (2.11) is

o

(6.3) j log |t (o +i(t +u/7))| e~ du
/m Re > —-~)cxp( 7 og?mn"oH
\ =2 Og
Bre
+2nRe ¥ j exp{ —1?(y—t—io)?) do+ O (T}
o< p

0

It is not difficult to show that (see, for instance, {1.9) of f6T)

(6.4) $,0) =nt jiogu: (o +it)ds +0(1).

1!2
Thus, after integrating (6.3) with respect to ¢ over the interval [$,2], we have

(65) J s, (t+$)e’“2du

1 |
=-—=Re Z -—-ggz)rzgxp{mmr‘llog n)”ﬂ/z it

n e log?
p-172
+2TReﬂ>21:;z J (B—-1/2~a)exp{ ~1*(y—t —ix)*} dov + O (1)
=7 ¢ 3, (logp) " exp(~477 % log? p)p~ 127"
P\eﬂrm .
I+ 2% #>21/2 (B~1/2—a)exp {t* (o —(y—1)*)} cos { 2012 (y— 1)} da 4 O (1).
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Let

1
~—({loglog 1)~ 3?2

(6.6) A= T

and divide the second sum on the right side into three parts, namely,

Ry(t) = Z » Ry = > ., Rin= Y
1/2<f<tf2+4A 12<pE1/2+2 B> 1/2+4
o=t SxB iz~ L ly=t|>n{82:2)~ L

In R, (f), each term is non-negative because |2ut®(y—1)| < n/4. Hence

(6.7) R.(t)= 0.
Plainly, .
R, (1) < )y (B-P exp{ —~?(y~1f* +7°(—D*}
12<f€1/2+4 .
[y—1]>n(BAr2)— 1
< 22t e~ tR=n?,

Cp=t]>a8arh L
We further divide this sum into

Y and: Y

[y—tj>1 n8ity) " lajy—g €1
The first one, by a familiar argument using the fact that (t+ 1) —=N{t)
<clogt, is <e logT< 1. The second one is < exp{—t?n?(8ir?) ™%}

xlog T < 1. Hence

(6.8) R, (1) <(loglog T)7>.
Finally,
69 [Ry(< Y B-dHexplr? (B~ ~(r—0)%
1/2+A<f
Ivmfl =t

C Z
12+ p
ly—ti>1

—e2
- = (y—03 e TR

exp{ -3t (y—1)*}

< 2
U2+A<ﬂ
Iy—i=
It is well known that (a direct consequence of (2.13} and (6.4)
8, (1) = O(log ). Using the now familiar argument we showed that

(-5 expic®(f

sup §,(t) = f Sl(t+u/r)e‘" du+0(1)
lE[T/'Z 3T:!
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Thus, collecting the estimates (6.7), (6.8) and (6.9) into equation (6.5), we have

(6.10) sup i (1) 2 W(e)+t{R, ()4 R, (1) +R; (1)} —0 (1)
14 T}2,3T)
=W(@+R()—0(1) for all te[T, 277,
where
W({H=Re Y . V/mp{logp)exp(—it~*log?p)l L p~H
_ p&ezr
and
RO <t Y (B-PPexp (t*(B—H*~2(p—1)?).
1/2+1<p
[y—t/ <1
Lei
log T
6.11 ko=| 2 ~5/2
v (6.11) [240 (loglog T) ]

Using Lemmas 2 and 3 as in the previous sections, we can show that

2T

(6.12) F{W O} dr ¢ TV2 (chyt
T .

and
(6.13) ZjT {W(n)}* dr
=T %

2kogk < p S e37

= Tck(loglog T)~*}%,

o 1087 P exp (422 log? ) 0 (T2 (ck))

Furthermore, by Cauchy-Schwarz inequality and Lemma 6,

27 :
i' FR(f)f2k+1 dt
T
27
& pH1 3 (ﬁ_%)4k+zexp{(2k-|-1)r2(ﬁ—%)2—-'62('}’—1.‘)2}}
Toyzta<p .
Jy—1] €1
: - ><{ Z e—rz(y—r)z}ﬂcdr
| | ,/ ‘ FESTES
<(etlogT)* Y | (B—B*** 2 exp{(2k+1) 22 (42}
Tyzzg-v;;aﬂT . ;

s (c'r log T'}Zk T.lf,!/‘t(]og I’)-.-‘I-k—_l k‘tk_
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In view of (6.2), {(6.6) and (6,11), we have
2T
[ IR 1 de < Tek,
T

With this and the estim#tes (6.12) and (6.13), Lemma 4 implies that
sup [W(8+R(1)} = ¢./kfloglog T c(log T)"'2 (log log T)~ %%,
telT,27]
This together with (6.10) proves (6.1).
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