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1. Introduction. Throughout the paper, g(n) denotes a strongly multi-
plicative real valued arithmetical function. That is, for coprime integers m
and n, g(mn) = g(m}g (1), and g(p*} = g (p) for all integers k > 1 and primes p.

We use the notation Ay{...! for the number of positive integers n < N
for which the property stated in the dotted space holds.

We say that an arithmetical function h(n) has an asymptotic distribution
F{x)if, as N-» +o00,

Fy(x)=(1/N)Y Ay {h(n) < x}

converges to F(x) at each of its continuity points, and F(x) is a proper
distribution function {that is, F(x) is nondecreasing, continuous from the
right, and its limits at plus and minus infinity are one and zero, respectively).

Note that in this definition of convergence one may always -disregard a
denumerable set of points x.

Our interest is the existence of the asymptotic distribution of g(n).
Therefore, we may assume, and we do so in the remainder of the paper, that
g(n) # 0. Indeed, if P denotes the collection of those primes p for which g (p)
=0, then one can easily see that, as N— +co,

lim(YN)Ay{g(n) =0} =1

whenever
Y 1/p=+co.
pet

On the other hand, if the series above is finite then g(n) and g*(n) have
asymptotic  distribution  concurrently, where g*(n) is the’ strongly
multiplicative function defined as g(n) if g(n)# 0, and g*(p) =1 if g(p) = 0.
Now, the combined results of Bakshtys [1] and Galambos [3] on a
strongly multiplicative function g (n) reads as follows. :
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THeoREM 1. A strongly multiplicative function g(n) has an asymptotic
distribution if, and only if, each of the series

Z* log |g (P)J : Z* P_g_z_lg_gg)_‘ Z**J

p P P

where ) * signifies summation over primes p such that
1, while all other primes belong to 3 **.

canverges,
loglg (p)] <

Theorem 1 seems to indicate that the existence of the asymptotic
distribution of ¢(n) follows from the existence of the asymptotic distribution
of the strongly additive function f(n) = loglg(n)| (recall that g(m) = 0). 1
particular, it appears that Theorem 1 follows from the following result of
Erdos and Wintner [2].

Treorem 2. A strongly aedditive arithmeiical functon  f(n) has an
asymptotic distribution if, and only 'if, each of the series

- |
3 p}q Z*J“?’ P

p

converges, where Z* and 3 ** are defined as in Theorem 1, with f(p) mlanq
the role of loglg(p).

The aim of the present paper is to analyze the relation between
Theorems 1 and 2. In addition, we estimate the deviation of the asymptotic
distribution F(x) of g(n) from an appropriate symmetric distribution when
F(x) itself is not symumetric. The reason for a special interest in symmetric
asymptotic distributions is that they are associated with zero mean values of
(real valued) multiplicative functions which are usually more difficult to
establish than the existence of non-zero mean values.

2. The relation of Theorems 1 and 2. The Erds-Wintner theorem cannot
imply the Bakshtys-Galambos result. Indeed, if g(p) = +1 for all p, then
S(n)r=logig(n) = 0 for all n, in which case, with or without the Erdds-
Wintner theorem, one evidently has that the asymptotic distribution of f(n)
exists. If it would now follow that g(n) has an asymptotic distribution as
well, one would have as “an evident” result that this particular g(») has an
asymptotic distribution. However, this latter result is a very deep one, and
indeed it used to be one of the most celebrated open problems of number
theory until it was solved by Wirsing [4] (it, of course, also follows from
Theorem 1). Several other examples can be constructed which all speak
against the expectation that Theorem 1 would somehow follow from
Theorem 2. Indeed, many sieve arguments couid be avoided if it would
follow that, when the interest is the existence of the density of a set
expressible in terms of a multiplicative function g(n), one could always
assume that g(p) > 0,
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However, there is a special case when Theorem 2 suffices for establishing
the existence of the asymptotic distribution of g(n). This is contained in the
following statement.

TreoreM 3. Letr g(n) be a strongly multiplicative function. If

(1) Y lUp< 4o,

wp=<0
then the asymprotic distribution of g(n) exists if, and only if, Theorem 2 applies
to f(n)=logly(n).

Remark, The emphasis in this statement is that for its conclusion the
only tools to be utilized are the concept of an asymptotic distribution and
Theorem 2.

Proof. First note that if g(n) has an asymptotic distribution then so
does |g(n), and thus f(n) = log|g(n)| as well. Consequently, Theorem 2 must
apply te f(n)

In proving the converse statement, we introduce the following strongly
multiplicative functions. Let

go(m = |g{n).

For each mteger r 2 1, define ¢.(n) as g(n) il, for each prime divisor p of n,
g(p) > 0. On the other hand, denoting by ¢, < ¢, < ... those primes for
which ¢ (g;) < 0, we define g,(9) = glg;) if j < r, and gr(qj) = 1 if j > r. Hence,

(2 {9.(n) # g(n)} < {for some j >, gj|n}.
Define
{3) F,y(x)=(1/N)Aylg.(m < x}, r=0.

Then, by (2),
|Fy (x)—F, n(x)| < (I/N) Ax g, (m) % g(n)}
< (I/N) 3 Anigiln} = (1/N) }, [N/q;3,
J=r J>r

where [y] signifies the integer part of y. We thus obtained
(4) |Fy(x)— X < Y Vay

J=r

where, on account of (1), the right-hand side tends to zero as r— + 0
(an empty sum is taken as zero, which occurs above for large r if the set of
the g, is finite). On the other hand the Erdos—Wintner theorem implies that,

as N—- +co,
(5 lim Fo y(x) = Go(x)
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exists for all continuity points of Go(x), and it is a proper distribution
function. We now prove by induction that, for each r > 1, as N— +oo,

(6) lim Fr,N(x) - Gr (x)

exists for all continuity points of G,(x), and G,(x) is a proper distribution
function. We prove {6) by establishing a set of recursive relations, and we
then appeal 1o (5). We write

(7) Ax g, () < 3} = Ay{g (M <X, qugr A0} H AR Grr 1 (D S X, Gyig|n),

where we used the evident fact that g,.,(n =g,(m for all » such that
44141 Now, if ¢.4,In, then there is an integer k = 1 with n =g, m,
where m and ¢,.,; are relatively prime, which we abbreviate to ¢, ||
Hence, :

(8) Anl{gre 1 (M < x, gy} = Z, Axtg, (1) 2 X/ (@rs1), @i lIn}

k=1

Furthermore, in view of the evident relation

AN{Q?(”) = Xy Grt 1 *11}' = AN {qr(n) = JC} _'AN{gr (H) = Xy Gy g In.}'a
and since ¢.(q,+.) =1,
) An{g (M < x, geur I} = Ayig (0 < %)= Y Anlg, (0 < x, gf4 o lin}.
k21

Notice that the dependence on k in the sums of (8) and (9) appears only
through g*, ,i{n. Hence, every n < N which is a multiple of g,., gets counted
i these sums. Consequently, if we assume that (6) holds for r, then (7), (8)
and (9) yield that (6) holds for r+1 at the continuity points of G,(x), and

1

1 j ( x
1— %
qrﬂ) G'(X)Jrqm G g(qm))}

However, since the set of discontinvity points of G,(x) is denumerable, (6)
holds for all » = 1 (see the remark in Section 1). We also have from (10) that,
because Go(x) is a proper distribution function, so are all G,(x).
Furthermore, {10) implies that

|G, 1 (X} =G, (0] < 2/g,+1,
and thus, in view of (1),
(11) F(x) = lim G,(x)

exists for all x for which each G,(x) is continuous. In other words, F(x) is
defined for all x except on a denumerable set. But for each x for which (11)
holds we get from (4), by letting first N— + o and then r— +co,

lim Fy(x) = F(x)

(10) Gr+1(x):(1—

(r— -]—oo)

{(N— +00).
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This last limit relation remains to hold if F(x) is extended to the whele real
line by right continuity. Finally, because for continuity points of Gy (x) and
F(x),

Go{x)=F{x)—F(—x), x>0,

F(x) is a proper distribution function because G,(x) is. This completes the
proof.

3. Limiting distribution of 4 (r) and symmetric distributions. We conclude
the paper with an estimate. When the series in (1) is divergent, the result of
Galambos [3] states that the limiting distribution F(x) of g(n) satisfies the
relation

F(x)=1—F(—x)

for all continuity points of F(x). This property is referred to as “F(x) is
symmetric”, While F(x) is never symmetric under (1), except in the trivial
case g(2) = —1, we can estimate from (10) that F(x} comes close to being
symmetric if the series in (1) is “large”. As a matter of fact, putting

K= Y 1i/p and 4(0)=1-F(x)—F(-x),

g(p=0
we prove the following inequality.
THEOREM 4. With the preceding notations, if g(q) = —1 for all j, then
(12) 14 (x)] < e k.

(The assumption g(g) = —1 is made only for the simplicity of the
inequality (12). The fact that A(x}— 0 as K- +co remains to hold without
this assumption.)

Proof, First, put
4,(x) = 1-G,(x)— G, (—x).
Then, on account of (10),
| Ayyy (30 = (1= 2gy0) 4,(3).

Consequently,

2 2 2
A,.+1 (X) == (] —“qr+1)(1 —‘;I':) (IMI)AO(X),

from which the elementary ineguality

l—zge™®, z>0,

yields
g ()] < 72679,
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where
e= Y 1/g;
J=r+1

Now, by letting N— +oo in
1—Fy(x)=Fy(—=x)} = {1~ Frpy y (&)= Fosg,w(—x),
we get from (4)
1A (X)~ A4 (%) < 28,
that is,
AN S 14y g (0] +28 < 272870 4 20

A passage to the limit, as r— + oo, yields (12).
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On the distribution of the values of Euler’s function
by

CarL PoMmEeRANCE* (Athens, Ga.)

1. Introduction, Let ¥ (x) denote the number of distinet values of p(n
not exceeding x, where ¢ denotes Euler’s function. Since every number of the
form p—1 where p is a prime is a value of ¢(n), the prime number theorem
immediately gives that V(x) is at least of order of magnitude xflog x, On the
other hand it is relatively easy to see that V(x) = o{x) since most values of
¢ (n) are divisible by a high power of 2 and most integers are not (see Niven
and Zuckerman [8], Th. 11.9).

In 1935, Erdss [2] showed that

(1.5) V(x) = O(x/(log x)' 7%

for every ¢ > 0. This result was improved in 1973 by Erdss and Hall [3] to
x e P —

(1.2) V(x) = O(B«gw;exp(B\/log log x))

for every B >2./2/log 2. In 1976, Erdss and Hall [4] obtained the lower
bound '

_x 2)
(1.3) Vix)» ion xexp{A(log log log x)*} |
for every 4 < 1/log 16. (For positive f(x), g(x) the notation f(x)> g(x) is
equivalent to g (x) = O(f(x))) In [4], Erdts and Hall state that they do not
know which of (1.2), (1.3) is nearer to the truth about V(x).
In this paper, I prove an upper bound for ¥ (x) of the same shape as the
lower bound (1.3).

TueoREM. For every € > (log 4—2 log(2—log 2))™* = 1.175018095. ..,

X
1. o e f 2) .
(14) V(x) O(log xexp‘C(iog log log x) ,).
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