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Introduction. If & = (x,) is a sequence of real numbers in [0, 1} and c,,
denotes the characteristic function of the set M, we denote by Dy(w) the
term

1
su Crum (%) —{v—u
ﬂ&u<€<]%1s§s)\r [’)( ) ( )
and call il the discrepancy of the sequence (x,).

A real number x in [0, 1) is called normal in the scale of 10 if

limDy (({10"a})) =0 for N-—o0.

We write D (N, «) for Dy(({10"2})) and call it the discrepancy of the number a.
It is well known that « is normal in the scale of 10, iff the sequence

(10"w) is uniformly distributed modulo 1. This is equivalent to the ‘condition

that, when « has a decimal representation of ¢ = 0.qy a, ..., for all k each of

the 10" sequences of k digits occurs as a subblock of ay, 4;, ... with a

limiting relative frequency of 107* '
We will consider infinite decimals having the form

a(f)=0./1)S (2 ...

where sach f(n) is represented as a decimal and the digits of f(1) are
succeeded by those of f(2), and so on.

Davenport and Erdds [2] have shown that w(f) is normal to the base
10 for any polynomial f(n) all of whose values for n =1, 2, ... are positive
integers. This means limD(N, w(f)}=0 for N-—occ. A .more precise
estimation of D{N, w([)) has been established by Schoissengeier [47.

In this paper we prove

Tueorem 1, Let f(n) be a po.’ynomcal in n with rational coefficients, f not
constant and let (d,) be a bounded sequence of rational numbers, such that
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f(n)+d, is a positive integer for all nz 1. Then

D(N,w)zo(igéﬁ) for o =0.(f{+d)(f(D+dy) ...

In particular, w is normal to the base 10.

To prove this, we use an estimation of trigonometric sums by H., Weyl.
The main ideas of this proof can be app]ied to other numbers, which leads to
the following result:

Tueorem 2. Let 6e(0, 1] and f [1, w0)— R be differentiable two nmes I
monotone, f* continuous and ¢y x° < f(x} < cyx®, 3 xfl < f1(x) < e xP7E,
| (x)] < ¢c5x*~2 for certain constants ¢,, ¢;, €5, C4, C5 >0 and for all
sufficiently large x. Furthermore let (d,) be a bounded sequence of real numbers
and f(n)+d, be a positive integer for all n. Then

1
D(N, a))=0(m) for ‘W=0-(f(1)+d1)(f(2)f|'d2)--- )

- In particular, © is normal to the base 10.
In this way many normal numbers can be constructed, such as

0a][a2"][a3°] ... for

The estimations of D(N, w) in Theorem 1 and Theorem 2 cannot be
improved. We show:

TueoreM 3. Let f(n) be a linear polymomial with rational coefficients,
fmztfor n=1,2,... and & =0 ()][f(2] ... Then

: 1

a>0,0<o<1.

for all N and a constant K > 0.

Furthermore

TueoreM 4. Let §e(0, 1), f: [1, oo) ~ R satisfy the conditions in Theorem
2 and @ =0.Lf (DILF(2)] ... Then

: 1
D(N,w) > K+——
_ (N, @) logN
Jor an infinite number of N's and a constant K > 0.

Notations. Let ', G be functions defined on subsets of [1, oo) taking

values in [0, o0). Then we write F < G instead of F = 0(G) and define
F~G to denote G €« F €G.

For any function f* N—[1, co) we consider the decimal

(LD =0L (IS @] ... [f (I (n+ 1) ..

formed by writing the decimal expressions of the numbers Lra)d, Lrn, ...
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successively at the right side of the radix peint. For more convenient
notation we separate [ f(n)] and [f(n+1)] by commas.

For any positive integers n, [ let T(n) denote the sum of the numbers of
digits of [f (1Y], ..., [f(n)] and let u, be the least positive integer x for which
the number of digits of [,f(x}] is at least L When f is strictly increasing,
f—1) < 1071 < fu) for I sufficiently large.

An example will illustrate these definitions: Let f(x)=%(x*+6) and

w([f]). Then e = 0.3, 11, 43, 131, 315, 651, 1203, ... and ul -—1 Uy =2,

Uy = 4, uy =Ty T(y=1, T2 =3, TG =35 TH) = 8, T(S) =11, T(6) =
T(7) = 18. :
Let o(Lf]) =

all a; are digits, v:'ﬂ;ch means 0 < a; £ 9. We will call the integers in the,
intervall [0, 9] digits. In order to prove Theorems 1 and 2 it will be
necessary to calculate the frequency of occurrences of certain blocks of digits
as subblocks of the sequence (a). Let keN, by, by, ..., by be digits and B
= (by, ..., b) be the finite sequence formed by by, ..., b,. We call B a block
of digits having length k and define B(B) =5, 1047} 45,1072+ .. + Dy
For 1 <8< Tlet N(B, w, S, T} be the number of subblock-occurrences of B
in (dg, dgeqs ---» Gr), which is the number of I's satisfying § €7 < T—k+1
and (G, Ggaq, oo Geg—1) =B. For k<l w <o <y, we write N(B, )
instead of N(B, ®, T(w;—1)+1, T{(x)). Obviously N(B, v) is the number of
subblock-occurrences of B in the sequences of digits formed by [f (w)],

[f (@411, ..., [f ()] There are two possibilities for B to occur as subblock of
this sequence:

(a) B is subblock of [f(u)] for a certain u (u, < u < v) and therefore, B
does not straddle any comma in [f(u)]. ..., [f(»)]. Let Ny (B, v)
denote the number of those subblock-occurrences of B;

(b} B is subblock of [f(w)], [fu+1)] for a certain u (4, <u<v),
straddling the comma between [f(u)} and [/ (u+1)]. Let N,(B, v}
denote the number of those subblock-occurrences of B.

Evidently N(B, v) = N;(B, t)+N,(B, v) and
N(B,w,5,U)=N(B, w85, T)+N(B, w, T, U)-l—O(k)

when § < T < U and B is a block of digits having length k. Let f, @ be as in
the example given above and let v=6, B =(31). Then uz<v <u,,
[F(ua)], ..., [f(®)] = 131, 315, 651 and hence N,(B,v) =2, N;(B, v) = 0,
NB,v)=2; N\(B,»,1,14) =N, (B, 0, 1, 14 =2, N(B, w, 1, 14) =

Z a; 107" be the decimal representation of @ ([ f1), where

Proof of Theorem 1, Let g =
and *

1¥ 0o, &, ..., &, be rational numbers

flx)=o,x9+ ... +oy x+op.
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Without loss of generality we may assume that f(x} is monotonically

increasing. Then ‘

(H f~xf, [O~x" [THx)~ x,
and  (f7H(x)~ x72 when g > 1.

Thus, for ! sufficiently large obviously w; < u;.q, f{,—1) < 1071 < f(w), the
number of digits of f{x) is ! if and only if u, < x <uy,; T~ 0%
In order to prove Theorem 1 we first show

LemMa 1. Let u, v, k, [, neN, beZ and 0 Su <y,

107 flw < flo) <10, k<n<gl 0<<b<10

(Y (x) ~ xBot

Then
(2) )3 )
p€x<y DKy<1007k
[f(x)) =b+1(10M

1 =107 (p~u)+0 (w—w) (107" +10""*7Y)

Jor an &> 0. ¢ and the implicit O-constant do not deperd on uw, v, k, I, », b

Proof. Let S(u, v) denote the expression on the left side of {2). When
ug = [/ (3107 1Y], obviously S(u, ¢) = S(ug, v)—S(ug, 1) and so it suffices
to show (2) for u =y, 107! < f(v) < 10~ In this case

)] v—u~ 10M9.

The proof of (2) splits into two cases.
Case A. g=1 or n> [{1—1/4g). Let

U=[f@-510"]+1,  V=[(f(o~-1)~b)107]~1
and
d(Y)= [ (VIO +b+10")~f " Y10+ 8)  for
Then

e Sao=3Y ¥ 1

YeN uSx<p 0St<10m—k
f{x)-bl=Y10"+¢

U—-1<Y<V+1.

= % [@M+OM)+0(U =1 +d(V+1).
For Y fixed we haveU\Y\V
d(Y) = 10" (f Y (Y107 +b) +3 10" 2 (f 71y (Y10"+ b +2(Y)),
where z{(y)e [0, 10"7%]. Using (1) and ¥ ~ 10"" we get
(5)  (FTY(Y10"+b+z(Y)) < 10%72  d(Y) < 104871k
and V—U < 10", '
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As d(Y) is monotonically decreasing, we get
Ugy:wd(l’) = Ed(YHO(d{U))
= 10"‘(f‘1(VIO”+b)—f-1(U10"+b))+0(10""‘""""2")+ o{d()).
As UI0"+b = f(u)+ 010" we have
F7HUL0"+ B) = ud-0(10¥a~ i+
and, similarly,
SN V10" +b) =v+ 0104~y
With (4), (5) we obtain
S(u, v) = 107*(v—w)+ O (10 +n= 1=k 1gt=m),

Now, (2) follows from (3) and I~n < ([/g)—¢n when g = 1 or n > I(1~1/(4g)).

Case B. .n\<_ 1(1—1/(49)) and g > 2. We choose NeN in such a way
that all coefficients of Nf are integers. Furthermore let F = Nf, T = N10"F,
M = N10", B = Nb and e(z) = ¢*"* for all real z. So we get

© Swo=3F ¥Yi=3 ¥ L ¥ e((F(x)mB_t)%)‘

ulx<py 0DKr<T 0-'5.1<Tu$x<uMI$h~<.M

F(x} =B+ 1AM
={v—u) T R
—_ M'+__ﬁ,
where
h\e(=Th/M)—1 h
R = e(__B_, RS kel A n
1,<§<M M) e(~h/M)—1 u$§<ue(F(XJM).
Using

; ; . w—z
|e" &l = 2sin z

and writing E(m, h, 1) instead of | e(F(x+u—1)(h/1) we get

Isxsm

h
Mé%«:v ¢ (F (X) H)f
=% Y E®-uh, r)(sin_n_?>_l

M R< ¥ (s'iﬁn}‘—’})hl
M

UM 15 h<t
(h,)=1

N A -
z 3 (met) |5 “Jed s
M 1Skt t

{hi)=1

i
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-1 _
Y (sinnh) E (r {D u}, h, t)
#M 1 €<t t t

+ 2
(hty=1t<v—u
+ 2 )

M 1Sh<t
(hay=1,t>p—u

h -1
(sin n?) E{v—u, h, ).

For further calculation we use an estimation of trigonometric sums (see

|:5]).143'[ Po, P1» --.. Dg be real numbers, g > 1; p, = a/q, (a, q) = 1 for some
a, ge N and
p(x) =p,xi+ ... +p X +po.

Then

| ¥ e(pl) <M oM tpg lagMTYYE where K =291,

1ExsM
Choosing ¢ sufficiently small, but fixed, we get
(8) | ¥ elp@)=0(M'"7) when MPF<g< Mo B

L3S M

for an ¢ = o(g) > 0. The implicit O-constant in (8) depends on g only.
' h
Let h, 1, a, g be integers, 1< h<t, (h,t)=1, t|M and a/q =0, Nmrn.

(a, g) = 1. Then t(z, N)"' < ¢ <1 because (b, 1) =1.
For t > p—u and [ sufficiently large we get
(-0 <8 <, N) ' <g; g < N1O"< 1074 < o—up

and therefore g < (v—u)® '/®. Hence (8) yields

(% Ev—u, b, t) <€(v~u)*"¢ for t>v—u.
For 1179 < s <t we have

g8 ot Mg 1E) - g UB

{o can be choosen arbitrarily small) and therefore E(s, h, t) € 7% So we
have E(s, h, 1) <t'7° for s <t. From this, (7) and (9) we deduce, using

R\
¥ (sinn;) <tlogr:

1£h<1

R<Y (v—wt* “logt+ Y w' “logt+ Y tlv—u)' “logt

t| M M oM
: t<p—u trv—u

< log M{(v—u) M~ 4 (v—-u)' ~7 Mlog M).
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As (U———u)”"‘ < 107°U? and n <! we get R €(v—u) 10" ™ for an ¢ > 0. Now
2) folgows immediately from (6) and the proof of Lemma 1 is completed. m
ow we prove Theorem 1 for w=w([f]) = 0[f(1)] [f(2)] ... Let
B =(by, b;. ..., b) be a block of digits and
b=f(B)=0b 105145, 107 24 .. +b,.
When k <l u, <o <uy,, we get, using Lemma 1

(10} N,(B,v)= Z Z Z 1
0€j%i~k uSxso 05 <1~k J
e zblol =kt rol-4

=107 (l—k+D~u+1)+ Y  O(10¥-UDey 1gia=—k-J
0%j<I-k

=Ho+1—u) 107 O (104~ %)
Furthermore
N2(B, ) S Na (B, — 13 Y )
CoASj<hkuwpEx<up,y g
where the last summation is taken only over those x for which&
by, b. ..., bi_; are the last digits in the decimal representation of [f(x)] and

Dyjers Beojias ..., by are the first digits in the decimal representation of
[f(x+1):]. F()l' bk—j+l 7& 0 Iet

Ap = {7 s 10714 L 4 B 107 1],
By = [f 7 (bue o 10771 L B 10P 4 100 = 1]
Using (2) and B;—A; < 107/ we get

1+0(1),

(1 NyB,pp< Y | 3 1)+0(1)
b 1‘§j<’;0 Aj€x<B;
SCAR R ¥ C) B VRY Lt ek EET R TY L)

I

Y (107® (B~ A)+0 ((B,— A (10" &4 10~1))

1£f=<k
b jt1%#0
< 108~k
(10) and (11) yield
(12) N(B, v) = 107 1 (p+ L — 1)+ O (1046~%),

For Te N we may choose n, ue N in such a way that k < n/2, u, <u < Uty
T(u—1} < T< T(u). Then T = T(W+0(n) and we obtain

(13) N@B,w,1,T)= ¥ NB, the;—)+N(B, +0kn)+0KT)

I<i<n
= 2 (107*(w, ; —u)+ O (107 %)
1€i<n
107 R (u-,) + O (10787 4 fen + k2 1049)
(10"‘T+0(10"f““"").
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For any interval I < [0, 1} let

4 =% T ef{i0oh-iil, Drl) =z,

0£1<T

where ¢; denotes the characteristic function of I and |[| is the length of I.

When I =[x, y) we write Dy (x, y) for Dy(I) and dp(x, y) for Ap(J). Let k = 1;

€1, €z, -, € be digits,
B=(cy,...,c,) and p=p(B10*= Z G107, I=[y, p+1075.
1€k :
When k = Oflog T} we get for sufficiently large T
Y (it = Y 1=N(B,o0, 1, T)+0(k)
LES Sl 1=tsT

‘ AE]seemsCl) = (Bpaenes O ge—1)
and because of T ~ nl0", n ~log7T, (13) we obtain
1
(14) Dyp(y, y+1078H = =N(B, @, 1, T)~10"*+ 0 (k/T)| € 10" %* ——,
T log T
Now let Be[0, 1), heN, B10*ecN, B= 3 b, 107" be the decimal repre-

1<k<h
sentation of f and

Buy= Y b0 4j1077 for 1<k<h 0<j<b,.

1i<k
As B1,6 =0, By, = Brr1,0 for 1<k <h we get from (14} when k= O{log T)
1 1
D {0, py= 3}, Y. Dr(Bejs Brj+1) € Y 107% —<——

1SkShOSi<by 15R<h logT logT

Finally let ¥ be any real number in [0, 1) and TeN. Let h=[loglog T] and
choose o, p in [0, 1) with « £y < B, f—a = 107" al0* B10"cZ. Then

1 ) .
47(0, T)S"f Y qop{10 o)) —a=47(0, fj+107"

osr<T

and, similarly,
A7 (0, 7) = A7 (0, 0!) 107+,

Therefore we obtain

DT(O: Y) =

max (D+(0, ), D7(0, f))+107* +107" <

logT log T’
So Theorem 1 is proved for o =0.[f(DILS(2]... !

Let (d,) be a bounded sequence, f;(n) = f (m+d,eN for each neN and
o, =0 (1) (D ... Obvious.ly (1) holds for f, instead of f. Using Lemma 1
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one can prove
IN(B, w, 1, T)=N(B, ey, 1, T)| = O (1077

when B, T, k, n are as in (13). $o (13) is valid when f is replaced by f,. From
this, Theorem 1 follows immediately. w

Proof of Theorem 2. In this case we have

F~x, [~ x"t 7~ X0 (f7

Y (x) ~ <=1

and
(f— l)h‘{x) ~ x(l,’rﬁ)-z.

So (2) can be proved for f. (Note that § <
to be replaced by 4.

Theorem 2 now can be obtained similarly to Theorem 1., The proofis a
straightforward application of the ideas used in the proof of Theorem 1. So
we omit the details here,

To show Theorems 3 and 4 it suffices to estimate the difference of the
numbers of subblock-occurrences of certain blocks of digits:

Lemma 2. Let wel0,1) and B, B, be blocks of digits having same
length. If

(15) N(B,, w, 1

1 and consider case A; g just has

N{(B 1,
, )= N(Bg, o, T)\>KlogT
holds for a constant K > 0 and an infinite number of [resp. almost all] Te N,
then

D(T, —
(T, ) > log T :

for an infinite number [resp. almost all] Te N and a constant C:> 0. K andiC
may depend on By, By, @ :

Proof Let k be the length of B, and B;; o« = f(B)107F and
L ={w;, oy+107% for i=1,2 When T>k and T satisfies (15) we have

D(T—k+1, w) =z max

max 7. ¥ c“({l(}"w})~10"""

0€jET—k

= max ‘-N(B,,co 1, )—10"*

i=1,2

—|N(B _ e

. >2TI ( 1,(0, 1:[1—') N(BZa 0, 13 ﬂl}log(T—k+1)
for a constant C > 0. n ‘ '
Proof of Theorem 3. Let C, D be rational numbers, flx)=Cx+D,
C>0 C+D>1. We choose k and two blocks B,, B, of digits with _
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same length k satisfying the following conditions: §(B,) = (10[f(1)1+1)10*
+r for some integers &, r with h > 0, 0 € r < 10" (which means that B has a
form like ([f(1)]. 1,...), B(B;) =CN for an integer N, B, is the block
consisting of k 0.

For any block B of k digits and 1 <j < [—k, 10/"! < m < 10/ we define

(16)  U(j, m, B) = {[f ™ "1—en(f~H)m 10" +(B(B)+1) 10/~ *7J)
—([f T —en(f ) (m 10 BB 107,

where ¢y denotes the characteristic function of N.

U{j, m, B) is the number of all x, for which 10! < [f(x)] < 10" and
[f(x)] has a decimal representation of the form (m, B, ...).

Let v, =ty,,—1 for I = 1. We deduce

n  N@Buw= ¥ Y

1€isl—k 10}‘“ lfxm<10j

U(j, m, B)+4,(B, h+0(1),

where
1
4o(B,) =X C
0 when

107 when f(B) = 10°7°,
B(B) < 10F7 1,

Now let TeN. There exist v,n=1, such that u, €v <u,q,
T=Tw+0(n). Let [f(v)] =101z, +10" 22,4+ ... 4z, be the decimal
representation of [f{y)] and, for 1 <j < n—k: '

Aj: Iijlzl-}—IOj'zzz—F i +Zj:
'}'Jm j+110k—1+2j+210k_2+...+21+k.

Then

(18) NyB.o)= Y (( % UG mB)+4,(8)+4,(B)+0(1),
[gjsn—k 1oi=Tgmey;
where 4;(B) {resp. 4,(B)] denotes the number of ail integers x, for which

WP <[F(x)] <wv and [f(x)] has a decimal representation of (A, B, ..)

[resp. (B, ...)]- Hence -
UG, 4;, B) when  f(B) <y,
4;(B) v—f A 10" B(B) 10" )+ O(1)  when  f{B) = Vs
0 when  B(B) >y
and

Ao(B) 20, Ag(B)=0 if
63 =(1/C)(Y—D) we have

B(B) < 10¢°1,

Because of f~

. 1 . " .
AJ-(B)<—C—10""""J‘+O(1) for 1<j<n—k 1007 <m<10¥.
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B(B,) < B(B;} implies

0 A;(By) < 4;(Ba)+0(Y)
and therefore
1 .
(19) A,-(Bz)md,-(Bl)S—C:IO"""”»‘rO(l)-
As B(B)—p(B;) =CN, we get
(20) U{j, m, By =Ul{j, m Bj)

for L<j<I—k 1007 <m< 10V and (17) yields

21) Ny (By, v) = Ny (Bg, U1)+6101_k+0(1)'

Obviously N,(By, v) =0, Let B; =(by,..., by} and i<k satisfying
Bl(by, ..., b)) = [f(1)]. Let M denole the set of all integers m for which
< m < %, = 1., — 1 and the decimal representation of [/ (m)] has the form

Lf(m)] = by 10715 L+ D 1077 N+ L +(by 10+ ... +by).
For all xeN
[/ (L+(10 Ny x)] = LA (LT + 10° Cx = [f (1] (107,
and for sufficiently large I there exists a positive integer 1 for which
[F(1+eN10YT = [f ()] + CNt10' e f(M).

Hence M is not empty and contains at least
107¢ N! (_é 101—(k—i)+0(1))+0(])

clements. .
As N,(B,, v) = card(M)+0(1), we get Ny (By, ) > K10' for a constant
K > 0. So we obtain from (18), (19), (20), (21) and Ag(B,) = 44(B3)

N(B( @, 1, T)=N(B;, 0,1, T)

= Y (N {By, )= Ny {(By, »)) + Ny (By, o)
15l<n
+ Z (Aj(Bl)mdj(Bz])-i*O(n)
188~k
1 .
= K10'+ 10E k) =1 -0 (m > L10
1Szll<n( C _?;,n-kc

for a constant L> 0 and n sufficiently large.
Now Theorem 3 fo_lles from Lemma 2. m
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Proof of Theorem 4. Let 5=(0, 1); f(x) be defined for real x = 1;
f=1, and f(x)~x% f monotone, f'(x)~x""1 |f'(x)|<x’"? s
continuous and w=o( /) =0 O] (2)]... In this case, f' is
monotonically decreasing. We consider the two blocks of digits B, = (1),
B, =(0) of the same length 1.

Let nz=2, T=T(,~1); 4=N(By,0,1, T}=N(B,, w, 1, T) and

A =N(By, y—1)—N(B,, uy~1) for 2si<n.
We get
4= 3 b (f~ 1m0+ 21075 ) —f 7 (m10 I 4+ 10"~ 1)

1€6jSgi- gm0l .
—(f " (mi0T 10T ) —f T Lm0 )+ 0 (1))
+f 210 ) —f A0 Y+ 0(1).
Now (f~') is increasing and so the first sum is not negative. Hence
1044 < 1OU- D=1 . 1 of @j-—l(z.lohl)_fq(lohﬂ)
yields
A= 4,>K 10 > 110" for constants K, L > 0.
1€75n 1€T%n

Theoren: 4 now follows from 107 ~ T/log T and Lemma 2. =
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