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Reducibility of lacunary polynommials, VI
by

A. Scuinzel. (Warszawa)

In this paper we shall complete the study of reducibility of non-
reciprocal quadrinomials begun in [3] and continued in [6], [7].

As usual in this series of papers reducibility means reducibility over the
rational fieid (. polynomials have integral coefficients and for a polynomial
feZ[x), f#0, 1f] denotes its degree, ||f]] the sum of squares of its

coefficients, Kf (x), called the kernel of f; the polynomiai x_“** f deprived of

" all its cyclotomic factors. The formula

{x)= const fl £ (%)

means in addition to the equality that the polynomials f, are irreducible and
relatively prime in pairs. We shall prove

TueoreM 1. Let a; (0 <j < 3) be non-zero integers. Then for any quadri-

. nomial

3
q(x) = a0+ z ajx"j (0 <n <n; < ng),
=1

that is not reciprocal, we have one of the following four possibilities:
k (i) Kq(x) is irreducible.

(ii) q(x)} can be divided into two parts that have the highest common
factor d{(x) being a non-reciprocal binomial. K (q (x)d(x)"") is then irreducible,
unless q(x)d(x)~* is a binomial.

(iif) q(x) can be represented in one of the forms

k(T?~4TUVW=U?V*—4U* W)
= k(T—UV2=2UVW =2UW?)(T+ UV -2UVW +2UW?),
k(U + V34 W2 —-3UVW)
=k(UAV+W U+ VL WE-UV-UW-VW),
k(U + 20V +VE—W?) = k(U+V+WHU+V —W),
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where k= +(ag, ay, 43, 43) and T U, V, W are monomials in Z[x], The
Sactors on the right-hand side have irreducible kernels.
(iv) ny=wv; (1 €< 3); v and v; are positive integers,

vy < exp,(12-2191 loglql))

3
and K{ag+ Y a;x"%) is reducible.
i=1
Moreover,
3 5 o
K(ap+ Y. a;x")= const [] F,(x)™
. J=1 o=
implies

X
Kq(x)=const [] F,(x)™.

o=1

The method of the proof of the theorem still works if the rationa!
field is replaced by a totally real field, or a totally complex quadratic exten-
sion of such a field. In the latter case the assumption that g(x) is not
reciprocal should be replaced by the assumption that it is not self-inversive,
ie. x4 g(x~?) 5 constF(x), where the bar denotes the complex conjugation.
Small modifications are needed then in the parts (iii) and (iv) of the theorem.
Some complications that arise in the proof are indicated briefly after
Lemma 1. :

Already for the rational field there remains as an open problem the
reducibility of reciprocal quadrinomials. A little light on this question is shed
by

THecreM 2. If

. 3
gx)=ap+ Y a;x” (0 <n <ny <n)
j=t _

is primitive reciprocal and

k
laol =TT £*  (p: distinet primes),
i=1

then the number of primitive irreducible factors of q(x) with the leading
coefficient different from +1, counted with multiplicities, does not exceed
k

Z (o, 1y).
i=1 -

Coroirary 1. If under the assumptions of Theorem 2 |ay| > |a,| then the
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mumber of irreducible factors of Kq(x), counted with multiplicities, does not
k

exceed Y (o, ny). | _
i=1 .
CoroLLARY 2. If under the assumption of Theorem 2 k=1 and (2, ny)
=1, then Kq(x) is irreducible.

3
THEOREM 3. If g(x) = ag+ Y, a;x™ (0 <ny < ny < ny) is reciprocal and

j=1
primitive, lagl = |a,| and Kq(x) is reducible, then |ag] 2 2 and

n . ord,! ord, {as/D)
—2_ > minmax { max P +max ‘c’l ,
2ny ieS plag OTd,dp  plag, OFd,dp

log(la0l/2) ord,! log(laol/2) Ordp(aoﬂ)},

logl o, Ord,aq’ Tog(lagl/) pay ord,ae

where

S={leZ: 1 <l< \/l_c;.;l, l|ay, n,ord,l = 0modord, ag
for all primes plag}.

COROLLARY 3. If under the assumptions of Theorem 3 a, is squarefree, we
have

o log uao|/2)}_

2, n
2ny { 1 <;l.ls,/|a0| log!
ag

The equality in the above estimate can be attained, as it is shown by
the example

6x% 4 X3+ x+6 = (3x*~4x+3) (2xX +3x+2).

Proofs of the theorems preceded by several lemmata are basc.d on the
results of [2], [4], [6] and [9]. At the end of the paper there is a note
correcting some errors in [4]. Since this is already the third note of this sort
(after [8] and the note in {6]), the author apologizes to the readers of [4] for
his great inaccuracy.

Lemma 1. If {laol, oy, lazl, lasl) is a permutation of {aol, laqgl, |a,:|, la >
for i=1 or 2, then either q(x) is reciprocal, or every irreducible reciprocal
Jactor of q(x) is cyclotomic, .

Proof. If |ag| = a3 |asl = |a] then for any zero { of the factor f in

question -
- Hy n3
a0+aa_gcna = _aIC "513§ ’

- — - _"3
dp+a3 i PTi= —aql M —a3l 7.
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If ag+as.;£™"=0, { is a root of unity, f is cyclotomic. If a,

+az-;{"7" 0, we get dividing the above equations side by side:

613_.,- ny_; a3 n3
P :—*{ '
dg C a;

Cn3+ni—n3_i = a0y = +1

o d3

and since ny+n; > ny_;, { is a root of unity, fis cyclotomic.

If lag) = |aj|, |a;] = |a,| then in virtue of Lemma 17 of {63, proved in the
above pattern, either g(x) is reciprocal or f(x} is cyclotomic.

Remark 1. In the case, where a; belong to a totally complex quadratic
extension K of a totally real field the above argument, when suitably
modified, leads to the conclusion that either g(x) is self-inversive, or every
monic irreducible self-inversive factor of g(x) in K [x] with integer coeffi-
cients is cyclotomic. Indeed,

a;

asz

a3
Qg

=]

implies that all conjugates of & a;..,/@, a; and of az/a,_; have modulus | and
since

G;as - dg

or (MTi=_ 0

C"a*"i”""s—i -
2o 43 az—;

etther

all conjugates of { with respect to ¢ have modulus 1. By Kronecker's
theorem either { is a root of unity, or { is not an algebraic integer.

Lemma 2. If daol, lay), lasl, lasl> is not a  permutation of
{laol, iaol, lal, {al> for any i <2 and (ny, ny, n3) =1 then every squarefree
reciprocal factor of q(x} is of degree at mosi 4\/373 .

Proof. In virtue of the well-known lemma (see, e.g. [1], Lemma 3 of
Chapter VI) there exist integers y,, y,, ¥s such that

Vit tyana+73n; =0 and 0 < max|y < \/3 max {n, n,, n3}.

In view of symmetry (we have not used the fact that max {ny, ny, my} =)
we may assume that

P1>0, 9,20, y1<0. -
Let us consider polynomials _
Fi(x,y) =lao+a; x+a,y) P —(—ay) > x" "2,
F, (x,. ¥ =(ao+a, x+a;y)(ao xy+a, y+ay x)~a xy.

The polynomial F,(x, y) is irreducible. Indeed, otherwise it would have a
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linear factor of the form

either x—b or y—b or a,x+a;y-b.
Now
x—biFy(x, y) implies ag-+a b =ag+ab"!' =0; |ag =|ay|, @z = las|;
y—b|Fy(x, y) implies agta;b=ap+a,b7 =0; |agl =|azl, lay| = laai;

@y x+a;y—b|Fy(x,)) implies b=0, |ag| = |ay|, [as] =lasl,

contrary to the assumption.
Moreover, F, tF, since the highest homogeneous part of F,(x, y),
which is ag xy(a, x+a; y), does not divide the highest homogeneous part of

Fy(x, ), which is either {a,x+a,3) " or —(—az) *x™y"? or finally the
difference of these iwo. Therefore, (F,, F,) =1 and by Lemma 4 of [4]

(1) card { (&, nyeC*: Fy (&, m =F,(¢, ) =0} <R,

where R js the resultant of F, and F, with respect to y. Now, by Lemma 5
of {4]

(2 |R| < 4max [y, y2, ¥} € 4/3n5.
If f(x) is a reciprocal factor of g{x) and f{{) =0 then clearly -

ao+a (M Hay " = —ay ",
hence
(ap+a ("M +ay ") P =(—as ), de. P (M ) =0.
Also { # 0,
ao+a M Ha T = —a T,
hence
(Go+a, {" +a ") ao+a (M a0 ) = a}
thus

Fp (0", 0" =0.

If /in addition is squarefree, we have

() =< Y card {{eC: (" =¢, [P =n,

FriEay=F olemi=0, & #0
1} —_ -
C_3 =a; ' (—ap=—ay E—ayn)}.
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I 5"1 =& M=y (= a3 ' (—ag—ay&~ayn) and
= (n,, 1y, Ba) = 1 for suitable infegers p, ¢, r, then

M p+nyg-+nyr

. {=¢"n"as"(—ag—ay E—azn),
hence

@  card{{eC: (M= P =0 (" =a7 (—as~a, {—~aan)} < 1

The lernma foliows from (1), (2}, (3) and (4).

LemMMA 3. Let Ay, Az, 509 ﬁl: ﬂZEQa Ilo Izec\{ol eJ = aj (1 S.’ < 2)1
H(x) be the usual height of o, A= o+ 8, L +821
Let Vi, V,, W, E be positive real numbers, satisfying
shsh,
V; 2 max -{IOgH(aj); L (<<,

W > max log H(B),

15552
and
1 < E < min {e 1 min 4V
1€j<2

If |A] # O then _
(5 |A4] > exp(—CV, Vs (W + log EV,) (log EV;)(log E)~?)
with -
(6 ’ cC<2™.

Proof. This is the spectal case n=2 D=1 of the theorem of
Waldschmidt [9]. Unlike him we denote the principal value of logarithms
by log (all logarithms are real).

LemMa 4. If q(x) is not reciprocal and Kq(x) has an irreducible reciprocal
Sactor, then either there is a linear relation

o . YiMy+ya i+ =
with 7, Z and
] 2
(8) 0 < max |y < max 08 4;
1€is3 03 1032
or
n
) 2 < £2%0(log |q]})°.
NS (log liql)
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Proof. Let

d = (nlz na, n3), n_‘f = nj/d (] = 15 2: 3)'

If
K{ag+ Z 4 x"J = const ]—[j; e

g=1

where none of the polynomials f, is reciprocal, then for each g < r we have

(for ¥ fx"0) = 1
and thus

(e, xMelp (x=) = 1.

Hence

Kq(x) = const ]L[fa(x") e

e=1

has no irreducible reciprocal factor, contrary to the assumption, Therefore,
we can assume without loss of generality that (n, ns, ny) = 1. If the reci-
procal factor in question, say f(x}, is primitive with the leading coefficient
different from -1, then in virtue of Lemma 13 of [6] there is a linear rela-
tion (7) with the coefficients y; satisfying (8). If the leading coefficient of f
is #1, we use Lemmata 1 and 2 and infer that

(10) f1< 4 /3.

In virtue of Dobrowolski’s theorem (see [2], p. 329) f, which is non-
cyclotomic and has the leading coefficient +1, satisfies

' 1 jloglog4./3n;
(11) max (1, () > 1+ N )
J'(£11-=I=0 1200( log4./3n,

Hence there exists a zero { of f such that

1 (1(5g10g4 3m )3 >_I_
1201- 4./3n; ' logd./3n, 3

(12) log ] >

for ny > exp 200,
We have however

3 3 .
(13) Go+ Y a;{=ag+ Y a{ Y =0.
i=1

J=1

T - Aclu Arithmetica XEV]13
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It follows that
fay| + |aal +as) [ o,
lagl +asf +la D IE"™ "™,

lagl <
=

| <(
las| < (

hence in view of (12)

|a1f(|a1f+la3|+|aaf)+|aof)l‘:[—n3
2ol
< (lay* +ay aal +|a; ast+laql?) exp(—nd'S),

at " Hlas ™ < (*“2' (‘“"'i‘;"f‘l'“‘"f"z”+m3[)1c|'"3
3

< (Jag agl+lay ayl +|ay)* + |as|*) exp (-~ n3’®).

lag ™ | +la, M <

Now, from (13)

2 2
fo—n a agl® +la 1+ lag asf+|a, as
27" = _3+0(| ol* +lay {J l: 2l e ay exp(—n'%),
2 2
—a ap o) +|ay az| +|as|? +|asl*
1 1ﬁa_o+o(i 04z +lay i;|,|2| |as! )exp(——n%’s),
1 1

where the constant in the O symbol is 1 (so in the seguel). It follows
from the inequality
|z3 —z,]

fogzy| —loglzsl| € — 22
foglz1 < il

that
B a
(ny—ny)loglf] = log a—3 +Oflagl® +1ay|* +ay a,| +a;, asl)llqllexp(—n3’),
) dz :
a,
—ny log|{] = log a—o +O(|ag af +{ay agt+lag)*+|asilglt exp (—n3®),
1
whence
: a a 5
(14)  nylog =2+ (na—na)log -2 = |4} < Slgl|* 3 exp(—nd/?).
21t 1 -

The case |asfa,| = |ag/a,] == 1 is excluded by Lemma 1. Thus max |a]
05i<3
=2,(lgll =7 and, what is more important, |4] can be estimated from

below, If
43
5]

dg

a, !

ole1 or [Bls1, =1,

=1,

1 a;
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we have
15) 4l = igli= 2.
If |asfas| # 1 and |ag/a,| # 1, we apply Lemma 3 taking there
a3 dg .
oy = E;, = E]_—, 30=0> ﬂlznlw‘ ﬁ2=n2_n3,
a a
L =log| =2, L=Io —0{
1 g 2 2 g a,)

Vi =V, =logllqll,
We get A =0 or
(16)  [A4] > exp(—2°° (log {{gll)*(log n; + log log||g]| + log 7)

x (loglog|lgl]| +log 7)),
which is clearly weaker than (15). Combining (14) and (16), we obtain

W=logn,, E=7,

5 .
log lighi* +log ny—n3’> > —25° (logligll)? (log n; -+ loglog |g]| + log 7)

x (loglog|lgl| +1log 7},
whence by a tedious computation follows (9).
I, on the other hand, 4 =0, we have

"1

a3 H3—n3y

az

do

&

Since |az/ay} = |ag/a;| = 1 is excluded, there exists a prime p which occurs in
the factorization of either as/a, or ay/a; with a non-zero exponent. Thus we
get S

(17) ny ord, (as/a;) = (n3 —ny) ord, (a/ay)

and since

1
ord,a; < max logla) 0=<ig3),

osjxa log?2
(17) represents a relation (7) with the condition (8).

Remark 2. By applying the arguments used in the proof of Theorem 4
in [6] and Lerama 13 in [4] and taking into account the estimate for e(x, £2)
implied by Dobrowolski’s theorem, one can show that the conditions (7) and
(8) imply (9), moreover we have under the assumption of the lemma

B3
(nl s N2, n3)

for every £¢> 0 and a suitable constant C(e). -

< C(o)(logilgl)***
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Lemma 5. If g(x) is not reciprocal and either Kq{x) has no irreducible
reciprocal factors, or the conditions (7) and (8) hold, then we have the
alternative (1)—iv).

Proof is identical with the proof of Theorem 4 in [6], except the last
‘paragraph which is not needed.

Proof of the theorem. If Kg(x) has no irreducible reciprocal factor
the theorem follows from Lemma 5. H Kg(x) has an irreducible reciprocal
factor f (x), then in virtue of Lemma 4 we have either (7) and (8) or (9). In the
former case the theorem follows again from Lemma 5. In the latter case we
write

g9 = F (""",
where
3 iy ha,m3)
F(x) =ag+ ¥ a;x"7"3",
i=1
We now apply to F(x) Theorem 1 of [4] and infer the existence of integers v

and u such that

0 < v < exp(10|F|log 2|F| log||Fi)?. (1, na, 13) = uv,

and
&
KF(x") = const [] F,(x)™
a=1
implies
8
KF (x) = const [] F,(x.
a=1
Taking

vy =vmf(ny, Ny, ), v=u
we find (iv), since |
Ny
B v(nh Ny, M)
< 2% (logq]))° exp(10e2°° log 14| {201 + S log log |lgl)) log | 4]l)*

< exp, (122197 log figl)),

where the last inequality follows from ||g|l > 7. This completes the proof.
Remark 3. Theorem 4 in [6] includes an estimate for the number of
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irreducible factors of Kg(x), namely

{ 1 .
+_-)lognq|e, 63— 0g—1 = 0

18 o(Kg)= 3 e <

2logfl, 2log2

proved under the assumptions of that theorem, more stringent than these of -
the present Theorem 1. The above estimate is valid without any assumption
about ¢ (x} for the number of irreducible factors of Kq(x) that are either non-
reciprocal or primitive with the leading coefficient different from + 1. In fact,
using the theorems of Landau and Smyth more carefully than in [6], one can
eliminate the summand 1/(2log2) in (18). However to estimate the number of
irreducible factors of Kg(x) that are reciprocal and monic is more difficult;
Theorem 1 furnishes an exceedingly large bound exp, (12- 214l log ||g|)). Using
Remark 2 and Theorem I of [6] one can get

Q(Kq(x) < C, (e)(logligl)* **

for every & > 0 and a suitable C, (g), but also this estimate does not seem
sharp.

Lemnsia 6. If g(x) is reciprocal and primitive, f (x) is primitive with the
leading coefficient | and f(x)|q(x), then for every prime p|lag

(19 nyord,! =0 mod ord, a,.
Movreover, we have for every prime p
(20) |Kflord, ap = ny ord, I+, ord, f(0).

Proof. Both sides of the formulae (19) and (20} behave as additive
functions of f, hence it is enough to show them for all irreducible f. For f
cyclotomic the formulae are true since / = 1, f(0) = + 1, therefore we assume
that f is irreducible and KJ = f Let { be a zero of such an f and let

(21) 0=

where m, n are ideals of Q({) and {(m, n)=1. We have
Six) = IN(x—0),

where N denotes the norm from @(x, {) to Q{x) or from Q({) to (, hence
by Gauss's lemma ‘

(22) =[J(Nw™ ', |l|=Nn,  [f(O) = Nm,
On the other hand, for every prime ideal p|n we have
ord, a, ("< ord, @y, because a3 = tdo,
“ord,a,{™ < ord e, ("', because 4= ta;,m>n,
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hence
3 .
g() =ao+ 3, a7/ =0
j=1

implies

ord, 2, (" = ord, a, ("
and thus
(23) ord, a; —ord, a; = (ny —nyjord, n > 0.

Since {a,, az) =1, ny—n, = ny, we get
ord,a; =0, n;ord,n=0mod ord,a,.
Hence, by (22)

ny ord, ! = Z|: ny ord, nt-ord, Np = 0 mod ord,a,
plr

which proves (19). Since by (23)
ord,ap = n, ord, n
for every prime ideal pin, we get
| ag.
Since x1f(1/x)|q{x), the role of m and n is symmetrical, hence also
wmag.
Since (m, n) = 1, the last two divisibilities give
(mn)™ | ag

and on taking norms we get by (22)

(SO D™ ey,
which implies (20).
Lemma 7. If q(x) is reciprocal and |ag| > |ay), then all zeros of q(x) lie on

the unit circle. Moreover, if f is primitive with the leading coefficient | und
J(x)g(x), then

|Kf110g(jao] /2) < nylog ).

Proof. If lag) 2 |a;| then also |ag|+|asl = |a,|+|ay] and in virtue of
Lemma 14 of [6] all zeros of g(x) lie on the unit circle. In proving the
second part of the lemma we may assume without loss of generality that f is
irreducible, non cyclotomic, () = 0 and (21) holds. It follows from ¢({) =0
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that
o (1+60™) = —a; ("™ + 60",
where
&= ayfag = ayfa; = +1.
Hence

ap(1+8l)n" = —a, ("' +2")n",
dolay (¢ +el"ym"™
and since (g, 4,) =1 we have
upl(d™ +eL" ™.
On taking norms we get by (22)
af'|I® N (" + ().
Since [ is non-cyc;kztomic, £ is not a root of unity, hence ("' +&l"* # 0 and
| N +el™) # 0. |
On the other hand, since all the conjugates of { lie on the unit circle,
IN(™ +e0") < 2V
The last three formulae imply
laal ! < 11 21,

which gives the second part of the lemma.
Proof of Theorem 2. Let

h
g(x) = fo [1 1,
i1

where f; are primitive irreducible polynomials with the leading coefficients
[;>=1(j=1,2,..., h). We have for each prime p;|a,

]
oy = z ﬁ'jordm [j!
j=1

hence .
ko, my)ord,, |
(o, m) = 3 ﬂj““’l—‘_']‘—j
=1 %
and '

ig?,-, nl]ordp. lj
=1 . X; ’

[ h
z {o, n1) 2 Z By
i=1 =1 i

i
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By Lemma 6 cach inner sum on the right-hand side is an integer. It is dlSO
positive since [; > 1. Hence

k
Z o, nl Z ﬁj
i=1

Proof of Corollary L. If |ap| = |a1| then by Lemma 7 all zeros of g(x)
lie on the unit circle. By the theorem of Kronecker those among them that
are algebraic integers are roots of unity, hence Kg{x) has no monic factor,

Proof of Corollary 2. If k =1 and (&, #;) = | then by Corollary 1
the number of irreducible factors of Kgq(x), counted with multiplicities, does
not exceed 1.

Proof of Theorem 3. Assume that Kg(x) = fy /5. where fy,f, are
non-constant polynomials with the leading coefficients I,, [,, respectively.
We have

(24) lao] = las| = |1 1}
and by Corollary 1
(25) jl>1 (i=1,2).
In view of symmetry we may assume

1<, < \,m_

By Lemma 6
ry ord,!; = 0 mod ord,a,

for every prime p|a,, hence I, eS.
By Lemma 7 every zero of f lies on the unit circle, hence

fO =+ (=12
Again, by Lemma 6
ord,] ‘
Kflz2 BN =1 2).
KA 2> 2mmax et (=12)
Thus _
(26) Mo KAITIRAL ¢ o ordpl
2ny 2ny = plag Xord, ag oo

Oﬁ the other hand, by Lemma 7

|Kfillog (|agl/2) € mylogll]  (i=1, 2).
By (24) and (25) we have |ag| = 2, hence

la

s logih) > K log “% > 2n, g % max 2Lz

2 piﬂo Ord f’g
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and
ord, &

ns loglag/) =12,

_erl- = loglhl oy Ord,ay
Thus by {24) and (26)
ord, ! d
1 2 max {max -~ f’--~~’~+max9~l:——-”~—~——(a°/lﬁ.
" plag Otdpda  plag  OFTd,ag

log (iaal/2) . ord,l; log(lael/2) maxord,,(ag/ll)}
logl, pag Ord,ay logllagl/l}) e, ord,aq

Since {, &S the theorem follows.

Proof of Corollary 3, If gy is squarefree, we have for every leS

] d
max - ordpl_ max 4y a0/} = |

and
Mag Ordﬂ ty plag Ord plo

log ! < log(laol/h)

hence the simplification of the theorem.

Note concerning the paper [4]

1. The proof given on p. 133 that (12) has at most k linearly independent
solutions should be modified as follows,

“Let r be the rank of the matrix [¢,,] and assume that the vectors
[Clgn s Cpged (1 S5 5 1) are linearly independent, while

r
Cpg = Z Yas Cpr

for all p< py. ¢ <k and suitable 7, Q.
If we had .'\—l-l linearly independent solutlons Qys -y Gty Of (12) then
taking as &, ..., & real numbers linearly independent over 0 we should
ket

find the set of reals . dyn (01

m= 1

span over Q a space of dimension at least r+1, while the differences
occurring only once

< 1), where all the differences would

k+1 k+1
Z (a'mjp—amip]ém = Z gm(z c am,Hq)
m=1 me= L

k+1

__i (Z Yas Z D, +9q 'n)

A=t
would span a space of dimension at most r, contrary to the theorem of
Stravs 117" :
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The same modification should be made in the proof of Lemma 2 in [5].
The proof of the same assertion given in the remark on p. 134 of [4] is
correct and rather simpler than the above proof.

2. On p. 134 of [4] the estimate for h(A") is derived incorrectly from
Hadamard’s inequality. The correct application of this inequality gives

h(A)) < (2+max [kc?, 4))UFen2,
hence
h(A) < (2k+k max [, 2]+

unless k=1, ¢ = 1. In that case the last inequality follows from inequality
(99) in [6]. Thus the estimate for h(y) on p. 134 and in the last line of
Lemma 7 in [4] should read

h{‘}’] < kk— 1 (k max _{C:z’ 2} + 2k)(l+ 1k — 1)/2‘
that is just what is used to estimate h(y) on p. 127.

3. On p. 152 of [4] in Lemma 13 the assumption F(x"', x"?)# 0 is
lacking. Moreover, the argument below formula {75) needs an amplification.

] JF ny. -
It assumes silently that every zero & £ 0 of (—.K—E)(x“l, x"*) is a zero of

JF(x", x™ o ,
%KF((XHI’ x"z))’ which is true but not obvious. When one refers to the

definition of KF given on p. 123 one has to show that for an irreducible

F the divisibility F(x;, x;}J (x‘l51 x52—1) implies KF{x", x") = const.
This is obvious if ny 8, +n,38, # 0, but if n, 8, + 5,8, = 0 one needs the fact
implied by Lemma 11 of [6] that

B1/(31,82) Sa/dy. 8
F(x,, x;) = const J@ (x 310192 (22101.02))

(35,47}

for 2 polynomial @]z —1L I d,n+38;n, =0 we get

F(x", x"% = const.
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Corvections to [4], [6] amd [7]

[41 p. 152, formula (78), for T = Lix;, x) V™1 Uy = L{x;, %) V™F
read Ty = LF(x,, x) V™!, U= LF(x7!, x3H V"
P 153, formula (76) before “with™ insert “={"
lines 9~10 for R, read R, for §;; read 8,, for x, read x,,
line 13 for §; read §, for 1, j read i
[61 p. 229 tinc 14 for 2(¢{x)) read Q{Ky(x),
p. 261 line 10 for (86) read (85);

71, p 435 linc 9 for [ag, ..., 0y read [ag. ..., a,-,] not in Qip} for any p.
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