

On special metrics characterizing topological properties

by

Yasunao Hattori (Osaka)

Dedicated to Professor Tan-iti Nagata on his 60th birthday

Abstract. We shall discuss the characterizations of certain classes of infinite dimensional metrizable spaces by a special metric and consider the questions concerning special metrics raised by J. Nagata. A characterization of a strongly metrizable space is also obtained.

0. Introduction. It is an interesting problem to characterize a topological property of a metrizable space by means of a special metric. In dimension theory, the following theorem is already known.

THEOREM A. For a metrizable space X, the following conditions are equivalent:

- (a) $\dim X \leq n$.
- (b) X admits a metric of satisfying the following condition:
- (0)_n For every $\varepsilon > 0$, every point x of X and every n+2 many points $y_1, ..., y_{n+2}$ of X with $\varrho(S_{\varepsilon/2}(x), y_i) < \varepsilon$ for each i=1, ..., n+2, there are distinct natural numbers i and j such that $\varrho(y_i, y_j) < \varepsilon$.
- (c) X admits a metric ϱ satisfying the following condition:
- (1)_n For every point x of X and every n+2 many points $y_1, ..., y_{n+2}$ of X, there are distinct natural numbers i and j such that $\varrho(y_i, y_i) \leq \varrho(x, y_i)$.

The equivalence of (a) and (b) of the above theorem was proved by J. Nagata [8] and simpler proofs were given by S. Buzási [3] and P. Assouad [1]. The equivalence of (a) and (c) of the theorem was proved by J. Nagata [9], [10] and P. A. Ostrand [14] independently. For the case of the separable metrizable spaces, the following theorem was obtained by J. de Groot in [5].

THEOREM B. A separable metrizable space X has $\dim X \leq n$ if and only if X admits a totally bounded metric ϱ satisfying the following condition:

- (2)_n For every point x of X and every n+2 many points $y_1, ..., y_{n+2}$ of X, there are natural numbers i, j and k such that $i \neq j$ and $\varrho(y_i, y_j) \leq \varrho(x, y_k)$.
- In [11], J. Nagata posed the problem: Extend Theorems A and B to infinite dimensional spaces. He partially solve this problem as follows:

THEOREM C. For a metrizable space X, the following conditions are equivalent:

(a) X is strongly countable-dimensional.

- (b) X admits a metric of satisfying the following condition:
- (1)_∞ For every point x of X, there is a natural number n(x) such that for every n(x)+2 many points $y_1, ..., y_{n(x)+2}$ of X, there are distinct natural numbers i and j such that $\varrho(y_i, y_j) \leq \varrho(x, y_j)$.
- (c) X admits a metric ϱ satisfying the following condition:
- (2)_∞ For every point x of X, there is a natural number n(x) such that for every n(x)+2 many points $y_1, ..., y_{n(x)+2}$ of X, there are natural numbers i, j and k such that $i \neq j$ and $\varrho(y_i, y_i) \leq \varrho(x, y_k)$.

In Section 1, we extend the above theorems to metrizable spaces that have both large transfinite dimension Ind and strong small transfinite dimension sind. Further modifications of $(0)_n$, $(1)_n$ and $(2)_n$ are discussed in Section 2. In Section 3, we characterize a strongly metrizable space by a special metric.

For a collection $\mathscr U$ of subsets of a set X, we denote $\mathscr U^* = \bigcup \{U \colon U \in \mathscr U\}$. Furthermore, for a natural number n, $[\mathscr U]^1 = \mathscr U^* = \{\operatorname{St}(U,\mathscr U)\colon U \in \mathscr U\}$ and $[\mathscr U]^{n+1} = ([\mathscr U]^n)^*$. Let N denote the set of all natural numbers and Q^* denote the set of all rational numbers of the form $2^{-m_1} + \ldots + 2^{-m_e}$, where m_1, \ldots, m_t are natural numbers satisfying $1 \le m_1 < \ldots < m_t$. We refer the readers to [4] and [13] for un-defined terminology and basic results on dimension and infinite dimension theory.

The author wishes to express his thanks to Prof. J. Nagata for his valuable advices.

- 1. Characterizations of classes of infinite dimensional spaces. In this section, we consider the characterizations of two classes of infinite dimensional spaces. First, we characterize the class of strongly countable-dimensional spaces by extending the condition (0)_n.
- 1.1. THEOREM. A metrizable space X is strongly countable-dimensional if and only if X admits a metric \(\rho \) satisfying the following condition:
- $(0)_{\infty}$ For every point x of X, there is an $n(x) \in N$ such that for every $\varepsilon > 0$ and every n(x)+2 many points $y_1, \ldots, y_{n(x)+2}$ of X with $\varrho(S_{e/2}(x), y_i) < \varepsilon$ for each $i=1,\ldots,n(x)+2$, there are distinct natural numbers i and j such that $\varrho(y_i,y_j) < \varepsilon$.

Proof. Let ϱ be an admissible metric for X satisfying the condition $(0)_{\infty}$. For each point x of X, let n(x) be the minimal number satisfying the condition $(0)_{\infty}$. For each $n \in N$, we put $F_n = \{x \in X : n(x) \le n\}$. It is easy to see that each F_n is a closed set of X and $X = \bigcup \{F_n : n \in N\}$. By Theorem A, it follows that $\dim F_n \le n$ for each $n \in N$. Hence X is strongly countable-dimensional. Conversely, let X be a strongly countable-dimensional space. Let $X = \bigcup \{F_n : n \in N\}$, where F_n is a closed set of X such that $\dim F_n \le n$ and $F_n \subset F_{n+1}$ for each $n \in N$. By [11; Lemma 1], we can obtain a sequence \mathscr{U}_1 , \mathscr{U}_2 , ..., of open covers of X which satisfies the following conditions:

- (1) $[\mathcal{U}_{m+1}]^2$ refines \mathcal{U}_m for each $m \in \mathbb{N}$.
- (2) $\{St(x, \mathcal{U}_m): m \in N\}$ is a neighborhood base at $x \in X$.

(3) For each $x \in F_n$ and each $m \in \mathbb{N}$, $\mathrm{St}^2(x, \mathcal{U}_{m+1}^*)$ meets at most n(n+1)/2 members of \mathcal{U}_m .

For each
$$q=2^{-m_1}+\ldots+2^{-m_\ell}\in Q^*$$
 and each $U\in\mathcal{U}_{m_1}$, we put $S(U;m_1)=U,$

$$S(U; m_1, ..., m_k) = St^2(S(U; m_1, ..., m_{k-1}), \mathcal{U}_{m_k})$$
 for $2 \le k \le t$, $S(U; q) = S(U; m_1, ..., m_k)$

and

$$\mathscr{S}(q) = \{S(U;q) \colon U \in \mathscr{U}_{m_1}\}.$$

We define a function $\varrho: X \times X \to [0, 1]$ as follows: For $x, y \in X$.

$$\varrho(x,y) = \begin{cases} 1, & \text{if } y \notin \operatorname{St}(x,\mathcal{S}(q)) \text{ for every } q \in Q^*, \\ \inf\{q \in Q^* : y \in \operatorname{St}(x,\mathcal{S}(q))\}, & \text{otherwise.} \end{cases}$$

It follows that ϱ is an admissible metric for X (see the proof of [3; Theorem]). To prove that ϱ satisfies the condition $(0)_{\infty}$, for each point x of X, let n be the minimal number with $x \in F_n$ and n(x) = n(n+1)/2-1. Let $\varepsilon > 0$ and $y_1, \ldots, y_{n(x)+2} \in X$ with $\varrho(S_{e/2}(x), y_i) < \varepsilon$ for each $i = 1, \ldots, n(x)+2$. For each $i = 1, \ldots, n(x)+2$, let x_i be a point of X such that $\varrho(x, x_i) < \varepsilon/2$ and $\varrho(x_i, y_i) < \varepsilon$. Put

$$\delta_i = \max\{2\varrho(x, x_i), \varrho(x_i, y_i)\}\$$

and $\delta = \max\{\delta_i\colon i=1,\ldots,n(x)+2\}$. Then there is a $q=2^{-m_1}+\ldots+2^{-m_t}\in \mathcal{Q}^*$ such that $\delta < q < \varepsilon$. Since $\varrho(x,x_i)<2^{-(m_1+1)}+\ldots+2^{-(m_t+1)}$, there is a $V_i\in \mathcal{U}_{m_1+1}$ such that $x,x_i\in S(V_i;\ m_1+1,\ldots,m_t+1)$. Hence $x_i\in S(x_i,\mathcal{U}_{m_1+1}^*)$. On the other hand, there is a $U_i\in \mathcal{U}_{m_1}$ such that $x_i,y_i\in S(U_i;m_1,\ldots,m_t)$. Therefore $St(x_i,\mathcal{U}_{m_1+1}^*)\cap U_i\neq \emptyset$ and hence $St^2(x,\mathcal{U}_{m_1+1}^*)\cap U_i\neq \emptyset$. By (3), there are distinct natural numbers i and j such that $U_i=U_j$. Then $y_i,y_j\in S(U_i;m_1,\ldots,m_t)=S(U_i;m_1,\ldots,m_t)$. Therefore, $\varrho(y_i,y_i)\leqslant \varrho<\varepsilon$. This completes the proof.

Now, we extend Theorems A and B to another class of infinite dimensional spaces. We notice that for each ordinal number α , we can put $\alpha = \lambda(\alpha) + n(\alpha)$, where $\lambda(\alpha)$ is a limit ordinal number or 0 and $n(\alpha)$ is a non-negative integer.

- 1.2. DEFINITION ([2]). For a normal space X and a nonnegative integer n, we put $P_n(X) = \bigcup \{U : U \text{ is an open subspace of } X \text{ such that Ind } \overline{U} \leqslant n \}$. Let X be a normal space and α either an ordinal number $\geqslant 0$ or the integer -1. Then strong small transfinite dimension sind of X is defined as follows:
 - (sil) sind X = -1 if and only if $X = \emptyset$.
- (si2) sind $X \le \alpha$ if X is expressed in the form $X = \bigcup \{P_{\xi}: \xi < \alpha\}$, where $P_{\xi} = P_{n(\xi)}(X \bigcup \{P_{\eta}: \eta < \lambda(\xi)\})$.

Furthermore, if sind X is defined, we say that X has strong small transfinite dimension.

Spaces that have strong small transfinite dimension are studied by P. Borst [2] and the author [6]. It should be noticed that L. Polkowski [17] introduced and discussed the similar class of spaces which are called small spaces. Recall from [16]

that a normal space X satisfies the condition (K) if there is a compact subset K of X such that $\operatorname{Ind} F < \infty$ for every closed subset F of X which does not meet K.

- 1.3. LEMMA ([7: Propositions 2.2 and 2.3]). For a metrizable space X, the following conditions are equivalent:
- (a) X has both large transfinite dimension Ind and strong small transfinite dimension sind.
 - (b) X is a strongly countable-dimensional space satisfying the condition (K).
- (c) X is a strongly countable-dimensional space which contains no discrete family $\{U_n: n \in N\}$ of open sets of X such that $\dim \overline{U}_n > n$ for each $n \in N$.
 - 1.4. THEOREM. For a metrizable space X, the following conditions are equivalent:
- (a) X has both large transfinite dimension Ind and strong small transfinite dimension sind.
 - (b) X admits a metric ϱ which satisfies the following condition:
 - (0)* For every closed discrete subspace F of X there is a natural number n(F) such that for every $\varepsilon > 0$, every point x of F every n(F)+2 many points $y_1, \ldots, y_{n(F)+2}$ of X with $\varrho(S_{i/2}(x), y_i) < \varepsilon$ for each $i = 1, \ldots, n(F)+2$, there are distinct natural numbers i and j such that $\varrho(y_i, y_i) < \varepsilon$.
 - (c) X admits a metric o which satisfies the following condition:
 - (1)* For every closed discrete subspace F of X, there is a natural number n(F)such that for every point x of F and every n(F)+2 many points $y_1,...$..., $y_{n(F)+2}$ of X, there are distinct natural numbers i and j such that $\varrho(y_i, y_i)$ $\leq \rho(x, y_i).$
 - (d) X admits a metric ϱ which satisfies the following condition:
 - $(2)_{\infty}^{*}$ For every closed discrete subspace F of X, there is a natural number n(F)such that for every point x of F and every n(F)+2 many points $y_1,...$..., $y_{n(F)+2}$ of X, there are natural numbers i, j and k such that $i \neq j$ and $\varrho(y_i, y_i) \leq \varrho(x, y_k).$

Proof. The implication (c) \rightarrow (d) is obvious. To prove the implication (d) \rightarrow (a), let ρ be an admissible metric for X which satisfies the condition $(2)_m^*$. Since ρ satisfies the condition $(2)_{\infty}$, by Theorem C, X is strongly countable-dimensional. Suppose that X contains a discrete family $\{U_n: n \in N\}$ of open sets of X such that $\dim \overline{U}_n \ge n$ for each $n \in \mathbb{N}$. By Theorem A, for each $n \in \mathbb{N}$, there are points $x^n, y_1^n, \dots, y_{n+1}^n$ of \overline{U}_n such that $\varrho(y_i^n, y_i^n) > \varrho(x^n, y_k^n)$ for each i, j and k with $1 \le i, j, k \le n+1$ and $i \neq j$. Put $F = \{x'': n \in N\}$. Then F is a closed discrete subspace of X and ϱ does not satisfy the condition (2)* for F. Hence, by Lemma 1.3, X has both large transfinite dimension Ind and strong small transfinite dimension sind. In a similar fashion, by use of Theorem 1.1 instead of Theorem A, we can prove the implication (b) \rightarrow (a). Now, we prove the implication (a) \rightarrow (c). The basic idea of the proof is due to J. Nagata [11]. Let X be a metrizable space having both large transfinite dimension Ind and strong small transfinite dimension sind. By Lemma 1.3, there is a strongly countable-dimensional compact subspace K of X such that dim $H < \infty$

for every closed subspace H of X which does not meet K. Let $K = U K_n$, where each K_n be a closed set of K such that $\dim K_n \leq n-1$ and $K_n \subset K_{n+1}$ for each $n \in N$. For each $n \in N$, we put $V_n = X - \overline{S_{1/n}(K)}$. Then V_n , $n \in N$, are open sets of X such that $X-K=\bigcup\{V_n\colon n\in N\},\ \overline{V}_n\subset V_{n+1}\ \text{and}\ \dim V_n<\infty\ \text{for each}\ n\in N.$ Furthermore, for every closed set H of X which does not meet K, there is an $n \in N$ such that $H \subset V_n$. We can assume that dim $\overline{V}_n \leq n-1$ for each $n \in \mathbb{N}$. Now, we need the following two lemmas.

- 1.5. Lemma. For every open cover \mathcal{U} of X, there are a sequence $\mathcal{V}_1, \mathcal{V}_2, \dots$ of discrete families of open sets of X and an open cover W of X which satisfies the following conditions:
 - (i) $\bigcup \{ \mathscr{V}_m : m \in \mathbb{N} \}$ is a cover of X.
 - (ii) $\bigcup \{ \mathscr{V}_m : m \in N \}$ refines \mathscr{U} .
- (iii) W meets at most one member of \mathscr{V}_k for $k \leq n^2$ and meets no member of \mathscr{V}_k . for $k > n^2$ for every $W \in \mathcal{W}$ with $W \cap K_n \neq \emptyset$.
- (iv) W meets at most one member of V_k for $k \le n(n+1)$ and meets no member of \mathscr{V}_k for k > n(n+1) for every $W \in \mathscr{W}$ with $W \cap \overline{V}_n \neq \emptyset$.

Proof. Since $\dim K_n \leq n-1$ and $\dim V_n \leq n-1$, for each $n \in N$, there are families \mathscr{G}_{i}^{n} , \mathscr{H}_{i}^{n} , j = 1, ..., n, of open sets of X satisfying the following conditions:

(4) \mathcal{G}_{i}^{n} and \mathcal{H}_{i}^{n} are discrete in X for every j = 1, ..., n.

(5)
$$K_n \subset \bigcup_{j=1}^n \mathscr{G}_j^{n\#} \subset X - V_{n+1}.$$

(6) $\overline{V}_n \subset \bigcup_{j=1}^n \mathscr{H}_j^{n\#} \subset V_{n+1}.$

$$(6) \ \overline{V}_n \subset \bigcup_{j=1} \mathscr{H}_j^{n\#} \subset V_{n+1}$$

(7)
$$\bigcup_{j=1}^{n} \mathcal{G}_{j}^{n}$$
 and $\bigcup_{j=1}^{n} \mathcal{H}_{j}^{n}$ refine \mathcal{U} .

 $\int_{j=1}^{j=1} \int_{j=1}^{j=1}$ Let P_n and Q_n be open sets of X such that

(8)
$$K_n \subset P_n \subset \overline{P}_n \subset \bigcup_{\substack{j=1\\n}}^n \mathscr{G}_j^{n+}$$
, and

$$(9) \ \overline{V}_n \subset Q_n \subset \overline{Q}_n \subset \bigcup_{j=1}^n \mathscr{H}_j^{n*}.$$

Put

$$(10) \ \mathscr{V}_{m} = \begin{cases} \{G - \bigcup_{i=1}^{n-1} \overline{P}_{i} \colon G \in \mathscr{G}_{j}^{n}\}, & \text{if } m = n(n-1)+j, \ j \leqslant n, \\ \{H - (\bigcup_{i=1}^{n} \overline{P}_{i} \cup \bigcup_{i=1}^{n} \overline{Q}_{i}) \colon H \in \mathscr{H}_{j}^{n}\}, & \text{if } m = n^{2}+j, \ j \leqslant n. \end{cases}$$

Then \mathscr{V}_m is a discrete family of open sets of X and refines \mathscr{U} . It is easy to see that $\bigcup \{\mathscr{V}_m : m \in N\}$ is a cover of X. For each point x of X, we put

$$n(x) = \begin{cases} \min\{n: n \in N \text{ and } x \in K_n\}, & \text{if } x \in K, \\ \min\{n: n \in N \text{ and } x \in \overline{V_n}\}, & \text{if } x \notin K. \end{cases}$$

There is an open neighborhood W(x) of x such that

(11) if $x \in K$, then $W(x) \subset P_{n(x)} - K_{n(x)-1}$ and W(x) meets at most one member of \mathscr{V}_m for every $m \leq n(x)^2$ and if $x \in X - K$, then $W(x) \subset Q_{n(x)} - V_{n(x)-1}$ and W(x) meets at most one member of \mathscr{V}_m for every $m \leq n(x)^2 + n(x)$.

We put $\mathscr{W} = \{W(x): x \in X\}$. To prove the condition (iii), let $W(x) \in \mathscr{W}$ and $W(x) \cap K_n \neq \emptyset$. Then, by (6), (9) and (11), it follows that $x \in K$. Let us also notice that n(x) < n. Let $k > n(x)^2$. We consider the two cases:

Case 1; k=m(m-1)+j for some $m,j\in N$ with $j\leqslant m$. Then it follows that m>n(x). Hence, by (10), $\mathscr{V}_k^*\cap \overline{P}_{n(x)}=\mathscr{V}_k^*\cap \bigcup_{i=1}^{m-1}\overline{P}_i=\varnothing$.

Case 2; $k = m^2 + j$ for some $m, j \in N$ with $j \leq m$. Then, it follows that m > n(x). Hence $\mathscr{V}_k^* \cap \overline{P}_{n(x)} \subset \mathscr{V}_k^* \cap \bigcup_{i=1}^m \overline{P}_i = \varnothing$. Therefore, by (11), $\mathscr{V}_k^* \cap W(x) \subset \mathscr{V}_k^* \cap \bigcap P_{n(x)} = \varnothing$ in either case. If $k \leq n(x)^2$, then it is obvious that W(x) meets at most one member of \mathscr{V}_k . Hence the condition (iii) is satisfied. In a similar fashion, we can prove the condition (iv) and hence the lemma is proved.

1.6. Lemma. For every $q \in Q^*$, there is an open cover $\mathcal{S}(q)$ which satisfies the following conditions:

- (i) $\mathcal{S}(q) = \bigcup_{i=1}^{\infty} \mathcal{S}^{i}(q)$, where each $\mathcal{S}^{i}(q)$ is discrete in X.
- (ii) $\{St(x, \mathcal{S}(q)): q \in Q^*\}$ is a neighborhood base at $x \in X$.
- (iii) Let $p, q \in Q^*$ and p < q. Then $\mathcal{G}(p)$ refines $\mathcal{G}(q)$.
- (iv) Let $p, q \in Q^*$ and p < q. If $S_1 \in \mathcal{S}(p)$ and $S_2 \in \mathcal{S}(q)$, then $S_1 \cap S_2 = \emptyset$ or $S_1 \subset S_2$.
- (v) Let $p, q \in Q^*$ and p+q < 1. Let $S_1 \in \mathcal{S}(p)$, $S_2 \in \mathcal{S}(q)$ and $S_1 \cap S_2 \neq \emptyset$. Then there is an $S_3 \in \mathcal{S}(p+q)$ such that $S_1 \cup S_2 \subset S_3$.
- (vi) For every $q \in Q^*$ and every $S \in \bigcup \{ \mathcal{S}^l(q) : i > n(n+1) \}$, $S \cap K_n = \emptyset$ and $S \cap \nabla_n = \emptyset$.

Proof. By use of Lemma 1.5, we can obtain a sequence of $\mathcal{U}_1, \mathcal{U}_2, ...$, open covers of \overline{X} which satisfies the following conditions:

- (12) $\mathcal{U}_j = \bigcup_{i=1}^{\infty} \mathcal{U}_j^i$, where each \mathcal{U}_j^i is discrete in X.
- (13) mesh $\mathcal{U}_j = \sup \{ \text{diameter } U \colon U \in \mathcal{U}_j \} < 1/j \text{ for each } j \in \mathbb{N}.$
- (14) $[\mathcal{U}_{j+1}]^{22}$ refines \mathcal{U}_j for each $j \in N$.
- (15) Let j < k and $U^* \in [\mathcal{U}_k]^{22}$. If $U^* \cap K_n \neq \emptyset$, then U^* meets at most one member of \mathcal{U}_j^i for $i \le n^2$ and U^* meets no member of \mathcal{U}_j^i for $i > n^2$. Furthermore, if $U^* \cap \overline{V}_n \neq \emptyset$, then U^* meets at most one member of \mathcal{U}_j^i for $i \le n(n+1)$ and meets no member of \mathcal{U}_j^i for i > n(n+1).

For $i, j \in N$, let $\mathscr{V}_j^l = \{\operatorname{St}^{22}(U, \mathscr{U}_{j+1}): U \in \mathscr{U}_j^l \}$ and $\mathscr{V}_j = \bigcup_{i=1}^{\omega} \mathscr{V}_j^l$. For a subset A of X and $k \in N \cup \{0\}$, we put

$$T^{0}(A, i, j) = \operatorname{St}(A, \mathcal{V}_{j}^{i}),$$

 $T^k(A,i,j) = \operatorname{St}(T^{k-1}(A,i,j), \mathcal{V}^l_{j+k}) \text{ for } k \geqslant 1, \text{ and}$ $T(A,i,j) = \bigcup_{k=0}^{\infty} T^k(A,i,j).$

Furthermore, for $q = 2^{-m_1} + ... + 2^{-m_t} \in Q^*$ and $A \subset X$, we put

$$S(A, i, q) = \begin{cases} T(A, i, m_1 + 1), & \text{if } t = 1, \\ T(St(S(A, i, q'), \mathscr{V}_{m_t}), i, m_t), & \text{if } t > 1, \end{cases}$$

where $q' = 2^{-m_1} + ... + 2^{-m_{t-1}} = q - 2^{-m_t}$.

For each $i \in N$, we put $\mathcal{S}^{t}(q) = \{S(U, i, q): U \in \mathcal{U}_{m_1}^{t}\}$ and $\mathcal{S}(q) = \bigcup_{i=1}^{\infty} \mathcal{S}^{t}(q)$. The proofs of (i)-(v) are quite similar to the finite dimensional case (see [13; Ch. V, § 3, (c)]). To prove (vi), let $S \in \bigcup \{\mathcal{S}^{t}(q): i > n(n+1)\}$ and S = S(U, i, q)

The proof of (i) (i) are quite similar to the initite dimensional case (see [13; Ch. V, § 3, (e)]). To prove (vi), let $S \in \bigcup \{\mathscr{S}^l(q): i > n(n+1)\}$ and S = S(U, i, q) for some $U \in \mathscr{U}_m^l$, where $q = 2^{-m_1} + \dots + 2^{-m_t} \in Q^*$. Assume that $S \cap K_n \neq \emptyset$. There is a finite sequence $\sigma_1, \sigma_2, \dots, \sigma_r, r \leq t$, of families of open sets of X such that

$$\begin{split} \sigma_1 &= \left\{ U, S_{11}, S_{12}, \ldots \right\}, \\ \sigma_2 &= \left\{ V_2, S_{20}, S_{21}, \ldots \right\}, \\ \cdots \\ \sigma_r &= \left\{ V_r, S_{r0}, S_{r1}, \ldots \right\}, \end{split}$$

where $V_j \in \mathscr{V}_{m_j}$ for $j=2,\ldots,r$, $S_{j_u} \in \mathscr{V}_{m_j+u}^1$ or $S_{j_u} = \varnothing$ for $j=1,\ldots,r$ and $u \in N$, each nonempty member of a sequence meets its nonempty successor in the same sequence, $V_{j+1} \cap \sigma_j^{\sharp} \neq \varnothing$ and $\sigma_r^{\sharp} \cap K_n \neq \varnothing$. It is not difficult to see that there is a $W \in \mathscr{U}_{m_1+1}$ such that $\operatorname{St}^5(W, \mathscr{U}_{m_1+1}) \cap U \neq \varnothing$ and $\operatorname{St}^5(W, \mathscr{U}_{m_1+1}) \cap K_n \neq \varnothing$. Put $W^* = \operatorname{St}^{22}(W, \mathscr{U}_{m_1+1})$. Then $W^* \in [\mathscr{U}_{m_1+1}]^{22}$, $W^* \cap K_n \neq \varnothing$ and $W^* \cap U \neq \varnothing$. Since $i > n(n+1) > n^2$, by (15), $W^* \cap \mathscr{U}_{m_1}^{i\#} = \varnothing$ and hence $W^* \cap U = \varnothing$. This is a contradiction. In a similar fashion, we can prove that $S \cap \overline{V}_n = \varnothing$. This completes the proof of the lemma.

We continue the proof of the implication (a) \rightarrow (c) of Theorem 1.4. Let $\mathcal{S}(q)$, $q \in \mathbb{Q}^*$, be the open covers of X described in Lemma 1.6. We define a function $\varrho \colon X \times X \rightarrow [0, 1]$ as follows:

For $x, y \in X$,

$$\varrho(x,y) = \begin{cases} 1, & \text{if } y \notin \operatorname{St}(x, \mathcal{S}(q)) \text{ for every } q \in Q^*, \\ \inf\{q \colon q \in Q^* \text{ and } y \in \operatorname{St}(x, \mathcal{S}(q))\}, & \text{otherwise.} \end{cases}$$

It follows that ϱ is an admissible metric for X (cf., the proof of [13; Ch. V. § 3, (D)]). To prove that ϱ satisfies the condition (1), let F be a closed discrete subset of X. Since K is compact, there is an $n_1 \in N$ such that $F \cap K \subset K_{n_1}$. On the other hand, there is an $n_2 \in N$ such that $F - K \subset V_{n_2}$. Put $n_0 = \max\{i_1, n_2\}$ and $n(F) = n_0(n_0+1)-1$. Let x be a point of F and $y_1, ..., y_{n(F)+2}$ be points of X. We can assume that $\varrho(x, y_j) < 1$ for each j = 1, ..., n(F) + 2. Let $\varepsilon > 0$. For each j = 1, ..., n(F) + 2, there is a $\varrho(j) \in Q^*$ such that $\varrho(x, y_j) < \varrho(j) < \varrho(x, y_j) + \varepsilon$. Then, by 3 - Fundamenta Mathematicae 126. 2

the definition of ϱ , there is an $S_j \in \mathcal{S}(q(j))$ such that $x, y_j \in S_j$. Let $S_j \in \mathcal{S}^{l(l)}(q(j))$. Then, by (vi) of Lemma 1.6, there are distinct natural numbers j and k such that i(j) = i(k). Assume that $q(j) \leq q(k)$. By (iv) of Lemma 1.6, we obtain $S_j \subset S_k$. Hence $y_j, y_k \in S_k$ and hence $\varrho(y_j, y_k) \leq q(k) < \varrho(x, y_k) + \varepsilon$. Therefore, there are distinct natural numbers j and k such that $\varrho(y_j, y_k) < \varrho(x, y_k) + 1/n$ for each $n \in N$ and hence $\varrho(y_j, y_k) \leq \varrho(x, y_k)$. This completes the proof of the implication (a) \rightarrow (c) of Theorem 1.4. Finally, we prove the implication (a) \rightarrow (b) of Theorem 1.4. We use the above notations. By Lemma 1.5, there is a sequence $\mathscr{U}_1, \mathscr{U}_2, \ldots$, of open covers of X which satisfies the conditions (1) and (2) of the proof of Theorem 1.1 and the following condition:

(16) For each $m \in \mathbb{N}$, $\operatorname{St}^2(x, \mathcal{U}_{m+1}^*)$ meets at most n^2 members of \mathcal{U}_m if $x \in K_n$ and $\operatorname{St}^2(x, \mathcal{U}_{m+1}^*)$ meets at most n(n+1) members of \mathcal{U}_m if $x \in \overline{V}_n$.

Then, by the similar arguments to the proof of Theorem 1.1, we can obtain the desired metric ϱ . This completes the proof of Theorem 1.4.

- 2. Further considerations of $(0)_n$, $(1)_n$ and $(2)_n$ and Nagata's questions. In [11], J. Nagata also considered the following conditions which are the modifications of $(1)_n$ and $(2)_n$:
- (1)_{∞} For every point x of X and every sequence $y_1, y_2, ...,$ of points of X, there are distinct natural numbers i and j such that $\varrho(y_i, y_j) \leq \varrho(x, y_j)$.
- $(2)_{\omega}$ For every point x of X and every sequence $y_1, y_2, ...,$ of points of X, there are natural numbers i, j and k such that $i \neq j$ and $\varrho(y_i, y_j) \leq \varrho(x, y_k)$.

He proved that for every metrizable space X, there is an admissible metric ϱ for X which satisfies the condition $(2)_{\omega}$ ([11]; Theorem 4) and raised the following question.

2.1. Question ([11; Question 2]). Is it possible to introduce a metric ϱ satisfying the condition (1), into every metrizable space X?

We partially answer this question as follows:

- 2.2. THEOREM. Every metrizable space X admits a metric ϱ satisfying the following condition:
- (*) For every point x of X and every sequence $y_1, y_2, ...,$ of points of X such that $\{i: i \in N \text{ and } \varrho(x, y_i) \ge \delta\}$ is infinite for some $\delta > 0$, there are distinct natural numbers i and j such that $\varrho(y_i, y_j) \le \varrho(x, y_j)$.

Proof. Our metric ϱ is the same metric as J. Nagata defined in the proof of [11; Theorem 4]. We outline the construction of ϱ for the convenience of the reader. Let $\mathcal{U}_1, \mathcal{U}_2, ...$, be a sequence of open covers of X such that

- (1) $[\mathcal{U}_{n+1}]^2$ refines \mathcal{U}_n for each $n \in \mathbb{N}$,
- (2) $\{St(x, \mathcal{U}_n): n \in N\}$ is a neighborhood base at $x \in X$, and
- (3) $\operatorname{St}^2(x, \mathcal{U}_{n+1}^*)$ meets at most finitely many members of \mathcal{U}_n for each $x \in X$ and each $n \in N$.

For each $q=2^{-m_1}+...+2^{-m_t}\in Q^*$ and $U\in \mathcal{U}_{m_1}$, we put $S(U;\,m_1)\,=\,U,$ $S(U;\,m_1,...,\,m_k)\,=\,\mathrm{St}^2\big(S(U;\,m_1,\,...,\,m_{k-1})\,,\,\mathcal{U}_{m_k}\big)\quad\text{for }2\leqslant k\leqslant t\,,$ $S(U;\,q)\,=\,S(U;\,m_1,\,...,\,m_k)$

and

$$\mathcal{S}(q) = \left\{ S(U; q) \colon \ U \in \mathcal{U}_{m_1} \right\}.$$

Define a function $\varrho: X \times X \to [0, 1]$ as follows: For $x, y \in X$,

$$\varrho(x,y) = \begin{cases} 1, & \text{if } y \notin \operatorname{St}(x, \mathcal{S}(q)) \text{ for every } q \in Q^*, \\ \inf\{q \colon q \in Q^* \text{ and } y \in \operatorname{St}(x, \mathcal{S}(q))\}, & \text{otherwise.} \end{cases}$$

It follows that ϱ is an admissible metric for X (cf., the proof of [3; Theorem]). It suffices to show that ϱ satisfies the condition (*). Let

$$M = \{i: i \in N \text{ and } \varrho(x, y_i) \geqslant \delta\}$$

and $i \in M$. We can suppose that $0 < \varrho(x, y_i) < 1$ for each $i \in M$. Let

$$\varrho(x, y_i) = \begin{cases} 2^{-m_1(i)} + \dots + 2^{-m_{\epsilon(t)}(i)}, & \text{if } \varrho(x, y_i) \in Q^*, \\ 2^{-m_1(i)} + 2^{-m_2(i)} + \dots, & \text{otherwise,} \end{cases}$$

where $m_s(i)$, $s \in N$, are natural numbers satisfying $1 \le m_1(i) < m_2(i) < ...$

Since M is infinite, there is an $m \in N$ such that $M_1 = \{i: i \in M \text{ and } m_1(i) = m\}$ is infinite. For each $i \in M_1$ and $n \in N$, there are a $q(i, n) \in Q^*$ and a $U(i, n) \in \mathcal{U}_m$ such that

- (4) $\varrho(x, y_i) < q(i, n) < \varrho(x, y_i) + 1/n \text{ and } q(i, n+1) \le q(i, n),$
- (5) q(i, n) = q(j, n) if $\varrho(x, y_i) = \varrho(x, y_j)$ and q(i, n) < q(j, n) if $\varrho(x, y_i) < \varrho(x, y_i)$.
- (6) S(U(i,n); q(i,n)) contains both x and y_i for each $n \in N$. It is easy to see that $S(U; q) \subset St(U, \mathcal{U}_{m_1+1}^*)$ for every $q = 2^{-m_1} + ... + 2^{-m_t} \in \mathcal{Q}^*$ and $U \in \mathcal{U}_{m_1}$. Hence, by (6), $x \in St(U(i,n), \mathcal{U}_{m+1}^*)$ and hence $St(x, \mathcal{U}_{m+1}^*) \cap U(i,n) \neq \emptyset$. Therefore, by (3), there is a $U(i) \in \mathcal{U}_m$ such that $\{n: n \in N \text{ and } U(i) = U(i,n)\}$ is infinite. It should be noticed that S(U(i); q(i,n)) contains both x and y_i for all $n \in \mathbb{N}$. Since $St(x, \mathcal{U}_{m+1}^*) \cap U(i) \neq \emptyset$ and M_1 is infinite, by (3), there is a $U \in \mathcal{U}_m$ such that $\{i: i \in M_1 \text{ and } U = U(i)\}$ is infinite. Hence there are distinct natural numbers i and j such that U(i) = U(j) = U. Assume that $\varrho(x, y_i) \leq \varrho(x, y_j)$. It is sufficient to consider only the following two cases; case (1); both $\varrho(x, y_i)$ and $\varrho(x, y_j)$ are the members of Q^* and case (2); neither $\varrho(x, y_i)$ nor $\varrho(x, y_j)$ is a member of Q^* . First, we consider case (1). If $\varrho(x, y_i) = \varrho(x, y_j)$, then, by (5), $y_i, y_j \in S(U; q(i,n)) = S(U; q(j,n))$ for all $n \in \mathbb{N}$. Therefore, $\varrho(y_i, y_j) \leq \varrho(x, y_j)$ and $\varrho(x, y_j) + 1/n$ for all $n \in \mathbb{N}$. Thus $\varrho(y_i, y_j) \leq \varrho(x, y_j)$. Let $\varrho(x, y_i) < \varrho(x, y_j)$ and $\varrho(x, y_i) = \varrho(x, y_i) > 0$. For each $n \in \mathbb{N}$ with $1/n < \varepsilon$, $q(i, n) < \varrho(x, y_i) + 1/n$

 $<\varrho(x,y_j)< q(j,n)$. Thus $y_i\in S(U;\ q(i,n))\subset S(U;\ q(j,n))$ and hence $\varrho(y_i,y_j)\leqslant q(j,n)<\varrho(x,y_j)+1/n$ for every $n\in N$ with $1/n<\varepsilon$. Therefore, it follows that $\varrho(y_i,y_j)\leqslant \varrho(x,y_j)$. In a similar fashion, it can be seen that $\varrho(y_i,y_j)\leqslant \varrho(x,y_j)$ holds for the case (2). Hence, the theorem is proved.

2.3. Remark. The implication $(1)_{\omega} \to (*) \to (2)_{\omega}$ obviously holds. Therefore, our result is stronger than [11; Theorem 4].

Now, we consider the following condition which is a modification of (0),

 $(0)_{\omega}$ For every $\varepsilon > 0$, every point x of X and every sequence $y_1, y_2, ...$, of points of X with $\varrho(S_{\varepsilon/2}(x), y_i) < \varepsilon$ for each $i \in N$, there are distinct natural numbers i and j such that $\varrho(y_i, y_i) < \varepsilon$.

We can also show that the condition $(0)_{\omega}$ does not induce any topological property.

2.4. THEOREM. Every metrizable space X admits a metric ϱ satisfying the condition $(0)_{\omega}$.

Proof. The proof is similar to that of Theorem 1.1. Hence we describe a sketch of the proof. Let $\mathcal{U}_1, \mathcal{U}_2, \ldots$, be a sequence of open covers of X satisfying the condition (1) and (2) described in the proof of Theorem 1.1 and

(7) $\operatorname{St}^2(x, \mathcal{U}_{m+1}^*)$ meets at most finitely many members of \mathcal{U}_m for each $m \in N$ and $x \in X$,

Define a function $\varrho \colon X \times X \to [0,1]$ as the same way in the proof of Theorem 1.1, but this time we use the above sequence $\mathscr{U}_1, \mathscr{U}_2, ...$, of open covers of X. Then we can obtain the desired metric.

- In [12], J. Nagata asked whether it is possible to introduce a metric into a given metrizable space X such that for each $n \in \mathbb{N}$, $\mathcal{B}_n = \{S_{1/n}(x): x \in X_n\}$ is locally finite in X for some $X_n \subset X$ and $\bigcup \{\mathcal{B}_n: n \in \mathbb{N}\}$ is a base for X. As a corollary to Theorem 2.4, we can answer this question affirmatively.
- 2.5. COROLLARY. Every metrizable space X admits a metric ϱ such that for each e > 0, there is a subset X_e of X such that $\mathcal{B}_e = \{S_e(x): x \in X_e\}$ is a locally finite open cover of X. Therefore, $\bigcup \{\mathcal{B}_{1|n}: n \in N\}$ is a base for X.

Proof. Let ϱ be an admissible metric for X which satisfies the condition $(0)_{\omega}$ and $\varepsilon > 0$. Let X_{ε} be the maximal subset of X such that $\varrho(x,y) \geqslant \varepsilon$ whenever $x,y \in X_{\varepsilon}$ with $x \neq y$. By the maximality of X_{ε} , it follows that $\mathscr{B}_{\varepsilon} = \{S_{\varepsilon}(x) \colon x \in X_{\varepsilon}\}$ is a cover of X. On the other hand, by the condition $(0)_{\omega}$, it follows that $S_{\varepsilon/2}(y)$ meets at most finitely many members of $\mathscr{B}_{\varepsilon}$ for each point y of X. Hence $\mathscr{B}_{\varepsilon}$ is locally finite in X. This completes the proof.

- 3. A characterization of a strongly metrizable space. In this section, we characterize a strongly metrizable space by a special metric. We begin with the definition.
- 3.1. DEFINITION. A collection $\mathscr U$ of a set X is called *star-finite* if U meets at most finitely many members of $\mathscr U$ for each $U \in \mathscr U$. A regular space X is said to be

It is well known that every separable metrizable space is strongly metrizable and the equality $\operatorname{ind} X = \operatorname{Ind} X$ holds for every strongly metrizable space X. Further properties of a strongly metrizable space appear in [15].

3.2. Lemma. Let X be a strongly metrizable space. Then there is a sequence $\mathscr{U}_1, \mathscr{U}_2, ...,$ of star-finite open covers of X such that $[\mathscr{U}_{n+1}]^2$ refines \mathscr{U}_n for each $n \in \mathbb{N}$ and $\{\operatorname{St}(x, \mathscr{U}_n): n \in \mathbb{N}\}$ is a neighborhood base at $x \in X$.

Proof. We can assume that X is a subspace of $B(\tau) \times I^{\omega}$ for some infinite cardinal τ , where $B(\tau)$ is a Baire space of weight τ and I^{ω} is the Hilbert cube (see [15; Proposition 2.3.27]). Since $B(\tau) \times I^{\omega}$ is strongly paracompact, there is a sequence $\mathscr{V}_1, \mathscr{V}_2, \ldots$, of star-finite open covers of $B(\tau) \times I^{\omega}$ such that $[\mathscr{V}_{n+1}]^2$ refines \mathscr{V}_n for each $n \in N$ and $\{\operatorname{St}(y, \mathscr{V}_n): n \in N\}$ is a neighborhood base at $y \in B(\tau) \times I^{\omega}$. Put $\mathscr{U}_n = \{V \cap X: V \in \mathscr{V}_n\}$ for each $n \in N$. It is easy to see that the sequence $\mathscr{U}_1, \mathscr{U}_2, \ldots$, is the desired one.

- 3.3. THEOREM. A metrizable space X is strongly metrizable if and only if X admits a metric ϱ satisfying the following condition:
- (#) For every $\varepsilon > 0$, every point x of X and every sequence $y_1, y_2, ...,$ of points of X with $\varrho(S_{\varepsilon}(x), y_i) < \varepsilon$ for each $i \in N$, there are distinct natural numbers i and j such that $\varrho(y_i, y_j) < \varepsilon$.

Proof. Let ϱ be an admissible metric for X which satisfies the condition (#). For each $\varepsilon > 0$, let X_{ε} be the maximal subset of X such that $\varrho(x,y) > \varepsilon$ whenever $x,y \in X$ with $x \neq y$. By the maximality of X_{ε} , it follows that $\mathscr{B}_{\varepsilon} = \{S_{\varepsilon}(x): x \in X_{\varepsilon}\}$ is a cover of X. On the other hand, by the condition (#), we can see that $\mathscr{B}_{\varepsilon}$ is star-finite. Hence $\mathscr{B} = \bigcup \{\mathscr{B}_{1/n}: n \in N\}$ is a base for X which is the union of countably many star-finite open covers of X and hence X is strongly metrizable. Conversely, let X be a strongly metrizable space and $\mathscr{U}_1, \mathscr{U}_2, \ldots$, a sequence of star-finite open covers of X constructed in Lemma 3.2. It is easy to see that

(1) $\operatorname{St}^2(x, \mathscr{U}^*_{n+1})$ meets at most finitely many members of \mathscr{U}_n for each $x \in X$ and each $n \in N$.

For each $q=2^{-m_1}+\ldots+2^{-m_t}\in Q^*$ and each $U\in\mathcal{U}_{m_1}$, we put $S(U;m_1)=U$

$$S(U; m_1, ..., m_k) = St^2(S(U; m_1, ..., m_{k-1}), \mathcal{U}_{m_k})$$
 for $2 \le k \le t$,

$$S(U; q) = S(U; m_1, ..., m_l), \text{ and } \mathscr{S}(q) = \{S(U; q): U \in \mathscr{U}_{m_l}\}.$$

Let us notice the following:

(2) Let $p=2^{-m_1}+\ldots+2^{-m_e}\in Q^*$, $q=2^{-n_1}+\ldots+2^{-n_e}\in Q^*$ and p< q. Then $\mathcal{S}(p)$ refines $\mathcal{S}(q)$. Furthermore, if $m_1=n_1$, then $S(U;\ p)\subset S(U;\ q)$ for each $U\in \mathcal{U}_{m_1}$.

Define a function $\varrho: X \times X \to [0, 1]$ as follows: For $x, y \in X$,

$$\varrho(x,y) = \begin{cases} 1, & \text{if } y \notin \operatorname{St}(x,\mathscr{S}(q)) \text{ for every } q \in Q^*, \\ \inf\{q\colon q \in Q^* \text{ and } y \in \operatorname{St}(x,\mathscr{S}(q))\}, & \text{otherwise.} \end{cases}$$

Then, ϱ is an admissible metric for X. To prove that ϱ satisfies the condition (#), let $\varepsilon > 0$, $x, y_1, y_2, \ldots \in X$ with $\varrho(S_\varepsilon(x), y_i) < \varepsilon$ for each $i \in N$. For each $i \in N$, let x_i be a point of X such that $\varrho(x, x_i) < \varepsilon$ and $\varrho(x_i, y_i) < \varepsilon$. Put $\delta_i = \max\{\varrho(x, x_i), \varrho(x_i, y_i)\}$. We can assume that $\varepsilon/4 \le \delta_i < \varepsilon$. For each $i \in N$, let $q_i = 2^{-m_1(i)} + \ldots + 2^{-m_{\varepsilon(i)}(i)} \in \mathcal{Q}^*$ such that $\delta_i < q_i < \varepsilon$. Since $\varrho(x, x_i) < q_i$ and $\varrho(x_i, y_i) < q_i$, there are $V_i \in \mathcal{U}_{m_1(i)}$ and $U_i \in \mathcal{U}_{m_1(i)}$ such that $x, x_1 \in S(V_i; q_i)$ and $x_i, y_i \in S(U_i; q_i)$. Since $\varepsilon/4 \le q_i$ for each $i \in N$, there is an $m_0 \in N$ such that $M_1 = \{i : i \in N \text{ and } m_1(i) = m_0\}$ is infinite. For each $i \in M_1$, $x \in S(V_i; q_i) \subset St(V_i, \mathcal{U}_{m_0})$ and $x_i \in S(V_i; q_i) \cap S(U_i; q_i) \subset St(V_i, \mathcal{U}_{m_0}) \cap St(U_i, \mathcal{U}_{m_0})$. Hence $U_i \cap St^2(x, \mathcal{U}_{m_0}^*) \ne \emptyset$. By (1), there is a $U_0 \in \mathcal{U}_{m_0}$ such that $M_2 = \{i : i \in M_1 \text{ and } U_i = U_0\}$ is infinite. Let i and j be members of M_2 such that $i \ne j$. Suppose that $q_i \le q_j$. It is obvious that $y_j \in S(U_j; q_j) \in \mathcal{S}(q_j)$. On the other hand, by (2), $y_i \in S(U_i; q_i) \subset S(U_i; q_i) \in S(U_i; q_i) \in S(U_i; q_i)$ and hence $\varrho(y_i, y_j) \le q_j < \varepsilon$. This completes the proof of Theorem 3.3.

References

- [1] P. Assouad, Sur la distance de Nagata, C. R. Acad. Paris 294 (1982), 31-34.
- [2] P. Borst, Infinite dimension theory, Part II, manuscript, (1981).
- [3] S. Buzási, Nagata's metric for uniformities, Publications Math., Debrecen 26 (1979), 91-94.
- [4] R. Engelking, Transfinite dimension, Surveys in General Topology, Academic Press, New York (1980), 131-161.
- [5] J. de Groot, On a metric that characterizes dimension, Canad. J. Math. 9 (1957), 511-514.
- [6] Y. Hattori, On spaces related to strongly countable dimensional spaces, Math. Japonica 28 (1983), 583-593.
- [7] Characterizations of certain classes of infinite dimensional spaces, Topology Appl. 20 (1985), 97-106.
- [8] J. Nagata, Note on dimension theory for metric spaces, Fund. Math. 45 (1958), 143-181.
- [9] On a special metric characterizing a metric space of dim ≤ n, Proc. Japan Acad. 39 (1963), 278-282.
- [10] On a special metric and dimension, Fund. Math. 55 (1964), 181-194.
- [11] Topics in dimension theory, General Topology and its Relations to Modern Analysis and Algebra (Proc. Fifth Prague Topology Symposium 1981), Heldermann Verlag, Berlin (1982), 497-506.
- [12] A survey of special metrics, General Topology Symposium, Okayama University, 1982, 36-45.
- [13] Modern Dimension Theory, revised and extended edition, Heldermann Verlag, Berlin (1983).
- [14] P. A. Ostrand, A conjecture of J. Nagata on dimension and metrization, Bull. Amer. Math. Soc. 71 (1965), 623-625.

- [15] A. R. Pears, Dimension Theory of General Spaces, Cambridge Univ. Press, Cambridge (1975).
- [16] E. Pol, The Baire-category method in some compact extension problems, preprint.
- [17] L. Polkowski, Remarks on transfinite dimension, Colloq. Math. (to appear).

DEPARTMENT OF MATHEMATICS OSAKA KYOIKU UNIVERSITY Tennoji, Osaka, 543 Japan

Received 24 July 1984