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Dedicated to Professor Tan-iti Nagata on his 60th birthday

Abstract. We shall discuss the characterizations of certain classes of infinite dimensional
metrizable spaces by a special metric and consider the questions concerning special metrics raised
by J. Nagata. A characterization of a strongly metrizable space is also obtained.

0. Introduction. Tt is an interesting problem to characterize a topological
property of a metrizable space by means of a special metric. In dimension theory,
the following theorem is already known.

TueoreM A. For @ metrizable space X, the following conditions are equivalent:

(a) dimX<n.

(b) X admits a metric ¢ satisfying the following condition:

(0Q), For every >0, every point x of X and every n+2 many points yi, .., Yu+2
of X with Q(S,,z(x), y)<e for each i=1,..,n+2, there are distinct
natural numbers. i and j such that o(y;, ¥;) <&

(©) X admits a metric o satisfying the following condition:

(1), For every point x of X and every n+2 many points yy, ... Vi of X, there
are distinct natural numbers i and j such that o(y;, y,) < o(x, ¥))-

The equivalence of (a) and (b) of the above theorem was proved by J. Nagata [8]
and simpler proofs were given by S. Buzasi [3] and P. Assouad [1]: The equivalence
of (a) and (c) of the theorem was proved by J. Nagata [9], [10] and P. A. Ostrand
[14] independently. For the case of the separable metrizable spaces, the following
theorem was obtained by J. de Groot in [5].

Tueorem B. A separable metrizable space X has dimX<n if and only if X
admits a totally bounded metric ¢ satisfying the following condition:

(2), For every point x of X and every n+2 many points ¥y, ..., ¥u+z of X, there

are natural numbers i, j and k such that i # j and ¢(y;, y)) <o (x, yi)-

In [11], J. Nagata posed the problem: Extend Theorems A and B to infinite
dimensional spaces. He partially solve this problem as follows:

Tueorem C. For a metrizable space X, the following conditions are equivalent:

(8) X is strongly countable-dimensional.
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(b) X admits a metric ¢ satisfying the following condition:

(1) For every point x of X, there is a natural nmumber n(x) such that for every
n(x)+2 many points 1, v, Ynexy+2 o X, there are distinct natural numbers
i and j such that (v, ;) <o(x,yy)-

(¢) X admits a metric ¢ satisfying the following condition:

(2)o, For every point x of X, there is a natural number n(x) such that for every
n(x)+2 many points y1, ..., Vuy+2 0 X, there are natural numbers i, j and k
such that i # j and ¢(y;, y;) < 0 (%, ya)-

In Section 1, we extend the above theorems to metrizable spaces that have
both large transfinite dimension Ind and strong small transfinite dimension sind,
Further modifications of (0),, (1), and (2), are discussed in Section 2. In Section 3,
we characterize a strongly metrizable space by a special metric.

For a collection % of subscts of a set X, we denote #* = |} {U: UVea.
Furthermore, for a natural number n, [#]' = %* = {St(U,%): Ue U} and
[#)"*! = ([#]")*. Let N denote the set of all natural numbers and Q* denote the
set of -all rational numbers of the form 27™+..+27™, where my, ..., m, are
natural numbers satisfying 1 <my <...<m,. We refer the readers to [4] and [13]
for un-defined terminology and basic results on dimension and infinite dimension
theory.

The author wishes to express his thanks to Prof. J. Nagata for his valuable
advices.

1. Characterizations of classes of infinite dimensional spaces. In this section,
we consider the characterizations of two classes of infinite dimensional spaces.
First, we characterize the class of strongly countable-dimensional spaces by ex-
tending the condition (0),.

1.1. THEOREM. A metrizable space X is strongly countable-dimensional if and
only if X admits a metric ¢ satisfying the following condition:

(0)o, For cvery point x of X, there is an n(x) € N such that for every >0 and
every n(x)+2 many points Yy, . Vamyez o X with (Syz(x),y))<e for each
= 1,..,n(x)+2, there are distinct natural numbers i and j such that ey, yp <e.

Proof. Let g be an admissible metric for X satisfying the condition (0),. For
each point x of X, let n(x) be the minimal number satisfying the condition (0),.
For each ne N, we put F, = {x e X: n(x) <n}. It is easy to see that each F, is
a closed set of X and X = |) {F,: ne N}. By Theorem A, it follows that dimF, < n
for each ne N. Hence X is strongly countable-dimensional, Conversely, let X be
a strongly countable-dimensional space. Let X = () {F,: ne N}, where F, is a closed
set of X such that dimF,<» and F, < F,, for each ne N. By [11; Lemma 1],
we can obtain a sequence %, %,, ..., of open covers of X which satisfies the follow~
ing conditions:

(1) [@41)* refines %, for each me N.

@ {St(x, %,): meN} is a neighborhood base at x& X.
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(3) For each x e F, and each me N, St*(x, %}, ,) meets at most n(z+1)/2

members of %,,.
" For each g = 27™+ ... +27™e @* and each Ue%,,, we put

SU;my) = U,

S(U; myy ooy M) = S(S(U;s 1y, ooy Mey), Up) for 2<k <1,

S(U; q) = S(U; my, ...y my)
and

y(q) = {S(U: q): UE %ml} N

We define a function g: Xx X — [0, 1] as follows:
For x,y€ X,

1, if y¢St(x, #(g)) for every ge 0¥,
elx,y) = {inf{q € Q*:yeSt(x, #(g)}, otherwise.

1t follows that g is an admissible metric for X (see the proof of [3; Theorem]). To
prove that g satisfies the condition (0),, for each point x of X, let n be the minimal
number with x€ F, and n(x) = n(n+1)/2—1. Let £>0 and yy, ., Vuyr2 € X
with @(Sy2(x),»;)<e for each i=1,...,n(x)+2. For each i=1,..,n(x)+2,
let x; be a point of X such that g(x, x;) <e/2 and ¢(x;, ;) <e. Put
8, = max{2(x, x;), 0 (x;, )}

and § = max{d,;: i = 1,...,n(x)+2}. Then there is a ¢ =2"™+ .42 ™ e Q*
such that 6 <g <e. Since (¥, x) <2™™* V4 +27™*D), there is a V& U4y
such that x, x,e S(V;; my+1, ..., m+1). Hence x; e St(x, %%, +,). On the other
hand, there is a U;e%,, such that x;,y;eS(U,;my,...,m). Therefore
St(x;, Um,+1) N U; # & and hence St2(x, Up 1) 0 U; # @. By (3), there are
distinct natural numbers 7 and j such that U; = U;. Then y;, y; € S(U;; my, ..., m;)
= S(U;; my, ..., m;). Therefore, ¢(y;, ;) <qg<e. This completes the proof.

Now, we extend Theorems A and B to another class of infinite dimensional
spaces. We notice that for each ordinal number o, we can put o = A(x)+n(c),
where A(«) is a limit ordinal number or 0 and n(«) is a non-negative integer.

1.2. DEAINITION ([2]). For a normal space X and a nonnegative integer n,
we put P,(X) = | {U: Uis an open subspace of X such that IndU <n}. Let X be
a normal space and o either an ordinal number >0 or the integer — 1. Then strong
small transfinite dimension sind of X is defined as follows:

(sil) sind X = —1 if and only if X = 0.

(si2) sind X<« if X is expressed in the form X = U {Py: £<a}, where
Py=Pyg(X~U {Py: n<i@P.

Furthermore, if sind X is defined, we say that X has strong small transfinite di-
mension. ‘

Spaces that have strong small transfinite dimension are studied by P. Borst [2]
and the author [6]. It should be noticed that L. Polkowski [17] introduced and
discussed the similar class of spaces which are called small spaces. Recall from [16]
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that a normal space X satisfies the condition (K) if there is a compact subset X of X
such that ITnd’F < oo for every closed subset F of X which does not meet K.

1.3. Lemma ([7; Propositions 2.2 and 2.3]). For a metrizable space X, the fol-

lowing conditions are equivalent:

(8) X has both large transfinite dimension Ind and strong smadl transfinite di-
mension sind.

(b) X is a strongly countabl o-dimensional space satisfying the condition (K),

(©) X is a strongly countable-dimensional space which contains no discrete fumily
{U,: ne N} of open sets of X such that dim U, >n for each neN.

1.4, THEOREM. For a metrizable space X, the following conditions are equivalent:
(2) X has both large transfinite dimension Ind and strong small transfinite di-
mension sind.
(b) X admits a metric o which satisfies the following condition:
(0)% For every closed discrete subspace F of X there is a natural mumber n(F)
such that for every &> 0, every point x of F every n(F)+2 many points
Pis o> Yuayrz Of X with o(Sya(x), v;)<e for each i =1,...,n(F)+2,
there are distinct natural numbers i and j such that o(y;, y)) <e.
(©) X admits a metric g which satisfies the following condition;
()% For every closed discrete subspace F of X, there is a natural number n(F)
such that for every point x of F and every n(F)+2 many points Yy, ...
o> Vagiye2.0f X, there are distinct natural numbers i and j such that ¢(y1, y))
< 4 (x ’ yj)‘ )
(d) X admits a metric ¢ which satisfies the following condition:
()% For every closed discrete subspace F of X, there is a natural number n(F)
such that for every point x of F and every n(F)-+2 many points yi, ..
s Va2 Of X, there are natural numbers i, j and k such that i # j and
e y)<alx, v
Proof. The implication (c) - (d) is obvious. To prove the implication (d) - (a),
Iet o be an admissible metric for X which satisfies the condition (2)%. Since ¢ satisfies
the condition (2),, by Theorem C, X is strongly countable-dimensional. Suppose
that X contains a discrete family {U,: n e N} of open sets of X such that dimU,>n
for ecach neN. By Theorem A, for each ne N, there are points x", i ..., W1
of T, such that o(y}, y7) > o(x", »}) for each i, j and k with 1 <i,/, k<n+1 and
i#j. Put F= {x": ne N}. Then Fis a closed disorete subspace of X and ¢ does
not satisfy the condition (2)% for F.  Hence, by Lemma 1.3, X has both large
transfinite dimension Ind and strong small transfinite dimension sind. In a similar
fashion, by use of Theorem 1.1 instead of Theorem A, we can prove the implication
(b)— (2). Now, we prove the implication (a)-»(c). The basic idea of the proof is
due to J. Nagata [11]. Let X be a metrizable space having both large transfinite
dimension Ind and strong small transfinite dimension sind. By Lemma 1.3, there
is a strongly countable-dimensional compact subspace K of X such that dim H < oo
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for every closed subspace H of X which does not meet K. Let X — G K,, where
ns
n=1 .

each K, be a closed set of X such that dimK, <n—1 and K,cK,, foreachne N.
Foreach ne N, we put ¥V, = X-S, (K). Then ¥, ne N, are open sets of X such
that X~K = U {V;: ne N}, ¥, = ¥,;, and dim¥, < co for each n e N. Further-
more, for every closed set H of X which does not meet K, there is an n e N such
that H < V,,. We can assume that dim ¥, <n—1 for each ne N, Now, we need the
following two lemmas.

1.5. LEMMA. For every open cover U of X, there are a sequence ¥y, ¥y, ... of
discrete families of open sets of X and an open cover W of X which satisfies the
Jollowing conditions: )

@) U{#w: meN} is a cover of X.

(ii) U {# w: me N} refines . :

(i) W meets at most one member of ¥y for k<n* and meets no member of ¥,
Jor k>n® for every We W with Wn K, # @.

(iv) W meets at most one member of ¥y, for k <n(n+1) and meets no member
of ¥y for k>n(n+1) for every Wew with WAV, + @.

Proof. Since dimK,< n—1 and dimV,<n—1, for each ne N, there are
families &}, #7, j = 1, ..., n, of open sets of X satisfying the following conditions:
@ &) and ] are discrete in X for every j =1, ..., 7. '

n

() K, ‘:jyl g;# cX—Vyy

n
© 7, CleifT’* < Vart-

(D U ¥} and | o] refine 2.
Jj=1 Jj=1
Let P, and Q, be open sets of X such that
®) K,cP,cP,c U ¥}*, and
J=1

n
©) V=08, Uas*
J=1
Put
n—1
{G—~ UP;: Ge®}), if m=n(m-1)+j,j<n,
(10) Vm = inln n—-1
{H=(UP.v Q) He )}, if m=n*4j, j<n.

Then ¥, is a discrete family of open sets of X and refines 4. It is easy to sce that
U {#w: meN} is a cover of X, For each point x of X, we put

if xek,

1) = {min{n: neN and xeK,}, o

min{n: neN and xe ¥},
There is an open neighborhood W(x) of x such that
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(A1) if x e K, then W(x) < Py~ Ky -1 and W(x) meets at most one member
of ¥, for every m< n(x)? and if x € X~ K, then W(x) € Qumy— V-1 and W(x)
. meets at most one member of ¥, for every m < n(x)*+n(x).
We put # = {W(x): xe X}. To prove the condition (iii), let W(x)e# and
W(x) n K, # . Then, by (), (9) and (11), it follows that x e K. Let us also notice
that n(x) <n. Let k>n(x)’. We consider the two cases:

Case 1; k = m(m—1)+j for some m, je leith Jj < m. Then it follows that

m
m>n(x). Hence, by (10), ¥ NP ¥ nlUlP, = g,
Case 2; k = m?+j for some m, j & N with j < m. Then, it follows that m > n(x).
m
Hence ¥ 0 Py ¥k o U Py = @. Therefore, by (11), ¥ r AW erdn
i=1

O Py = @ in either case. If k< n(x)?, then it is obvious that W(x) meets at most
one member of ¥, Hence the condition (iii) is satisfied.. In a similar fashion, we
can prove the condition (iv) and hence the lemma is proved.

1.6. LEMMA. For every g Q¥, there is an open cover &(q) which satisfies the

Jollowing conditions:
«©
@) £@ ='U Fq), where each '(q) is discrete in X.
=1
(i) {St(x, #(@)): g& Q*} is a neighborhood. base at x¢€ X.
(ili) Let p, g€ Q* and p < q. Then & (p) refines F{(q).
(v) Let p,qe Q* and p<g. If S; € & (p) and S,e F(q), then S, 0 S, =@
or S;=8S,.
(V) Let p,ge Q* and p+q<1. Let S, e #(p), S;€ F(g) and S, 0 Sy # .
Then there is an Sy € & (p+q) such that $; v S, = S3.
(vi) For every qe Q* and every SeU {#'(@): i>n@m+1)}, SnK, = @ and
Sn¥V,=60.
Proof. By use of Lemma 1.5, we can obtain a sequence of %, %y, ...,
open covers of X -which satisfies the following conditions:

(12) @; = \) %}, where each %} is discrete in X,
1=1

- (13) mesh%; = sup{diameter U: Ue 4;} <1/j for each je N.

(14) [%,4,)** refines %; for each je N.

(15) Let j<k and U* e [%]?% If U* n K, # O, then U* meets at most one
member of %) for i< n* and U* meets no member of %!, for i > n*. Furthermore,
if U*n V, # @, then U* meets at most one member of %‘, for i< n(n+1) and
meets no member of %} for i>n(n-+1).

L]
For i,je N, let ¥} = {St**(U, %;4.,): Ue ¥} and ¥, = | ¥7}. For a sub-
. i=1
set 4 of X and ke N u {0}, we put
T4, 1,/) = St(4d, ¥},
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THA, i,)) = SUT* Y4, 1,), ¥4, for k>1, and
T(4,1,)) = kgoT"(A, i,7).
Furthermore, for g = 27™+ ., +2™™¢e Q* and A< X, we put

S(A,i:4)=’{T(AJ:m1+1), ift‘—“l,
T(St(S(4, 1, 4'), ") 1, my), ift>1,

where q' = QUM )M g—2-me,
For each i< N, we put #(q) = {S(U, 1, 0): Uel} ad () = ) 9.
i=1

The proofs of (i)~(v) are quite similar to the finite dimensional case (see [13;
Ch. V, §3, (c)D- To prove (vi), let Se | {#(g): i> n(p+1)} and $ = S(U, i qS
for some- Ue 0?1,',“, where g = 27" 4. 427" O% Assume that §n K ;é,ei
There is a finite sequence oy, o,, ..., 0,, F < ¢, of families of open sets of X sugh thaé

01 = {U’ Sll: SJ.Z: ---} ’
Op = {VZv SZO: SZb "-} 3

0', = {Ifn Sro: Srls ...} ’

where Vy & 4%, for j = 2, ..., 7, S,,,e“/’,‘,,,w orSy, =@ forj=1,..,randue N,
cach nonempty member of a sequence meets its nonempty sucoessor in the same’
sequence, V., nof # @ and of N K, # @. It is not difficult to see that there
Isa Welp, .y such that SV, Uy 41) 0 U # B and SW, U 1y) 0 K, # .
Put W"" = St"*(W, Up,41). Then W*e [, , P2 W*AK, £ o and W"‘* AU
# @. Since i>n(n+1)>n? by (15), W* N2} = & and hence W* U = @.
This is a contradiction. In a similar fashion, we can prove that § A ¥, = @. This
completes the proof of the lemma. ’

We continue the proof of the implication (a) — (¢) of Theorem 1.4. Let £ (9),
ge Q% be the open covers of X described in Lemma 1.6. We define a function
0! XxX — [0, 1] as follows:

For x,ye X,

o{x, y) = {1’ if y ¢ 8t(x, &(q)) for every ge Q*,

inf{g: ge 0* and yeSt(x, #(2))}, otherwise.

It follows that g is an admissible metric for X (of., the proof of [13; Ch. V. § 3, (D).
T.° prove that g satisfies the condition (1)%, let F be a closed discrete subset of X.
Since K is compact, there is an n, & N such that ¥ n K< K,,. On the other hand,
thete is an n,e N such that F—Kc Vi Put ng = max{y,n,} and n(F)
= fig(ng+1)—1. Let x be a point of F and y,, ves Yueey+2 DO points of X, We can
assume that o(x, y;)< 1 for each j = 1, ..., n(F)+2. Let > 0. For each j = 1, ...
- 1(F)+2, there is a ¢(j) e Q* such that g(x, ¥)) <q(j) <e(x,y)+s. Then, by

3 ~ Fundamenta Mathematicae 120, 2
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the definition of g, there is an S; € &(g(J)) such that x, y; € 5. Let S; & #'D(g()).
Then, by (vi) of Lemma 1.6, there are distinct natural numbers j and k such that
i(j) = i(k). Assume that g(j) < g(k). By (iv) of Lemma 16, we obtain S; < S,.
Hence y;, ¥, €S, and hence o(y), yo) < q(k) <e(x, ) +2. Therefore, there are
distinct natural numbers j and k such that ¢(y;, yo) <e(x, y)+1/n for each ne N
and hence ¢(¥;, 1) < 0(x, ¥;). This completes the proof of the implication (&)~ (c)
of Theorem 1.4, Finally, we prove the implication (a) - (b) of Theorem 1.4. We
use the above notations. By Lemma 1.5, there is a sequence %;, %,, ..., of open
covers of ¥ which satisfies the conditions (1) and (2) of the proof of Theorem 1.1
and the following condition:

(16) For each m e N, St*(x, %%.1) meets at most n* members of %, if xe K,
and St3(x, %%, ,) meets at most n(n--1) members of %,, if xe V,.

Then, by the similar arguments to the proof of Theorem 1.1, we can obtain
the desired metric g. This completes the proof of Theorem 1.4.

2. Further considerations of (0),, (1), and (2), and Nagata’s questions. In [11],
J. Nagata also considered the following conditions which are the modifications
of (1), and (2),:

(1), For every point x of X and every sequence yy, ¥;, ..., of points of X;
there are distinct natural numbers i and 7 such that o(y;, ¥p) < a(x, ¥))-

(2), For every point x of X and every sequence yy, ¥y, ..., of points of X,
there are natural numbers #, j and k such that i # j and o(y;, ¥p) < @(x, yi)-

He proved that for every metrizable space X, there is an admissible metric ¢
for X which satisfies the condition (2),, ([11]; Theorem 4) and raised the following
question,

2.1. QuEsTioN ([11; Question 2]). Is it possible to introduce a metric ¢ satisfying
the condition (1), into every metrizable space X?

We partially answer this question as follows:

2.2, THEOREM. Every metrizable space X admits a metric ¢ satisfying the
Jollowing condition:

(%) For every point x of X and every sequence Yy, ¥i, ..., of points of X such
that {i: ie N and o(x,y,) 2 8} is infinite for some >0, there are distinct natural
numbers i and j such that o(y;, y) < 0(x, y)).

Proof. Our metric ¢ is the same metric as J. Nagata defined in the proof
of [11; Theorem 4]. We outline the construction of g for the convenience of the
reader. Let #,, %,, ..., be a sequence of open covers of X such that

(1) [%,41)* refines %, for each ne N,

@ {St(x, %,): ne N} is a neighborhood base at x e X, and

(3) St?(x, %}, ,) meets at most finitely many members of %, for each xe X
and each neN.
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For each ¢ =27™ 4 . 4+27™™ ¢ Q% and Ue Uwys We put
S(U; my) = U,
S(U; my, wovy 1) = S(S(U; my, oy my_y), U,,)  for 2<k <2,
SW; q) = SU; my, ..., my)
and
7 = {S(U; ) UeUp,}.

Define a function g¢: Xx X — [0, 1] as follows:
For x,ye X,

o(x, ) = {1, if y¢St(x, #(q)) for every ge Q%
? inf{g: ge 0% and yeSt(x, #(g))}, otherwise.

It follows that ¢ is an admissible metric for X (cf., the proof of [3; Theorem]). It
suffices to show that g satisfies the condition (). Let

M = {i:ieN and o(x,y;) =8}
and ie M. We can suppose that 0 <o(x, y)) <1 for each ie M. Let

if o(x,y)e 0%
otherwise ,

2—m1(i)+ " +2—m:m(l')’
o(x,y) = {z—mx(i)+2“m2(1)+ -

where my(i), s€ N, are natural numbers satisfying 1< m, () <my(i) <...

Since M is infinite, there is an m € N such that M, = {i: ie M and m;(i) = m}
is infinite. For each i€ M; and ne N, there are a q(i,n)e O* and a U(i, n) € Uy
such that

@ e(x,y)<qC,m) <e(x,y)+1/n and q(i,n+1)<q(i, n),

(%) 9G.m)=q(,m) if olx,y) =e(x,) and q(i,n)<q(,n) if o(*,»)
<e(x, ).

©) S(UG, n); 90, n)) contains both x and y; for each ne N.
It is easy to see that S(U; q) = St(U, ¥}, +,) for every g = 2™+ ... +27™e Q*
and U€ %,,,. Hence, by (6), x € St(U(1, n), %}..1) and hence St(x, Um+1) N U(I, n)
# . Therefore, by (3), there is a U(f) € %,, such that {n: ne N and U(@®) = U(i, )}
is infinite, It should be noticed that S(U(}); q(i, n)) contains both x and ¥
for all neN. Since St(x, %k.1) N U(i) # & and M, is infinite, by (3), there is
aUe,suchthat {i:ie M, and U= U('i)} is infinite. Hence there are distinct natural
numbers 7 and j such that U(i) = U(j) = U. Assume that o(x,y) <e(, y). It is
sufficient to consider only the following two cases; case (1); both g(x, ;) and
e(x, y;) are the members of Q* and case (2); neither g (x, y;) nor o(x, y;) is a member
of O First, we consider case (1). If o(x,¥) = e(x, ), then, by (5), »i, ¥,
€S(U;. q(i,m) = S(U; q(j,w) for all neN. Therefore, g(y,y)<q(,n)
<o(x,y)+1/n for all ne N. Thus g(¥;, ») <e(x,¥). Let e(%, y)<e(x,y) and
£=g(x,y)—o(x,y)>0, For each neN with l/n<e gq(,n)<e(x,y)+1l/n
kS
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<o(x,3) <q(j,n). Thus y,€S(U; ql,m)<=S(U; q(j,n) and hence o(y;, )
<q(j,my<eo(x, yp+1/n for every ne N with 1/n <e. Therefore, it follows that
ey y)<e(x,¥). In a similar fashion, it can be seen that o(y;, ) <a(x,y)
holds for the case (2). Hence, the theorem is proved.

2.3. Remark. The implication (1),, = (¥) = (2), obviously holds. Therefore,
our result is stronger than [11; Theorem 4].

Now, we consider the following condition which is a modification of (0),.

(0), For every e >0, every point x of X and every sequence y,, ¥,, ..., of points
of X with o(S,2(x), ¥;) < & for each i & N, there are distinct natural numbers 7 and j
such that g(y;, ») <e.

We can also show that the condition (0), does not induce any topological
property.

2.4. THEOREM. Every metrizable space X admits a metric o satisfying the con-
dition (0),,.

Proof. The proofis similar to that of Theorem 1.1. Hence we describe a sketch
of the proof. Let %y, %,, ..., be a sequence of open covers of X satisfying the
condition (1) and (2) described in the proof of Theorem 1.1 and

(T) S8t2(x, %p+4) meets at most finitely many members of %, for each me N
and xe X.

Define a function g: Xx X - [0,1] as the same way in the proof of Theo-
rem 1.1, but this time we use the above sequence %;, %, ..., of open covers of X.
Then we can obtain the desired metric.

In [12], J. Nagata asked whether it is possible to introduce a metric into
a given metrizable space X such that for each ne N, &, = {§),(x): x€ X,} is
locally finite in X for some X, = X and U {4,: ne N} is a base for X. As a corollary
to Theorem 2.4, we can answer this question affirmatively.

2.5. COROLLARY. Every metrizable space X admits @ metric @ such that for
each ¢> 0, there is a subset X, of X such that &, = {S(x): x € X} is a locally finite
open cover of X. Therefore, \) {#B,,: ne N} is a base for X.

Proof. Let ¢ be an admissible metric for X which satisfies the condition ©0),,
and £>0. Let X, be the maximal subset of X such that g(x,)) >& whenever
%,y € X, with x # y. By the maximality of X,, it follows that 8, = {Sx): xe X}
is a cover of X. On the other hand, by the condition (0),, it follows that Se2(Y)
meets at most finitely many members of 4, for each point y of X. Hence 4, is locally
finite in X. This completes the proof.

3. A characterization of a strongly metrizable space. In this section, we charac-
terize a strongly metrizable space by a special metric. We begin with the definition.
3.1. DEFINITION. A collection % of a set X is called star-finite if U meets at
most finitely many members of % for each Ue %. A regular space X is said to be
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strongly metrizable if X has a base which is the countable union of star-finite open
covers of X.

It is well known that every separable metrizable space is strongly metrizable
and the equality indX = Ind X holds for every strongly metrizable space X. Further
properties of a strongly metrizable space appear in [15].

3.2. LemMA. Let X be a strongly metrizable space.” Then there is a sequence
Uy, Uss -y Of starfinite open covers of X such that (%1 refines %, for each
neN and {St(x,%,): neN } is a neighborhood base at x € X.

Proof. We can assume that X is a subspace of B(t)xI® for some infinite
cardinal , where B(z) is a Baire space of weight = and I is the Hilbert cube (see
[15; Proposition 2.3.27]). Since B(r)x I® is strongly paracompact, there is a se-
quence ¥y, ¥ 5, ..., of star-finite open covers of B(t)xI® such that [¥,.,]
refines #7, for each ne N and {St(y,¥,): neN } is a neighborhood base at
YeB@XI®. Put ¥, = {V n X: Ve?,} for each ne N. It is easy to see that the
sequence %y, %5, ..., is the desired one. °

3.3. THEOREM. A metrizable space X is strongly metrizable if and only if X
admits a metric ¢ satisfying the following condition:

(#) For every £> 0, every point x of X and every sequence y,, Y2+, Of points
of X with o(S{(x),y;) <& for each i€ N, there are distinct natural numbers i and j
such that g(y;, y;) <e.

Proof. Let ¢ be an admissible metric for X which satisfies the condition (4).
For each ¢> 0, let X, be the maximal subset of X such that ¢(x, ¥) > & whenever
%,y € X with x 5 y. By the maximality of X;, it follows that %, = {S,(x): xe X}
is a cover of X. On the other hand, by the condition (dk), we can see that B, is
star-finite. Hence # = () {#y,,: ng N} is a base for X which is the union of
countably many star-finite open covers of X and hence X is strongly metrizable.
Conversely, let X be a strongly metrizable space and %, %,,..., a sequence of
star-finite opefh coverd*6f X constructed in Lemma 3.2, It is easy to see that

(1) St(x, %¥.y) meets at most finitely many members of %, for each xe X
and each neN.

For each ¢ = 27" 4 ... +2™™ e Q* and each U & %,,,, we put S(U; m,) = U,

SU; myy vy my) = SP(SU; My, iy Myy), U) - for 2<k <1,

S(U; q) = SU; my,oeymy), and F(g) = {SU; q): Ue¥,,}.

Let us notice the following:

(2 Let p=2"""4..+2™™e Q% ¢g=2""+...+27™e 0* and p<q. Then
& (p) refines' ¥ (q). Furthermore, if m, = n;, then S(U; p) =S(U; g) for each
Ue,,.
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Define a function g: Xx X — [0,1] as follows:
For x,y€X, ;

_ 1, if y ¢ St(x, & (q)) for every qge Q%,
(2 = Yinplg: ge 0* and ye St(x, #(¢))}, otherwise.

Then, ¢ is an admissible metric for X. To prove that ¢ satisfies the condition (%),
let >0, X,y Yar - € X with o(Si(x), ¥;) <& for each ieN. For each ieN,
let x; be a point of X such that o(x,x)<é and o(x;, y)<e Put §
= max{o(x, x)), ¢(x;, 70}, We can assume that /4 <J; <=2 For each ieN, let
g =204 42 mo®e g% such that §,<g;<e Since o(x,x)<gq, and
0(xs, ¥) < g, there are V€ Uy, and U, € U,y such that x, x; € S(F; q;) and
X3, ¥: € S(Us; g;)- Since /4 < g, for each ie N, there is an mg & N such that M,
= {i: i e N and m;(i) = m,} is infinite. For each i € My, x & S(Vy; g9 = St(Vi, %)
and x,€ S(Vi; ) 0 S(Us5 4) = SUVi, Upg) 0 SE(Us, Uyo). Hence Uy o SE3(x, Un,)
# @. By (1), there is a Uy € %, such that M, = {i: ie M, and U, = Uy} is in-
finite. Let i and j be members of M, such that i s j. Suppose that ¢;<q;. It is
obvious that y;e S(U;; ¢;) e &(g;). On the other hand, by (2), »,€S(U; ¢)
e S(U;; q) € & (g). Hence y,eSt(y;, &(q)) and hence o(y;,7;) <q; <e. This
completes the proof of Theorem 3.3.
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