208

Hidenori Tanaka

References

- [1] E. K. van Douwen, The Pixley-Roy topology in spaces of subsets in Set Theoretic Topology, ed. by G. M. Reed, Academic Press, New York 1977, 111-134.
- [2] W. G. Fleissner, Current research on Q sets, Topology, vol. II, Colloq. Math. Soc. János Bolyai, 23, ed. by A. Császar, North-Holland, 1980, 413-431.
- [3] H. Herrlich, Ordnungsfähigkeit total-diskontinuerlicher Räume, Math. Ann. 159 (1965), 77-80.
- [4] D. J. Lutzer, Pixley-Roy topology, Topology Proc. 3 (1978), 139-158.
- [5] C. Pixley and P. Roy, Uncompletable Moore spaces, Proc. Auburn Univ. Conf. (Auburn, Alabama, 1969), ed. by W. R. R. Transue, 1969, 75-85.
- [6] T. Przymusiński, Normality and separability of Moore spaces, in Set Theoretic Topology, ed. by G. M. Reed, Academic Press, New York 1977, 325-337.
- [7] The existence of Q-sets is equivalent to the existence of strong Q-sets, Proc. Amer. Math. Soc. 79 (1980), 626-628.
- [8] Normality and paracompactness of Pixley-Roy hyperspaces, Fund. Math. 113 (1981), 201-219.
- [9] T. Przymusiński and F. D. Tall, The undecidability of the existence of a non-separable normal Moore space satisfying the countable chain condition, Fund. Math. 85 (1974), 291-297.
- [10] M. E. Rudin, Pixley-Roy and the Souslin line, Proc. Amer. Math. Soc. 74 (1979), 128-134.
- [11] P. Zenor, On countable paracompactness and normality, Prace Mat. 13 (1969), 23-32,

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA Sakura-mura, Niihari-gun, Ibaraki 305, Japan

Received 24 July 1984

Increasing strengthenings of cardinal function inequalities

by

I. Juhász and Z. Szentmiklóssy (Budapest)

Abstract. We prove that the following increasing strengthenings of two cardinal function inequalities given in [2] and [1] respectively are valid.

THEOREM 1. If X is T_2 and $X = \bigcup_{\alpha}^{1} X_{\alpha}$ (i.e. X is the union of an increasing chain of its subspaces X_{α}) and $c(X_{\alpha}) \cdot \chi(X_{\alpha}) \leq \kappa$ for all α then $|X| \leq 2^{\kappa}$.

THEOREM 2. If X is T_3 and $X = \bigcup_{\alpha}^{\uparrow} X_{\alpha}$, where X_{α} is T_4 and $wL(X_{\alpha}) \cdot \chi(X_{\alpha}) \leqslant \kappa$ for all α then $|X| \leqslant 2^{\kappa}$.

In [3] the first author has initiated the study of strengthening certain cardinal function inequalities in the following manner. A general form of a cardinal function inequality may be given as follows: If φ is some given cardinal function and X is a space having some property P then $\varphi(X) \leq \varkappa$. We call an increasing strengthening of this inequality any statement of the following form: If $X = \bigcup_{\alpha} X_{\alpha}$ is the increasing union of its subspaces X_{α} , where every X_{α} has property P and X has property P then $\varphi(X) \leq \varkappa$.

A number of such increasing strengthenings of inequalities were proven in [3], as a major problem, however, it remained open whether the inequality $|X| \le 2^{c(X)\chi(X)}$, for any T_2 space X, admits such an increasing strengthening.

Theorem 1 of the present paper gives the affirmative answer to this question. The ideas needed in the proof of Theorem 1, with appropriate modifications, also allowed us to show that the inequality $|X| \leq 2^{wL(X) \cdot \chi(X)}$ for any T_4 space X proved in [1] also admits an increasing strengthening.

Notation and terminology, unless otherwise explained, is identical with that used in [3].

THEOREM 1. If
$$X = \bigcup_{\alpha}^{1} X_{\alpha}$$
 is T_{2} and $c(X_{\alpha}) \cdot \gamma(X_{\alpha}) \leq \gamma$

holds for each a then

 $|X| \leqslant 2^{\kappa}$.

The proof of Theorem 1 will be based on three lemmas given below.

LEMMA 1. Let X be an arbitrary space, Y a subspace of X and p a point in Y, moreover \mathcal{B} be a complete subalgebra of RO(X) (in symbols $\mathcal{B} \prec RO(X)$), the complete Boolean algebra of all regular open subsets of X, such that

(*) for every
$$\mathscr{C} \subset \mathscr{B}$$
 if $p \in \bigcup \mathscr{C}$ then $p \in \bigcup \mathscr{C} \cap Y$.

Then for every open neighbourhood U of p in X there is a member $B(U) \in \mathcal{B}$ such that $p \in B(U)$ and if $B \in \mathcal{B}$ satisfies $U \cap Y \subset B$ then $B(U) \subset B$ is also valid.

Proof. Let \mathscr{C} be the collection of all members $C \in \mathscr{B}$ satisfying

$$C \cap U \cap Y = \emptyset$$
.

Then $\bigcup \mathscr{C} \cap U \cap Y = \emptyset$ holds as well, hence $p \notin \overline{\bigcup \mathscr{C} \cap Y}$ consequently, by (*), $p \notin \overline{\bigcup \mathscr{C}}$. We claim that

$$B(U) = X \setminus \overline{\bigcup \mathscr{C}} \in \mathscr{B}$$

is as required. Now $p \in B(U)$ is obvious.

Next, if $B \in \mathcal{B}$ and $U \cap Y \subset B$ then clearly $C = X \setminus \overline{B} \in \mathcal{C}$, hence $\overline{C} \subset \overline{\bigcup \mathcal{C}}$, and thus

$$B(U) = X \setminus \overline{\bigcup \mathscr{C}} \subset X \setminus \overline{C} = B$$
.

Remark. If we have $c(\mathscr{B}) \leqslant \varkappa$, i.e. the cellularity of \mathscr{B} is $\leqslant \varkappa$, which is true e.g. if $c(X) \leqslant \varkappa$, then in Lemma 1 (*) may clearly be replaced by the following weaker condition:

$(*)_*$ for every $\mathscr{C} \in [\mathscr{B}]^{\leq *}$, if $p \in \bigcup \mathscr{C}$ then $p \in \bigcup \mathscr{C} \cap Y$.

Before we formulate our next lemma we need some definitions. First, if a space is the union of its subspaces X_{α} , we say that X has the fine topology with respect to the system $\{X_{\alpha}\}$ of these subspaces provided that $G \subset X$ is open in X if and only if $G \cap X_{\alpha}$ is open in the subspace X_{α} for all α . Clearly this means that X has the finest topology with respect to which all the X_{α} have the same induced subspace topology.

We shall need the following simple proposition concerning increasing unions with the fine topology.

PROPOSITION. Let $X = \bigcup_{\alpha \in \lambda} \{X_{\alpha} : \alpha \in \lambda\}$ where λ is a regular cardinal and $t(p, X_{\alpha}) < \lambda$ holds for every $\alpha \in \lambda$ and $p \in X_{\alpha}$ and assume that X has the fine topology with respect to the system $\{X_{\alpha} : \alpha \in \lambda\}$. Then for every set $A \subset X$ we have

$$\overline{A} = \bigcup \{ \overline{A \cap X_{\alpha}} : \alpha \in \lambda \}.$$

Proof. Clearly it suffices to show that the right-hand side of this equality, let us denote it by B for short, is closed in X. Since X has the fine topology, however, this is equivalent to showing that $B \cap X_{\beta}$ is closed in X_{β} for each $\beta \in \lambda$. But

$$B\cap X_{\beta}=\bigcup \left\{ \overline{A\cap X_{\alpha}}\cap X_{\beta}\colon \alpha\in\lambda\right\}$$

is an increasing λ -type union of closed subsets of X_{β} which is indeed closed in X_{β} since we have $t(p, X_{\beta}) < \lambda$ for all $p \in X_{\beta}$.

Now we are ready to formulate the second lemma needed for the proof of Theorem 1.

LEMMA 2. Let $X = \bigcup \{X_{\alpha} : \alpha \in \lambda\}$, where $\lambda = (2^{\kappa})^+$, X has the fine topology w.r.t. $\{X_{\alpha} : \alpha \in \lambda\}$ and $\chi(X_{\alpha}) \leq \kappa$ for each $\alpha \in \lambda$. Then $\mathscr{B} \prec RO(X)$, $c(\mathscr{B}) \leq \kappa$ and $|\mathscr{B}| \leq \lambda$ imply $\chi(p,\mathscr{B}) \leq \kappa$ for all $p \in X$.

Proof. Let us first assume that actually $|\mathscr{B}| < \lambda$. Given $p \in X$, for every $\mathscr{C} \in [\mathscr{B}]^{\leq \varkappa}$ there is an ordinal $\alpha_{\mathscr{C}} \in \lambda$ such that $p \in \overline{\bigcup \mathscr{C}}$ implies $p \in \overline{\bigcup \mathscr{C} \cap X_{\alpha_{\mathscr{C}}}}$ since X has the fine topology and

$$t(p, X_{\alpha}) \leq \chi(p, X_{\alpha}) \leq \varkappa < \lambda$$

is valid for all $\alpha \in \lambda$; hence the above proposition can be applied. Since

$$|[\mathscr{B}]^{\leq x}| \leq |\mathscr{B}|^{x} \leq (2^{x})^{x} = 2^{x} < \lambda,$$

we may then find $\alpha_0 \in \lambda$ such that $p \in X_{\alpha_0}$ and $\alpha_{\mathscr{C}} \leqslant \alpha_0$ for all $\mathscr{C} \in [\mathscr{B}]^{\leqslant \varkappa}$. Clearly, then $(*)_{\varkappa}$, hence by $c(\mathscr{B}) \leqslant \varkappa$ also (*) of Lemma 1, will be satisfied for p, \mathscr{B} and $Y = X_{\alpha_0}$.

Now let $\{U_{\mathbf{v}} \colon \mathbf{v} \in \mathbf{x}\}$ be a family of open neighbourhoods of p in X such that $\{U_{\mathbf{v}} \cap X_{\mathbf{a_0}} \colon \mathbf{v} \in \mathbf{x}\}$ is a neighbourhood base of p in $X_{\mathbf{a_0}}$. We may then apply Lemma 1 for p, \mathscr{B} , $Y = X_{\mathbf{a_0}}$ and each $U_{\mathbf{v}}$ to obtain $B_{\mathbf{v}} \in \mathscr{B}$ such that $p \in B_{\mathbf{v}}$ and $B_{\mathbf{v}} \subset B$ whenever $U_{\mathbf{v}} \cap X_{\mathbf{a_0}} \subset B \in \mathscr{B}$. However, then $\{B_{\mathbf{v}} \colon \mathbf{v} \in \mathbf{x}\}$ clearly establishes $\chi(p, \mathscr{B}) \leqslant \mathbf{x}$ since for every $B \in \mathscr{B}$ with $p \in B$ there is a $\mathbf{v} \in \mathbf{x}$ with $U_{\mathbf{v}} \cap X_{\mathbf{a_0}} \subset B$.

Now, assume that $|\mathcal{B}| = \lambda$. Applying $c(\mathcal{B}) \leq \varkappa$ we may then write

$$\mathscr{B} = \bigcup \{\mathscr{B}_{\alpha} \colon \alpha \in \lambda\}$$

where $|\mathcal{B}_{\alpha}| < \lambda$ and $\mathcal{B}_{\alpha} < \mathcal{B}$ for each $\alpha \in \lambda$. We may also assume that if $\alpha \in \lambda$ and $cf(\alpha) > \kappa$ then

$$\mathscr{B}_{\alpha} = \bigcup^{\uparrow} \mathscr{B}_{\beta} \colon \beta \in \alpha \}.$$

Let us put $S = \{\alpha \in \lambda : cf(\alpha) > \varkappa\}$. For every $\alpha \in S$ we may apply the above partial result to \mathscr{B}_{α} to obtain $\mathscr{C}_{\alpha} \in [\mathscr{B}_{\alpha}]^{\leq \varkappa}$ which is a basis of p in \mathscr{B}_{α} . Since $cf(\alpha) > \varkappa$ and $\mathscr{B}_{\alpha} = \bigcup_{\beta \in \alpha} \mathscr{B}_{\beta}$ we have some $\varphi(\alpha) \in \alpha$ such that

$$\mathscr{C}_{\alpha} \subset \mathscr{B}_{\varphi(\alpha)}$$
.

The function φ thus defined is regressive on the stationary subset S of λ , hence by Neumer's theorem there is some $\beta \in \lambda$ and $S_1 \in [S]^{\lambda}$ such that $\varphi(\alpha) = \beta$ for all $\alpha \in S_1$. But

$$|[\mathcal{B}_{\scriptscriptstyle B}]^{\leq \times}| \leq (2^{\times})^{\times} = 2^{\times}$$

then implies the existence of some $\mathscr{C} \in [\mathscr{B}_{\beta}]^{\leq_{\alpha}}$ and $S_2 \in [S_1]^{\lambda}$ such that $\mathscr{C}_{\alpha} = \mathscr{C}$ for all $\alpha \in S_2$. Then \mathscr{C} is a basis of p in \mathscr{B}_{α} for cofinally many $\alpha \in \lambda$ hence in \mathscr{B} as well.

The following lemma is actually a variant of the inequality $|X| \leq 2^{c(X) \cdot \chi(X)}$ for $X \in \mathcal{F}_2$.

LEMMA 3. If X is a set, $\mathscr{B} \subset P(X)$ is a family of subsets of X that T_2 -separates the points of X, \mathscr{B} is closed under finite intersections, $c(\mathscr{B}) \leqslant \varkappa$ and $\chi(p,\mathscr{B}) \leqslant \varkappa$ for all $p \in X$ then $|X| \leqslant 2^{\varkappa}$.

Proof. A direct proof based on the Erdös-Rado theorem $(2^x)^+ \to (\kappa^+)_{\kappa}^2$ could be given, however the lemma also follows from the above cardinal function inequality as applied to the topology on X generated by \mathcal{B} .

Now we may turn to the proof of Theorem 1. Note that if $X=\bigcup\limits_{i=1}^{n}\{X_{\alpha}\colon \alpha\in\mu\}$ $\in\mathscr{T}_2$ and $\chi(X_{\alpha})\cdot c(X_{\alpha})\leqslant \varkappa$ then $|X_{\alpha}|\leqslant 2^{\varkappa}$, hence we may assume that $\mu\leqslant \lambda=(2^{\varkappa})^+$. But if $\mu<\lambda$ then

$$|X| \leq 2^{\varkappa} \cdot |\mu| \leq 2^{\varkappa}$$

hence it will suffice to show that $\mu = \lambda$ is impossible.

Assume, reasoning indirectly, that $\mu=\lambda$. Clearly we may also assume that X has the fine topology w.r.t. $\{X_\alpha\colon \alpha\in\lambda\}$ since this topology on X is also T_2 . Since $c(X_\alpha)\leqslant\varkappa$ holds for all $\alpha\in\lambda$, we have (e.g. by [3], 6.1) $c(X)\leqslant\varkappa$. Clearly, we have $|X|=\lambda$; hence by $X\in\mathcal{F}_2$ and by $c(RO(X))\leqslant c(X)\leqslant\varkappa$ we may find a complete subalgebra $\mathscr{B}\prec RO(X)$ with $|\mathscr{B}|\leqslant\lambda$ that T_2 -separates the points of X. By Lemma 2 then $\chi(p,\mathscr{B})\leqslant\varkappa$ is valid for all $p\in X$. But then, by $c(\mathscr{B})\leqslant c(RO(X))\leqslant\varkappa$, Lemma 3 may also be applied to X and \mathscr{B} , consequently we must have $|X|\leqslant 2^\varkappa<\lambda$, a contradiction. This completes the proof of Theorem 1.

Now we turn to giving an increasing strengthening of the inequality $|X| \leq 2^{wL(X) \cdot \chi(X)}$ proved in [1] for $X \in \mathcal{F}_4$. Let us note that it is still open whether this inequality is valid for $X \in \mathcal{F}_3$ as well. In any case our increasing strengthening will only require X to be T_3 , while of course $X_{\alpha} \in \mathcal{F}_4$ will be assumed.

Theorem 2. If $X = \bigcup_{\alpha} X_{\alpha}$ is T_{3} where X_{α} is T_{4} and $wL(X_{\alpha}) \cdot \chi(X_{\alpha}) \leqslant \varkappa$ holds for each α then $|X| \leqslant 2^{\varkappa}$.

The proof of Theorem 2 runs analogously to that of Theorem 1 and is based on three analogous lemmas.

LEMMA 1'. Let X be a space, Y a T_4 subspace of X with $wL(Y) \leqslant \varkappa$ and $p \in Y$ be such that $\chi(p,Y) \leqslant \varkappa$ and $t(p,X) \leqslant \varkappa$. Assume furthermore that $\mathscr B$ is a \varkappa -complete subalgebra of RO(X), in symbols: $\mathscr B \prec_{\varkappa} RO(X)$. (This means that Int $\bigcup \mathscr B \in \mathscr B$ for all $\mathscr B \in \mathscr B$). If $p,\mathscr B$ and Y satisfy condition $(*)_{\varkappa}$ formulated in the remark made after Lemma 1 as well as condition $(**)_{\varkappa}$ to be formulated below, then for every open neighbourhood U of p there is a member $B(U) \in \mathscr B$ such that $p \in B(U)$ and for every $B \in \mathscr B$ if $U \cap Y \subset B$ then $B(U) \cap Y \subset B$.

 $(**)_{\kappa}$ For every $S \in [Y]^{\leq \kappa}$ if $p \notin \overline{S}$ then there is a $B \in \mathcal{B}$ such that $\overline{S} \subset B$ and $p \notin \overline{B}$.

Proof. Let us start by fixing a family $\mathscr V$ of open neighbourhoods of p in X such that $|\mathscr V| \leq \varkappa$ and $\{V \cap Y \colon V \in \mathscr V\}$ is a neighbourhood basis of p in Y.

For any neighbourhood V of p in X let us put

$$\mathscr{C}(V) = \{ B \in \mathscr{B} \colon B \cap V \cap Y = \emptyset \}.$$

We claim that $p \notin \overline{\bigcup \mathscr{C}(V)}$. Indeed, if $p \in \overline{\bigcup \mathscr{C}(V)}$ then by $t(p, X) \leq \varkappa$ there is some $\mathscr{C}_1 \in [\mathscr{C}(V)]^{\leq \varkappa}$ with $p \in \overline{\bigcup \mathscr{C}_1}$ as well, hence $(*)_{\varkappa}$ implies $p \in \overline{\bigcup \mathscr{C}_1} \cap \overline{Y}$ which is clearly impossible since $\bigcup \mathscr{C}_1 \cap \overline{Y} \cap Y = \varnothing$.

Now, we claim that given U there is a neighbourhood $V \in \mathscr{V}$ of p such that

$$F_U = Y \cap \overline{\bigcup \mathscr{C}(U)} \subset \bigcup \mathscr{C}(V).$$

Again, we reason indirectly, i.e. assume that for every $V \in \mathscr{V}$ there is a point

$$q_V \in F_U \setminus \bigcup \mathcal{C}(V)$$
.

Then $S = \{q_V \colon V \in \mathscr{V}\} \in [Y]^{\leqslant \varkappa}$ and $S \subset \overline{\bigcup \mathscr{C}(U)}$ implies $p \notin \overline{S}$, hence by $(**)_{\varkappa}$ there is some $B \in \mathscr{B}$ with $\overline{S} \subset B$ and $p \notin \overline{B}$. Let $V \in \mathscr{V}$ be such that $V \cap Y \subset X \setminus \overline{B}$. Then $B \in \mathscr{C}(V)$ and $q_V \in S \subset B$, contradicting that $q_V \notin \bigcup \mathscr{C}(V) \supset B$.

Thus we may indeed fix $V \in \mathscr{V}$ such that $\mathscr{C}(V)$ covers F_{U} . But F_{U} is closed in Y, hence $Y \in \mathscr{F}_{4}$ and $wL(Y) \leq w$ imply (cf. [3], 2.35) that there is some $\mathscr{C}_{1}(U) \in [\mathscr{C}(V)]^{\leq w}$ such that $F_{U} \subset \overline{\bigcup \mathscr{C}_{1}(U)}$. We claim that

$$B(U) = X \backslash \overline{\bigcup \mathcal{C}_1(U)} \in \mathcal{B}$$

is as required. That $B(U) \in \mathcal{B}$ follows from the \varkappa -completeness of \mathcal{B} . Next, $p \in B(U)$ holds because $\mathscr{C}_1(U) \subset \mathscr{C}(V)$ and $p \notin \overline{\bigcup \mathscr{C}(V)}$. Finally, if $B \in \mathscr{B}$ and $U \cap Y \subset B$ then $X \setminus \overline{B} \in \mathscr{C}(U)$, consequently

$$B(U) \cap Y = Y \setminus \overline{\bigcup \mathscr{C}_1(U)} \subset Y \setminus F_U = Y \setminus \overline{\bigcup \mathscr{C}(U)} \subset X \setminus \overline{X \setminus \overline{B}} = B. \blacksquare$$

In our next lemma we shall again use the notation $\lambda = (2^x)^+$.

LEMMA 2'. Let $X = \bigcup_{i=1}^{n} \{X_{\alpha} : \alpha \in \lambda\}$ where X has the fine topology w.r.t. $\{X_{\alpha} : \alpha \in \lambda\}$, $X_{\alpha} \in \mathcal{F}_{4}$ and wL $(X_{\alpha}) \cdot \chi(X_{\alpha}) \leq \kappa$ for all $\alpha \in \lambda$, furthermore $\mathscr{B} \prec_{\kappa} RO(X)$ is such that $|\mathscr{B}| \leq \lambda$ and for every $p \in X$ and $S \in [X]^{\leq \kappa}$ if $p \notin \overline{S}$ then there is some $B \in \mathscr{B}$ with $\overline{S} \subset B$ and $p \notin \overline{B}$. Then for every $p \in X$ we have $\chi(p, \mathscr{B}) \leq \kappa$.

Proof. First, since $t(p, X_{\alpha}) \leq \chi(p, X_{\alpha}) \leq \varkappa < \lambda$ holds for all $\alpha \in \lambda$ and $p \in X_{\alpha}$ we can apply the above proposition to conclude that $\overline{A} = \bigcup \{\overline{A \cap X_{\alpha}} : \alpha \in \lambda\}$ for each set $A \subset X$. Clearly, this implies then that $t(p, X) \leq \varkappa$ for all $p \in X$.

Let us fix some $p \in X$. In order to show that $\chi(p, \mathcal{B}) \leq \varkappa$ let us first decompose \mathcal{B} into an increasing union

$$\mathscr{B} = \bigcup \{\mathscr{B}_{\alpha} : \alpha \in \lambda\},\,$$

where $\mathscr{B}_{\alpha} \prec_{\kappa} \mathscr{B}$ and $|\mathscr{B}_{\alpha}| < \lambda$ for each $\alpha \in \lambda$. We may clearly assume that if $\alpha \in \lambda$ with $cf(\alpha) > \varkappa$ then $\mathscr{B}_{\alpha} = \bigcup_{\alpha} \{\mathscr{B}_{\beta} : \beta \in \alpha\}.$

In view of our assumptions (which imply $|X_{\alpha}| \le 2^{\kappa} < \lambda$ for all $\alpha \in \lambda$) we may easily define a map $\varphi: \lambda \to \lambda$ such that the following two conditions be valid for all $\alpha \in \lambda$:

(1) if $S \in [X_n]^{\leq n}$ and $p \notin \overline{S}$ then there is some $B \in \mathcal{D}_{n(n)}$ with $\overline{S} \subset B$ and $p \notin \overline{B}$;

(2) if
$$\mathscr{C} \in [\mathscr{B}_{\alpha}]^{\leq \varkappa}$$
 and $p \in \bigcup \mathscr{C}$ then $p \in \bigcup \mathscr{C} \cap X_{\varphi(\alpha)}$.

Let us put

$$C = \{ \alpha \in \lambda \colon \forall \beta (\beta \in \alpha \to \varphi(\beta) \in \alpha) \},$$

then C is closed unbounded in λ . Thus if $S = \{\alpha \in \lambda : p \in X_{\alpha} \text{ and } cf(\alpha) > \varkappa\}$ then $C \cap S$ is stationary in λ . It is easy to check that if $\alpha \in C \cap S$ then the conditions of Lemma 1' are satisfied for X, p, $Y = X_{\alpha}$ and $\mathcal{B} = \mathcal{B}_{\alpha}$.

Let us fix, for $\alpha \in C \cap S$, a family \mathcal{U}_n of open neighbourhoods of p in X such that $|\mathcal{U}_{\alpha}| \leq \kappa$ and

$$\{U\cap X_a\colon\thinspace U\in\mathscr{U}_a\}$$

is a neighbourhood basis of p in X_a . Then applying Lemma 1' we consider for each $U \in \mathcal{U}_{\alpha}$ the set $B(U) \in \mathcal{B}_{\alpha}$ satisfying $p \in B(U)$ and $B(U) \cap Y \subset B$ whenever $B \in \mathcal{B}_{\alpha}$ and $U \cap Y \subset B$. Since $cf(\alpha) > \varkappa$ we may then find for every $\alpha \in C \cap S$ an ordinal $\psi(\alpha) < \alpha$ such that

$$\mathscr{C}_{\alpha} = \{B(U) \colon U \in \mathscr{U}_{\alpha}\} \subset \mathscr{B}_{\psi(\alpha)}$$
.

But then an application of Neumer's theorem and a simple counting argument yields us a set $S_1 \in [C \cap S]^{\lambda}$, an ordinal $\beta \in \lambda$ and a family $\mathscr{C} \in [\mathscr{B}_{\alpha}]^{\leq \kappa}$ such that $\mathscr{C}_{\alpha} = \mathscr{C}$ for all $\alpha \in S_1$.

We claim that \mathscr{C} is a basis for p in \mathscr{B} . Assume, indirectly, that $p \in B \in \mathscr{B}$ but $C \setminus B \neq \emptyset$ for all $C \in \mathscr{C}$, then there is some $\alpha \in S_1$ such that $(C \setminus B) \cap X_n \neq \emptyset$ for all $C \in \mathscr{C}$ as well. But now $\mathscr{C} = \mathscr{C}_{\alpha} = \{B(U): U \in \mathscr{U}_{\alpha}\}$ and thus there is some $U \in \mathcal{U}_{\alpha}$ with $U \cap X_{\alpha} \subset B$ hence $B(U) \cap X_{\alpha} \subset B$ as well, contradicting that $(B(U)\backslash B)\cap X_{\alpha}\neq\emptyset$.

LEMMA 3'. Let $X = \bigcup_{i=1}^{n} \{X_{\alpha} : \alpha \in \lambda\}$ (where $\lambda = (2^n)^+$), $|X_{\alpha}| \leq 2^n$ and $wL(X_{\alpha}) \leq n$ for all $\alpha \in \lambda$, moreover $\mathcal{B} \subset RO(X)$ be such that for every $\alpha \in \lambda$ there is some $B \in \mathcal{B}$ with

$$X_{\alpha} \subset B \subset \overline{B} \neq X$$
.

Then there is a point $p \in X$ with $\chi(p, \mathcal{B}) > \varkappa$.

Proof. Assume, indirectly, that for each $p \in X$ there is a \mathscr{B} -basis $\mathscr{C}_p \in [\mathscr{B}]^{\leq n}$. For $\alpha \in \lambda$ we put

$$\mathscr{C}_{\alpha} = \bigcup \{\mathscr{C}_{p}: p \in X_{\alpha}\},$$

furthermore

$$\mathscr{W}_{a} = \{\mathscr{V} \in [\mathscr{C}_{a}]^{\leq x} \colon X_{a} \subset \overline{\bigcup \mathscr{V}} \neq X\}.$$

By our assumptions we have $|\mathcal{W}_{\alpha}| \leq 2^{\kappa}$. For each $\alpha \in \lambda$ we may then find an ordinal $\varphi(\alpha) \in \lambda$ such that

$$X_{\varphi(\alpha)} \setminus \overline{\bigcup \mathscr{V}} \neq \emptyset$$

for all $\mathscr{V} \in \mathscr{W}_{\alpha}$.

Let $\alpha \in \lambda$ be such that $\beta \in \alpha$ implies $\varphi(\beta) \in \alpha$ (there is a closed unbounded set of such ordinals α) and moreover satisfying $cf(\alpha) > \varkappa$. Let us pick $B \in \mathcal{B}$ in such a way that $X_{\alpha} \subset B$ and $\overline{B} \neq X$. For every $p \in X_{\alpha}$ we may then find a set $C_n \in \mathscr{C}_n$ with $p \in C_n \subset B$, and applying $wL(X_\alpha) \le \varkappa$ to the open cover $\{C_n : p \in X_\alpha\}$ of X_α we can choose

$$\mathscr{V} \in [\{C_p \colon p \in X_\alpha\}]^{\leqslant \kappa}$$

such that $X_n \subset \overline{|\mathcal{Y}|}$. But

$$\widetilde{\bigcup \mathscr{V}} \subset \overline{B} \neq X$$
,

hence $\mathscr{V} \in \mathscr{W}_{\alpha}$, and since $cf(\alpha) > \varkappa$ we actually have some $\beta \in \alpha$ such that $\mathscr{V} \in \mathscr{W}_{\beta}$. But then $\varphi(\beta) < \alpha$ holds, i.e.

$$X_{\alpha} \setminus \overline{\bigcup \mathscr{V}} \neq \varnothing$$

contradicting $X_{\alpha} \subset \overline{\bigcup \mathscr{V}}$. This completes the proof of Lemma 3'.

The proof of Theorem 2 can now be finished as follows. Since again $|X_x| \le 2^*$ for each α , it suffices to show that our increasing union has length $<\lambda$.

Assume otherwise, i.e. $X = \bigcup_{i=1}^{n} \{X_{\alpha}: \alpha \in \lambda\}$ and $|X| = \lambda$. Since X is T_3 and for every $p \in X$ and $\alpha \in \lambda$

$$\chi(p, X_{\alpha} \cup \{p\}) \leq \kappa$$
,

it follows e.g. from [3], 2.5 that $|\overline{X_n}| \leq 2^{\kappa}$, hence $\overline{X_n} \neq X$. Thus by the regularity of X we may clearly find $\mathscr{B} \prec_{\times} RO(X)$ such that $|\mathscr{B}| \leq \lambda$ and

- (i) if $p \in X$, $S \in [X]^{\leq x}$ and $p \notin \overline{S}$ then there is some $B \in \mathcal{B}$ with $\overline{S} \subset B$ and $p \notin \overline{B}$;
 - (ii) for every $\alpha \in \lambda$ there is some $B \in \mathcal{B}$ with

$$X_{\alpha} \subset B$$
 and $\overline{B} \neq X$.

Now if we consider the fine topology ϱ on X w.r.t. $\{X_{\alpha}: \alpha \notin \lambda\}$ then this topology may not be T_3 , however the existence of $\mathscr{B} \prec_{\kappa} RO(X, \varrho)$ with $|\mathscr{B}| \leqslant \lambda$ and with properties (i) and (ii) will remain valid. For (i) this makes use of the fact that every $S \in [X]^{\leq \kappa}$ is contained in some X_{α} , hence by $|X_{\alpha}| \leq 2^{\kappa}$ we have some $\beta \in \lambda$ with $S \subset \overline{X}_{\alpha} \subset X_{\beta}$ and thus $S^{q} = \overline{S}$. The rest of (i) and (ii) follow easily because for any $B \in RO(X)$ one clearly has

$$B \subset \operatorname{Int}_{o}\overline{B}{}^{o} \subset \overline{B}{}^{o} \subset \overline{B}$$
,

and $\operatorname{Int}_{o}\overline{B}^{\varrho}\in RO(X,\varrho)$.

icm[©]

Since all we need of the regularity of X is just the existence of such a \varkappa -complete subalgebra \mathscr{B} of RO(X), we assume in what follows that X has the fine topology w.r.t. $\{X_{\alpha}: \alpha \in \lambda\}$.

But then, in view of (i), Lemma 2' applies and yields us $\chi(p, \mathcal{B}) \leq \varkappa$ for all $p \in X$. On the other hand since (ii) is satisfied Lemma 3' can also be applied and this gives us $\chi(p, \mathcal{B}) > \varkappa$ for some $p \in X$. This contradiction then finishes the proof.

COROLLARY. If X is T_4 and $X = \bigcup_{\alpha}^{1} X_{\alpha}$ with $wL(X_{\alpha}) \cdot \chi(X_{\alpha}) \leqslant \varkappa$ for all α then $\|X\| \leqslant 2^{\varkappa}$.

Proof. Assume, indirectly, that $X = \bigcup \{X_{\alpha} : \alpha \in \lambda\}$ and $|X| = \lambda = (2^{\alpha})^+$. Similarly as in the above proof we can see that $|X_{\alpha}| \leq 2^{\alpha}$ for each α , consequently $wL(\overline{X}_{\alpha}) \cdot \chi(\overline{X}_{\alpha}) \leq \alpha$ is also valid because $\overline{X}_{\alpha} \subset X_{\beta}$ holds for some $\beta \in \lambda$. But \overline{X}_{α} is also T_{α} and thus by $X = \bigcup \{\overline{X}_{\alpha} : \alpha \in \lambda\}$ we get a contradiction with Theorem 2.

Note that this corollary does not follow immediately from Theorem 2 because a subspace of a T_4 space is not necessarily T_4 .

References

- [1] M. Bell, J. Ginsburg and G. Woods, Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79 (1978), 37-45.
- [2] A. Hajnal and I. Juhász, Discrete subspaces of topological spaces, Indag. Math. 29 (1967), 343-356.
- [3] I. Juhász, Cardinal Functions in Topology Ten Years Later, Mat. Centre Tracts 123, Amsterdam 1980.

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES Budapest V, Reáltanoda u. 13-15 P. O. Box 127, H-1364

Received 26 July 1984

Modules over arbitrary domains II

by

Rüdiger Göbel (Essen) and Saharon Shelah* (Jerusalem)

Abstract. Let R be a commutative ring and $S \subseteq R$ a multiplicatively closed subset of R. Defining torsion-free modules with respect to S, we derive new results of this category extending from $|S| = \aleph_0$. In §8 we realize any R-algebra A with torsion-free, reduced R-module structure on modules G as

$$\operatorname{End} G = A \oplus \operatorname{Ines} G$$

where Ines G are all endomorphisms on G with ω -complete image in G. In §9 we determine Ines G more explicitly and derive properties of G from the given algebra A.

§ 1. Introduction. We will discuss right R-modules $G = G_R$ over nonzero commutative rings R. The ring R will have a fixed multiplicatively closed subset S such that R as an R-module is S-reduced and S-torsion-free. These well-known conditions on a module G are $\bigcap_{g \in S} Gs = 0$ respectively $(gs = 0 \Rightarrow g = 0)$ for all $g \in G$, $s \in S$.

Many questions on the existence of R-modules with prescribed properties can be reduced to representation theorems of R-algebras A as endomorphism algebras — in many cases modulo some "small" or "inessential" endomorphisms. Well-known examples for such problems are decomposition-properties related with the Krull-Remak-Schmidt Theorem — respectively related with Kaplansky's test problems, other derive from questions on prescribed automorphism groups or topologies. The investigation of classical problems in module theory in this sense goes back to a number of fundamental papers by A. L. S. Corner; see [CG] for further references.

In the recent years these investigations have been extended to R-modules of arbitrary large size, however under the restriction that S is essentially countable; see [DG 1,2], [GS 1], [S 2,3] and [CG] for a uniform treatment and further extensions, including torsion, mixed and torsion-free R-modules.

^{*} This research was carried out when the first author was a visiting professor at the Hebrew University in 1983/84. The authors would like to thank Minerva-foundation and the United States Israel Binational Science Foundation for their financial support of this research.

^{2 -} Fundamenta Mathematicae CXXVI. 3