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Increasing strengthenings of cardinal function
inequalities

by

I Juhész and Z. Szentmikléssy (Budapest)

Abstract. We prove that the following increasing strengthenings of two cardinal function
inequalities given in [2] and [1] respectively are valid.

THEOREM 1. If X is Ty and X = U Xz (l.e. X is the union of an increasing chain of its sub~
-1
spaces Xo) and c(Xz)x(Xz) < % for all @ then |X|< 2%,

+
THEOREM 2. If X is Ty and X = \J X,, where X, is T, and wL(X2) 2(Xs) < % for all o then
Xl < 2% @

In [3] the first author has initiated the study of strengthening certain cardinal
function inequalities in the following manner. A general form of a cardinal function.
inequality may be given as follows: If ¢ is some given cardinal function and X is.
a space having some property P then ¢(X) < %. We call an increasing strengthening

of this inequality any statement of the following form: If X = [jX, is the in-
2

creasing union of its subspaces X, where every X, has property P and X has
property Q then o (X) <. i

A number of such increasing strengthenings of inequalities were proven in [3],.
as a major problem, however, it remained open whether the inequality |X}
<2°®1%) " for any T, space X, admits such an increasing strengthening.

Theorem 1 of the present paper gives the affirmative answer to this question.
The ideas needed in the proof of Theorem 1, with appropriate modifications, also-
allowed us to show that the inequality | X| < 2"2®*® for any T, space X proved
in [1] also admits an increasing strengthening.

Notation and terminology, unless otherwise explained, is identical with that
used in [3].

THEOREM 1. If X = L} X, is T, and
a
c(X) (XD <%

holds for each « then
|X|<2%
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The proof of Theorem 1 will be based on three lemmas given below.

LemMA 1. Let X be an arbitrary space, Y a subspace of X and p a point in ¥,
-moreover B be a complete subalgebra of RO(X) (in symbols B < RO(X)), the com-
_plete Boolean algebra of all regular open subsets of X, such that

(x) forevery B ifpeU% thenpe Y€ n Y.
Then for every open neighbourhood U of p in X there is a member B(U) e & such

that pe B(U) and if Be & satisfies Un Y < B then B(U)< B is also valid.
Proof. Let % be the collection of all members C e B satisfying

CnUnY=g.

Then U nUn Y = @ holds as well, hence p¢ U % N ¥ consequently, by (),
p#U%. We claim that
BU)=XxU%ca
is as required. Now p € B(U) is obvious.
Next, if Be# and Un Y B then clearly C= X\Be ¥, hence CCU%,
and thus
BU)=X\U%cX\C=2B.N

Remark. If we have ¢(%) <x, ie. the cellularity of # is <, which is true
.. if ¢(X)<x, then in Lemma 1 (x) may clearly be replaced by the following
weaker condition:

(»), for every ¥ e [B]%*, if pe(J€ then pc %  T.

Before we formulate our next lemma we need some definitions. First, if a space
s the union of its subspaces X,, we say that X has the fine topology with respect
to the system {X,} of these subspaces provided that G = X is open in X if and only
if G n X, is open in the subspace X, for all «. Clearly this means that X has the
finest topology with respect to which all the X, have the same induced subspace
topology.

We shall need the following simple proposition concerning increasing unions
with'the fine topology.

ProvosITION. Let X = ) {X,: wei} where A is a regular cardinal and
t(p, X,) <A holds for every w.c X and p e X, and assume that X has the fine topology
Wwith respect to the system {X,: ae A}. Then for every set A = X we have

A=-U{dn % ael).

Proof. Clearly it suffices to show that the right-hand side of this equality,
let us denote it by B for short, is closed in X Since X has the fine topology, however,
this is equivalent to showing that B A X, is closed in X, for each fe . But

BoX,=U{daX,n X, aed)
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is an increasing A-type union of closed subsets of X, s Which is indeed closed in X,
since we have #(p, Xp) <4 for all p e X;.

Now we are ready to formulate the second lemma needed for the proof of
Theorem 1:

LeMMA 2. Let X = O{Xa: we i}, where X = (2%, X has the fine topology
wrt. {X,: a€ 2} and x(X) <% for each ael. Then #<RO(X), c(B)< % and
1Bl < A imply x(p, B)<x for all pe X.

Proof. Let us first assume that actually |#|<J1. Given pe X, for every
% € [B]%* there is an ordinal g € J such that p EW implies pe \J% n X, since
X has the fine topology and

1, X)<x(p, X)<n<i
is valid for all w € 4; hence the above proposition can be applied. Since
B < B < Y = 2 <2,

we may then find oy € A such that p € X, and we < oy for all € e [B]5% Clearly, -
then (),, hence by ¢(%#) < also () of Lemma 1, will be satisfied for p, # and
Y X,.

Now let {U,: vex} be a family of open neighbourhoods of p in X such that
{U, 0 X,,: v € } is a neighbourhood base of p in X,,. We may then apply Lemma 1
forp, #, ¥ = X,, and each U, to obtain B, € & such that p € B, and B, = B whenever
U, n X, = Be #. However, then {B,: ve x} clearly establishes y(p, &) < » since
for every Be # with p e B there is a ve » with U, n X,, < B.

Now, assume that |%] = A. Applying c(#) < x we may then write

ﬂ:d{%a: ael}

where |%,] <A and %, <% for each o € \. We may also assume that if we ] and
¢f(o) > x then :

B, = LJ.%‘,;: pea}.

Let us put § = {a e A: ¢f(w) > x}. For every « € § we may apply the above partial
result to 4, to obtain ¥, € [#,]%* which is a basis of pin 48,. Since ¢f () > » and
%, = U %, we have some ¢(x)ea such that

B

&a

Co = By -

The function ¢ thus defined is regressive on the stationary subset S of 4, hence
by Neumer’s theorem there is some fe i and S; € [ST* such that ¢(a) = g for
all ¢ €.S;. But

]

[#1% < @9 = 2
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then implies the existence of some % e [ﬂﬂ]s” and S, € [S,]* such that €, =%
for all w € S,. Then ¥ is a basis of p in 8, for cofinally many « e A hence in # as
well. B

The following lemma is actually a variant of the inequality |X| < 2°%) 2
for Xe 7 ,.

LemmaA 3. If X is a set, & = P(X) is a family of subsets of X that T,-separates
the points of X, & is closed under finite intersections, ¢(%#) < and y(p, B) < » for
all pe X then | X| <2%.

Proof. A direct proof based on the Erdés-Rado theorem (2%)* — (x*)2
could be given, however the lemma also follows from the above cardinal function
inequality as applied to the topology on X generated by #. MW

Now we may turn to the proof of Theorem 1. Note that if X = l} {X;:wep}
€75 and x(Xy)-¢(X,) < » then |X,] < 2% hence we may assume that p < 1 = (29)*,
But if g <A then

X <2l <27,

hence it will suffice to show that u = 1-is impossible.

Assume, reasoning indirectly, that p = 1. Clearly we may also assume that X
has the fine topology w.r.t. {X,: « e A} since this topology on X is also T,. Since
¢(X,) < % holds for all a €4, we have (e.g. by [3], 6.1) c(X) < %. Clearly, we have
[X] = 2; hence by X'e I, and by ¢(RO(X)) < c(X) < x we may find a complete
subalgebra # < RO (X) with | 8| < 1 that T,-separates the points of X. By Lemma 2
then ¥ (p, #)< xis valid for all p € X. But then, by ¢(%) < c(RO(X)) < %, Lemma 3
may also be applied to X and %, consequently we must have | X} <2% <4, a contra-
diction. This completes the proof of Theorem 1. M

Now we turn to giving an increasing strengthening of the inequality |X]
< 2" proved in [1] for X €T, Let us note that it is still open whether
this inequality is valid for X e 775 as well. In any case our increasing strengthening
will only require X to be T, while of course X, e 7, will be assumed.

THEOREM 2, If X = LJ X, is Ts where X, is Ty and wL(X,) x(X,) < % holds
Sfor each o then | X|< 2%

The proof of Theorem 2 runs analogously to that of Theorem 1 and is based
on three analogous Jemmas.

Lemma 1. Let X be a space, Y a T, subspace of X with wL(¥Y)<x% and pe ¥
be such that y(p, Y)< % and t(p, X) < x. Assume Sfurthermore that # is a x-com-
plete subalgebra of RO(X), in symbgls: B <, RO(X). (This means that Int @ e #
Jor all e [BI~*). If p, B and ¥ satisfy condition (), formulated in the remark
made after Lemma 1 as well as condition (%), to be formulated below, then Sfor every
open neighbourhood U of p there is @ member B(U) € # such that p € B(U) and for
every Be # if Un Y<B then B{U)n Y<B.

(++), ~For every Se[Y]* if p ¢ § then thére is a Be # suchthat S Band p ¢ B.
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Proof. Let us start by fixing a family ¥ of open neighbourhoods of p in X
such that [¥'|<% and {V'n ¥: Ve ¥} is a neighbourhood basis of pinY.
For any neighbourhood ¥ of p in X let us put

EV)={BeB:BnVnY=g0)}.

We claim that p ¢ UZ(¥). Indeed, if pe U#(V) then by #(p, X)< » there is
some %, € [#(V)]* with p e U%, as well, hence (%), implies pelJ¥%, n Y which
is clearly impossible since U%, AV A ¥ = @.

Now, we claim that given U there is a neighbourhood Ve ¥ of p such that

Fy=YnUgW)=Ug(V).
Again, we reason indirectly, i.e. assume that for every Ve ¥ there is a point
v € FNU% (V).

Then 8= {gy: Ve?}e[Y]™ and S<(B(U) implies p ¢S, hence by (#+),
there is some Be % with S<B and p ¢ B. Let Ve ¥ be such that ¥ A Y= X\B.
Then Be%(V) and ¢y € S< B, contradicting that wEUG(V)oB.

Thus we may indeed fix Ve ¥ such that (V) covers Fy. But Fy is closed
in ¥, hence Ye 74 and wL(Y) <« imply (cf. [3], 2.35) that there is some %,(U)
€ [€(V)]* such that F; = (J%,(U). We claim that

BU) = XNU¥%,(U) e #

is as required. That B(U)e & follows from the %-completeness of . Next,

PeB(U) holds because %,(U)=%(V) and p¢UZ (V). Finally, if Be# and
Un Y= B then X\Be %(U), consequently

BU) " Y = INU%,(U) = I\Fy = NU%(U) = I"\X~B = B. N

In our next lemma we shail again use the notation A = (297.

LemMA 2'. Let X = L}‘{X‘,: o« € A} where X has the fine topology w.r.t. {X,: nel},
X.e T, and wL(X,) x(X)<x for all ael, Surthermore # <, RO(X) is such
that | B < A and for every pe X and Se[X]5* if p¢ S then there is some Be B
with S B and p ¢ B. Then for every pe X we have %(p, B <%

Proof. First, since #(p, X,) Sx(p, X,) <% <A holds for all ue 2 and pe X,
we can apply the above proposition to conclude that 4 = (J {4 n X,: a4} for
each set 4 = X. Clearly, this implies then that #(p, X) <x for allpe X.

Let us fix some p € X. In order to show that x(p, B) < x let us first decompose #
into an increasing union

e

B = L}{.%: ael},
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where %,<, % and |4,} <1 for each oe A. We may clearly assume that if e i

with ¢f(e) > » then 4, = d {B;: Bea).

In view of our assumptions (which imply |X,] <2% <4 for all o € 4) we may
easily define a map ¢@: A — A such that the following two conditions be valid for
all wed:

(1) if Se[X,]% and p ¢ S then there is some B & B, with S=B and p ¢ B;

@) if #e[B,]%* and pe U7 then pe UG N Xy

Let us put

C={xei: Vp(Bea— o(pea)},

then C is closed unbounded in A. Thus if § = {xel: pe X, and ¢f(«) > x} then
C N § is stationary in 1. It is easy to check that if @€ C'n S then the conditions
of Lemma 1’ are satisfied for X,p, Y= X, and 4 = 4,.
Let us fix, for e C n S, a family %, of open neighbourhoods of p in X such
that |%,|<x and
{UnX;: Ue}

is a neighbourhood basis of p in X,. Then applying Lemma 1’ we consider for
each Ue %, the set B(U) e &, satisfying p e B(U) and B(U) n Y= B whenever
Be %, and U Y < B. Since ¢f(x) > we may then find for every ke Cn S an
ordinal (o) <o such that

G, = {BU): Ue,} c Bye-

But then an application of Neumer’s theorem and a simple counting argument
yields us a set S; € [C 1 S1, an ordinal fe A and a family ¥ [ﬂp]s" such that
%, =% for all a e S;.

We claim that ¢ is a basis for p in #. Assume, indirectly, that p e Be & but
C\B # @ for all Ce¥, then there is some o € S such that (C\B) n X, # @ for
all Ce¥ as well. But now ¢ =%, = {B(U): Ue%,} and thus there is some
Ue¥, with Un X,=B hence B(U)n X,=B as well, contradicting that
(BUNB)N X, # ©. W |

Levma 3. Let X = ) {X,: a e A} (where A = (29*), |X.d < 2* and wL(X,) <x
for all o€k, moreover B < RO(X) be such that for every a e A there is some Be &
with

X,cBcB# X.
Then there is a point pe X with x(p, &) > x.
Proof. Assume, indirectly, that for each p e X there is a #-basis €, € [#]5*,
For « € 1 we put
F=U {%p: PEXa}a
furthermore
W= {V e8] X,cT7 + X}.

icm

©

Cardinal function inequalities 215

By our assumptions we have |%,] < 2% For each o € A we may then find an ordinak
@ () € A such that

X:p(u)\U'V # 0
for all V' e¥,.

Let a € 4 be such that f e« implies ¢(f) e « (there is a closed unbounded set
of such ordinals ¢) and moreover satisfying ¢f () > %. Let us pick Be & in such.
a way that X, = B and B # X. For every PE€ X, we may then find a set C €%,
with p e C, = B, and applying wL(X,) < x to the open cover {Coipe X} of X, we:
can choose

¥V el{Cp: pe X}

such that Xuc:[):/;. But
UrcB#x,

hence ¥ & #,, and since ¢f(e)) > % we actually have some B €a such that ¥ e I
But then ¢(B) <« holds, i.e.

INUT # @,

contradicting X, < W . This completes the proof of Lemma 3'. B

The proof of Theorem 2 can now be finjshed as follows. Since again X <2
for each «, it suffices to show that our increasing union has length <A.

Assume otherwise, ie. X = L} {X.: @€} and [X] = A Since X is T, and.
for every pe X and ae i

{129 AVEF HESR

it follows e.g. from [3], 2.5 that !X’:l—s 2%, hence X, # X. Thus by the regularity
of X we may clearly find & <, RO(X) such that [#] <A and

E(i) if peX, Se[X]* and p¢ S then there is some Be & with S B and
P¢B;
(i) for every a & A there is some Be # with

X,=B and B#X.

Now if we consider the fine topology ¢ on X w.r.t. {X,: o ¢ A} then this topology
may not be T3, however the existence of # <, RO(X, o) with || < and with,
properties (i) and (if) will remain valid. For (i) this makes use of the fact that every
S € [X]¥ is contained in some X,, hence by |X.<2* we have some f €4 with
S =X, = Xy and thus §¢ = §. The rest of (i) and (ii) follow easily because for any
BeRO(X) one clearly has

BcntB'cBcB,
and Int,B’e RO(X, o).
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Since all we need of the regularity of X is just the existence of such a x-com-
plete subalgebra # of RO(X), we assume in what follows that X has the fine
topology wrt. {X,: aed}.

But then, in view of (i), Lemma 2 applies and yields us x(p, %) < x for all
peX. On the other hand since (i) is satisfied Lemma 3’ can also be apl?lied and
this gives us x(p, B)> x for some pe X. This contradiction then finishes the
proof. B

COROLLARY. If X is Ty and X = \J X, with wL(X.) z(X,) < for all o then
X1 <2% “

Proof. Assume, indirectly, that X = LJ {X,;: ael} and [X] =2 =(29"
Similarly as in the above proof we can see that |X,| < 2* for each o, consequently
wL(X,) 1(X,) < is also valid because X, = Xj holds for some Bel But X, is

also T, and thus by X = UT {X,: «e 1} we get a contradiction with Theorem 2.
Note that this corollary does not follow immediately from Theorem 2 because
a subspace of a T, space is not necessarily 7.
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Modules over arbitrary domains IT
by

Riidiger Gobel (Essen) and Saharon Shelah® (Jerusalem)

Abstract, Let R be a commutative ring and SSR a multiplicatively closed subset of R.
Defining torsion-free modules with respect to S, we derive new results of this category extending
from [§] = Ro. In §8 we realize any R-algebra 4 with torsion-free, reduced R-module structure
on modules G as

EndG = AQInesG

where Ines G are all endomorphisms on G with -complete image in G. In §9 we determine TnesG
more explicitely and derive properties of G from the given algebra 4.

§ 1. Introduction. We will discuss right R-modules G = G, over nonzero
commutative rings R. The ring R will have.a fixed multiplicatively closed subset S
such that R as an R-module is S-reduced and S-torsion-free. These well-known

conditions on a module G are () Gs = 0 respectively (gs = 0= g = 0) for all
a8

geaq, ses. }

Many questions on the existence of R-modules with prescribed properties
can be reduced to representation theorems of R-algebras 4 as endomorphism
algebras — in many cases modulo some “small” or “inessential” endomorphisms.
Well-known examples for such problems are decomposition-properties related
with the Krull-Remak-Schmidt Theorem -— respectively related with Kaplansky's
test problems, other derive from questions on prescribed automorphism groups
or topologies. The investigation of classical problems in module theory in this
sense goes back 10 a number of fundamental papers by A. L. 8. Corner; sce [CG]
for further references.

In the recent years these investigations have been extended to R-modules
of arbitrary large size, however under the restriction that § is essentially countable;
see [DG 1,2], [GS 1], [S 2,3] and [CG] for n uniform treatment and further ex-
tensions, including torsion, mixed and torsion-free R-modules.

* This research was catried out when the first authot was a visiting professor at the Hebrew
University in 1983/84. The authors would like to thank Minerva-foundation and the United
States Isracl Binational Science Foundation for their financial support of this research.
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