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Dedicated to the memory of V. A. Rokhlin

Abstract. A Boolean algebra is called retractive iff every ideal is the kernel of some endo-
morphism. The author observed that many retractive algebras actually have a slightly stronger
property which is defined and studied in this paper. As a byproduct we obtain a new proof of the
known result that the free product of two infinite Boolean algebras cannot be embedded into an
interval algebra, unless it is countable.

A Boolean algebra (BA for short) is called retractive iff for every ideal I there
is a subalgebra containing exactly one representative of each congruence class
modulo -I. To state the same in more advanced terminology: A BA is retractive
iff every ideal is the kernel of some idempotent endomorphism. For information
on retractive BA’s the reader may consult [5] (with motivations and some history)
or [1], § 6 (a list of results and open problems).

Via Stone duality retractiveness of BA’s translates into the following property
of topological spaces which will be called retractiveness as well: A BA is retractive
iff for every nonempty closed subset F of its Stone space X there is a retraction
f: X F, i.e. a continuous mapping which is the identity on F.

Tt seems that the first to use this concept was Sierpifiski who proved that all
subspaces of the irrationals are retractive [7]. A slight modification of his proof
works for all zero-dimensional separable metric spaces [4], p. 169. Actually Sier-
pinski proved slightly more than retractiveness. He constructed retractions f: X —F
with the additional property that every point x that is moved by f has a neighbour-
hood U which f sends entirely to the same point as x, Le. f(U) = {f(x)}.

More concisely: £ (3)\{»} is open for each y e X. Below such retractions
will be called strong.

This paper is devoted to the study of those BA’s, called strongly retractive,
whose Stone spaces admit a strong retraction onto each of their nonempty closed
subsets.

First we give a Boolean algebraic translation of this concept. Improving on
a result of Rubin’s and using his idea we then prove that all subalgebras of interval
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algebras are strongly retractive. Finally we observe that the free product of two
infinite BA’s is either countable or not strongly retractive. This gives a new proof
of the known fact ([5] or rather [9]) that the free product of infinite BA’s cannot
be embedded into an interval algebra unless it is countable. Under MA or CH the
observation also yields examples of retractive but not strongly retractive BA’s.

The Boolean operations will be denoted by A, v, —, the constants by 0, 1.
a4 <b stands for aAb = a, and a—b abbreviates a A(—b). For the set-theoretical
concepts we use the symbols N, U, \, < and @. When dealing with an algebra
of sets both denotations are possible and will be used alternatively according to
what the author feels more suggestive.

1. Dualization. To describe strong retractiveness in Boolean algebraic terms
we need the following notion.

DEFINITION. Suppose B is a subalgebra of 4. Then ae 4 is called stable with
respect to B iff for all b € B either a<<b or anb = 0, i.e. a is not split by b.

THEOREM 1. A BA A is strongly retractive iff for each ideal I = A there is a sub-
algebra B A such that

1) BnI={0},

(2) A is generated by By I, and

(3) I is generated (as an ideal) by its stable w.r.t. B elements.

Proof. To prove necessity conceive 4 as consisting of all clopen subsets of
its Stone space X.

If Ic A is an ideal, then U= |)7 is an open subset of X. Hence there is
4 strong retraction f: X — X\U. For every a e 4 the set a\U is clopen in X\U.
S (a\U) is, therefore, clopen in X and hence an element of A.

Put B = {f~!(a\U): ae 4}.

The easy verification that B is a subalgebra and B n I = {0} is left to the
Teader.

To see that B U I generates 4 consider any a e 4. Since f is the identity on
X\U it follows that

N THa\U) U and, fiHa\UpacU.
Consequently both sets are elements of I and

a = [fTHENUNSHoNUN)] L [anf M aN)]
is in the subalgebra generated by B and I.

To say that I is generated by its stable elements is to say that every point of U
has a stable neighbourhood. Consider any x e U. Since f is strong, there is some
neighbourhood ¥ of x such that (V) = {f(x)}. Then, cleatly, ¥ nf~1(a\U) = @
if f(x) ¢ a\U, and V< f~Ya\U) if f(x) e a\U. So V is stable.

For the proof of the other direction it is more convenient to consider X as
consisting of all ultrafilters of 4 with a base of the topology formed by all sets
{peX: aep}, where @ runs through 4. Then for every closed subset F < X there
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is some ideal 7= 4 such that F = {pe X: pnI= @}. Using the subalgebra B
that exists by assumption, we have to construct a strong retraction f: X — F. Put
f) = {la—D)vj: aepn B, i,jel}. The reader will easily verify that f(p) is
indeed an ultrafilter of A.

Suppose (a—i)vjef(p). Then deq implies (a—i)vjef(g). This proves
continuity. For p e F, i.e.,, p n I = @, we have to prove f(p) = p. Since both are
ultrafilters, p = f(p) will do. Consider cep. Bu T generates 4, so ¢ = (b—i)Vvj
for some b € B, and i, j € I. We have to prove b € p. From p n I = @ we have j ¢ p.
Together with (b—i)vjep this implies b—iep. From b—i<b we then conclude
bep. It remains to show that f is strong.

Suppose p n I # &. By assumption, [ is generated by its stable elements.
So, there is some stable i, e p n I. It will be sufficient to show that i, € ¢ implies
f(q) = f(p). This, in turn, is an obvious consequence of the identity

f(p)={(b-i)vj: iy <beB, i,jel}. If iy<b and i, ep, then b ep.

Hence the right-hand side is always contained in f(p) whether i, is stable or not.
Suppose, on the other hand, (b—i)vjef(p), i.e. bepn B and i,jel. Then
bep and iy e pimply b Afy # 0. From the stability of i, we have i, <b, as desired.

2. Strong retractiveness and interval algebras. Consider any linearly ordered
set R. By a left-closed, right-open interval we mean a set of one of the following
forms:

[, ) ={reR: a<y<f}, [~o0,f)={yeR:y<p} or
[, 0) = {yeR: a<y}.

The finite unions of such intervals together with & form a BA under the
set-theoretic operations. It will be called interval algebra on R and denoted by B(R).
Every nonzero element @ € B(R) has a unique representation

a = [“1: ﬂl) v [“z: ﬁz) v..u [ans ﬁn) 3

- with

— Koy <Py <<y < o <y < P, <A,

Call it the canonical from af-a.

The elements oy, B, ., 0y By will be called” endpvints_of g, If necessary, we
shall speak of right and left endpoints.

If O is a subset of R, then B(Q) is canonically isomorphic to the subalgebra
of B(R) consisting of those elements whose endpoints are in @ U {0}, We
identify B(Q) with that subalgebra.

More details on interval algebras can be found in [1], [5], and [6].

In [6] M. Rubin proves that every subalgebra of an interval algebra is retractive
(Theorem 5.1). His construction even yields strong retractiveness, as we shall
now see. ) '

THEOREM 2. If a BA is embeddable in an interval algebra, then it is strongly
retractive.
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Proof. Suppose 4 = B(R) and consider any ideal /< 4. We have to find a sub-
algebra B A with the properties indicated in Theorem 1.

Choose a maximal subset @ of R such that B(Q) n I = {0}. Rubin’s argument
[6], Theorem 5.1, ensures us that B = B(Q) N 4 is a subalgebra of A such that
BnI={0} and 4 is generated by Bu L

To prove that I is generated by its stable elements we first give a description
of them.

If a=I[o,B)u ..., B,) is the canonical form, denote by ||a|| the set

{ala ﬁl: oy Uy ﬂn}\(Q U {ioo}) .

Call [;, B;) an essential part of a, if either a; or §; is in |[«]|. Note that every non-
" zero element of I has an essential part, because B(Q) n I = {0}.

LemMa 1. If ael is not stable w.r.t. B, then there is some be B such that
lla Abj| is not empty, but strictly contained in |la|].

Note that the endpoints of a Ab and a—b are endpoints of either a or b. Since
b e B(Q), we must have |laabd|| u [la—b|| = |la]l.

- Proof of the Lemma. If a €T is not stable, then there is some ¢ e B with
anc# 0and a—c # 0. We show that either ¢ or —c does the job. [lanc|| ¢ @
and |la—c|| # @ since both elements are in I and BT = {0}.

It remains to see that there is some element in ||a|| which is either not in
laacl] or not in |la—c||. We distinguish two cases.

(1) ¢ does not split any essential part of a.

Suppose [x, B) is an essential part of a and [x, ) < ¢. Then neither o nor # is
an endpoint of 2—c, but one of them is in ||a||. If [«, B) N ¢ = &, then neither o
nor f is an endpoint of anc.

(2) ¢ does split the essential part [, B) of a.

Then the following implications:are obvious (draw pictures and note that no
element of [la}| can be an endpoint of ¢) and prove our assertion.

If aellal] and aec, then a¢|la—c|.
If aellall and a¢c, then a¢||anc|.
If Bellall and Bec. then B¢ |la~c||.”
. If.fellall 'and B ¢c, then Bé|lanc|.

.’I‘o .end‘the proof of the theorem consider any a e I. Using induction on the
cardinality of ||alf we show that a is covered by stable elements. |Ja]] = & implies
a € B. Then a = 0 which is stable. The lemma tells us that « is stable if ||a]| consists
of one element.

Suppose ||a|| has n> 1 elements. If a is not itself stable, then the lemma yields
§ome be B with [laAb|| having at least one, say 9, but less than n elements. By
1nd}1<:tion hypothesis anb is covered by stable elements. It remains to show that
80 is 2—b. Since b has no endpoints outside Q U {+ o0}, y must be an “inner point”
of b. Being an endpoint of a, Y will, therefore, not be an endpoint of a—b. Con-
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sequently ||a—Dbl| has less elements than |lal} and the induction hypothesis implies
that a—b is covered by stable elements.

4. Strong retractiveness of free products. The question whether the free product
of two uncountable BA’s can be retractive is still open. As far as strong retractiveness
is concerned the situation is quite simple.

TuEoREM 3. If A and B are infinite BA’s and A % B is strongly retractive, then
both algebras must be countable.

Proof. The proof becomes much clearer if we use the topological language.
1et X and Y be the Stone spaces of 4 and B, respectively. Then 4 * B has the
Stone space X% Y.

Being (strongly) retractive, this space must be hereditarily normal (easy exer-
cise, or [3]). Hence X and Y are hereditarily Lindelof (Katetov’s theorem [2,2.7.15])
and, therefore, first countable. In particular, there is a convergent sequence in Y,
ie. w+1 embeds into Y. Since closed subspaces of strongly retractive spaces are
strongly retractive, we have reduced the theorem to the following special case:

If Xx(w+1) is strongly retractive, then X is second countable.

Consider a strong retraction f: Xx(w+1) - Xx{w}. For fixed xe X and
neo denote by U,, the subset of X for which Upx{n} =f “i(x, ) 0 Xx{n}.
£ being strong, each U, is clopen. For n fixed the sets U, are pairwise disjoint and
cover X. Thus only finitely many of them can be nonempty. Then the collection
{U,:neo,xeX, Uy # 9} is countable. We show that it constitutes a base of -X.

Suppose ¥ < X is nonempty and clopen. We claim that there is a number N
such that U,,c ¥ holds for all >N and xe V.

If this were not the case, we could find an increasing sequence (M)xe o Of natural
numbers and points x, ¢ ¥ such that f(x;, n) € V' x {@}. By compactness and first
countability we can assume that the sequence (Xp)e, converges to some point y,
which cannot be in ¥. Then, on the one hand,

T, @) = limf(x, m) € Vx{w}
and, on the other hand,
fy o) = (3, 0) ¢ Vx{w}.

The contradiction proves the claim.

Since X\V is as clopen as V, for sufficiently large n we have U, <= X\V for
all x ¢ V. This shows ¥ = | {U,: x € ¥} for all sufficiently large 7, and we are done,

COROLLARY. No free product of an uncountable BA and an infinite BA can be
embedded into an interval algebra.

This was known before. Rotman [6] derived it from a rather deep topological
theorem of Treybig and Ward [9].

5. Examples. To complete our discussion of strong retractiveness we would
like to have examples of retractive, but not strongly retractive BA’s and examples of
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strongly retractive BA’s that are not embeddable in interval algebras. So far, no
such examples are known in ZFC. If, however, we are ready to accept additional
.axioms, we can get examples from the literature.

Rubin proved [6], 6.7. (), that B(S)  B(w) is retractive for a Suslin line .
Under either MA or CH he also indicated uncountable subsets Q of the real line
such that B(Q) * B(w) is retractive [6], 6.7. (b, ¢). By Theorem 3 none of these
free products can be strongly retractive.

The second type of examples arises from two constructions due to Rubin
(his SC algebra in [6]) and to Shelah [8]. Rubin used o, and Shelah CH.

Both algebras are not embeddable in interval algebras, but have the following
two properties:

(1) Every factor algebra by a dense ideal is countable,

" (2) Every ideal is countably generated.

Property (1) is sufficient to guarantee retractiveness. Together with (2) it gives
strong retractiveness. This is an easy consequence of the following lemma (compare
the argument in [6], 4.3. (c)).

LemMa 2. If I is countably generated and AJI is countable, then there is a sub-
.algebra B as required in Theorem 1.

Proof. Take enumeration (7,),e, Of a set generating I and («,),,, such that

n-1 n
All={a,/I: new}. For new and £€{0, 1}"*1 put it = (j,— Vi A N ey,

m=0 m=0 .
where, as usual, 1# = a and 0a = —a. Then the elements i generate I and every a,
splits just finitely many of them. Consequently, one can choose ¢, € 4,/I such that ¢,
-does not split any 7. That means that I has a set of generators that are stable w.r.t.
the subalgebra C generated by all ¢,. The rest of the proof goes as in the mere re-
dractive case. Inductively one picks b, C ¢,/ such that the subalgebra generated
by {bo, by, ..., b,} has only 0 in common with I. The subalgebra generated by all b,
then is as desired.

T would like to end the paper with a problem. Find an example of a non-
Tetractive BA which has, however, the weaker property that every ideal is the kernel
of some endomorphism. Speaking topologically, every closed subset of the Stone
.space is a continuous image.
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