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Tiling with smooth and rotund tiles
by

Victor Klee (Scattle), Elisabetta Maluta and Clemente Zanco™ (Milanoy

Abstract. Without assuming local finiteness, this paper studies tilings of topological vector
spaces by convex sets that are bounded or finitely bounded. The paper was motivated by a wish
to ascertain, in the infinite as well as the finite-dimensional case, to what extent the tiles can be
smooth or rotund. Various limitations are established. For example, no space of dimension > 2
admits a countable rotund tiling, and tilings that are uniformly smooth or uniformly rotund are
excluded under certain hypotheses. On the other hand, some nonseparable locally convex spaces
admit tilings in which each tile is both smooth and rotund. Several unsolved problems remain.

Tntroduction. A collection % of subsets of a topological space S is a covering
if § = ®. It is a packing if |#]> 1, each member of € is the closure of its non-
empty interior, and the interiors are disjoint. A tiling is a collection that is both
a covering and a packing, and the members of a tiling are tiles. ‘

A subset of a topological vector space is here called a bc-set (resp. fe-set) if
it is closed, convex and bounded (resp. Sfinitely bounded (has bounded intersection
with each finite-dimensional subspace)). Along with certain other adjectives (e.g.
closed, convex, smooth, rotund), the prefixes be and fc are applied to @ collection ¥
if they apply to each member of ¥. However, some adjectives refer to % as a col-
lection or to the interactions among members of ¥, and we rely on context for
the necessary distinctions. For example, ¥ is countable if %] <%, digjoint if no
two members intersect, and locally finite if each point of the space has a neighbor-
hood that intersects only finitely many members of %.

In a locally finite be-tiling of R’, each tile is a d-polytope [3] [171, and at least for
d <3 an arbitrary d-polytope P may serve asa prototile in the sense that R admits
a locally finite tiling in which each tile is combinatorially equivalent to P [4] [13].
However, without the assumption of local finiteness, little is known even in
the plane, and that assumption is inappropriate for the study of bc-tilings of in-
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finite-dimensional spaces. It is true that each separable normed linear space admits
a locally finite fc-tiling (by sets that are in a sense “parallelotopes”) [6]. However,
a theorem of Corson [1] asserts that for any bc-covering € of a normed linear
space that has-an infinite-dimensional reflexive subspace, there is a finite-dimensional
(hence compact) parallelotope that intersects infinitely many members of %; thus
% is not locally finite.

As the terms are used here, a subset of a topological vector space is smooth
(resp. rotund) if it is closed, convex, has nonempty interior and has a unique
supporting hyperplane at each boundary point (resp. no segment in its boundary).
When local finiteness is not required, some of the tiles in a be-tiling of R may be
smooth and rotund, for each bc-packing 2 of R? whose union U # is closed can
be extended to a be-tiling by adding d-cubes of various sizes. Nevertheless, it does
seem “intuitively obvious” that in a be-tiling of a normed linear space of di-

_ mension >2, at least some of the tiles must have boundaries with “sharp™ places
(hence fail to be smooth) or “fat” places (hence fail to be rotund). However, we
are able to prove this only under various supplementary hypotheses, and in view
of our examples it would not surprise us if certain nonseparable normed linear
spaces admit be- (or at least fc-) tilings in which all tiles are smooth and rotund.

Throughout the paper, X denotes a normed linear space. A body in X is
a be-set with nonempty interior, and a roofed body is a pair (X, r) consisting of
a body X and an interior point r (the root) of K. For each @ >0, B, is the ball
{xe X: ||x|| < ¢}. For an arbitrary c e X, the ball with center ¢ and radius g is the
set c+B,.

Use is made of the space 9 of all bodies G = R? such that 0 e int G; this space
is metrized by the Hausdorff metric based on the Buclidean metric for R%. An
important role is played by the fact that for each ¢€]l, oo[ the set

9 ={Ge%": Bl cGc Bl c ¢ .
is compact, where Bj is the ball in R? with center 0 and radius ¢. This is used in
conjunction with the theorem of Mahler [10] and Macbeath [9], asserting that for
cach 4 there exists g, € ]1, oo[ such that each member of %* that is symmetric about
the origin can be mapped, by a suitable linear transformation of R?, onto a member
of %,. Other main tools arc as follows:

Sierpifiski’s theorem [8] [14] that a continuum does not admit a countable
disjoint covering by closed proper- subsets;

a method of transfinite construction used in [5] [6] to show that for each infinite
cardinal m such that m™ = s, the space ! *(m) admits a be-tiling and ! Y(m) admits
a disjoint tiling by balls of unit radius;

. some machinery developed in [7] (based on the Mahler~Macbeath theorem)

for dealing with. uniform properties of collections of rooted bodies;

the theorem of Corson [1] mentioned earlier.

Our section headings are as follows: 1. Countable convex tilings; 2. Some

!
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examples of uncountable fe-tilings; 3. Finding points that are covered by many
nonoverlapping translates; 4. Some limitations on tile-shape. .

1. Countable convex tilings. This section establishes some general properties
of countable convex tilings, with special attention to consequences for the smooth-
ness or rotundity of tiles. |

1.1, LEMMA. If € is a countable closed covering of a Hausdorff space S and

# ={C, nCp: Cy,C,6%, Cy # Co}

then no subcontimum of S~ \J)A intersects more than one member of €.

Proof. For an arbitrary subcontinuum Y of . S~ A, the .collf:’ctiéyr:
{Cn Y: Ce®)} is a countable disjoint clos§d covering of Y. By Sierpinski’s
theorem [14], only one member of this collection is nonempty. M

The following result is sharpened in Corollary 1.7 below.

1.2. COROLLARY. A topological vector space of dimension >2 does not admit
a countable rotund tiling. ‘

Proof. Suppose there is such a tiling %, and let & be as in Lemma 1.L Smc.c
the tiles are rotund and their interiors are disjoint, each noneanty me.mber .of A is
a singleton. Thus the set |J A" is countable, and_since thg space i of .dlmensw,n =2,
there is a segment that misses {J " and has its ends in the interiors of different
tiles, That contradicts 1.1 and completes the proof. M

1.3. LeMMA. Suppose that p and r are points of a topological vector space X zhr{t
is not the union of countably many closed proper subflats, and that the s.egment [p ,b ll ]
crosses a closed hyperplane H and lies in an open set V. Suppose tl.zat Zisa cou;tlmh e;
collection of closed flats of codimension =2 in X. Then there exists g € H such tha

Ip.qdulg, ric¥V~U2.
Proof. We may assume without loss of generality that 0 e [p, 7] N H, whence

the space X is both algebraically and topologically the direct sum of the hyperplane
H and the line L = Rp. For each Je 2 let

J,=HnaffJu{p) and J=Hn aff(Tu {r}),

closed. proper subflats of H, and let »
g ={,Jegtu{/:Je2}.

. . . £0
Each neighborhood of 0 in H includes a point ¢ ¢U¥, forifa ne}lfhboﬁﬁct); ]:
in H were covered by ¢ then X would be covered by the countable co

{eG+L: ¢ rational, Ge¥%}

U# then the 2-gon 1p,q]v l4.7l

of closed proper subflats of X. If g€ e sy st that ths 2-50n

misses |2, and by choosing g sufficiently close to
liesin V. &
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1.4. LEMMA. Suppose that X is a topological vector space which has a closed
hyperplane and is not the union of countably many closed proper subflats. Suppose
that € is a countable closed covering of X,

H ={C;nCy: C,Cre %, Cy # Cy},
M = {Ke A claflK is of codimension <1 in X},

and V' is.a component of X~ cll) . Then any two points of V are Joined in V by
a polygonal path which, when its end are omitted, intersects only one member of %.

Proof. Let G be a closed hyperplane in X, and use the term G-path to denote
a polygonal path in which no edge is parallel to G. Since the space X is locally con-
nected, the component V' of the open set X~ cl() 4 is itself an open subset of X,
Consider an arbitrary pair v, v’ of points of ¥, and let ¥ denote the set of all points
of V that are joined to v by a G-path in V. Then ve V’, and a routine argument
shows that ¥’ is both open and closed relative to V, so it follows from s con-
nectedness that ' = ¥ and hence there is a G-path P from v to v’ in V. Since P is
compact and ¥ is open, there is a neighborhood U, of the origin in X such that
P+U, =¥, and since X is a topological vector space there is a neighborhood U,
of the origin such that

Uy=[0,11U0;, and U+U+U+U =U,.
Let the polygonai path
Q = [vg, 1]V [, 1] U . U [D21-1, v21]

be obtained by subdividing the edges of P (in particular, v, = v and vy =9) in
such a way that whenever 0<i< J<2l and j<i+2 then the segment [og, 1] is
not parallel to G and v, —v, € U;. Let the neighborhood U of the origin be such
that Uc U, and such that whenever 0<i<j<2! and j<i+2, wyev,+ U, and
w;€0;+U, then the segment [w;, w;] is not parallel to G. Note that [wi, wle ¥V
when i<j<i+2, for then

wiev+ U+ U +U
and for each A€ [0, 1] it is true that
Awit (1= w; € Av,+ [0, 1] U+(1— Ay, +]0, U +[0, 1]U, +[0, 11U
co+UyeP+U,c V.
Now let 2 = {claffK: Ke A~ 4} and apply Lemma 1.3 / times (with p
= D2i-2,7 =y, 1<i<]) to obtain a G-path
Q' = [vy, q;] U (90 2] U e U {931, 2]

from v to v’ in ¥ such that

2 nU9 < {vg, 0, ..., Var}

icm°®

Tiling with smooth and rotund tiles 273

and ¢; € v;+ U for each odd i. Then apply Lemma 1.3 /—1 more times (with p = ¢;,
F = (2, 1 <i<I-1) to obtain a G-path

Q" = oo, ]V [91, x] U ... U [g21-15 v21]
from v to v' in ¥V such that

Q" (U2 <o, v}

Each closed subarc of Q" ~ {v, '} is a subcontinuum of ¥~ {J2¢" and hence by
Lemma 1.1 intersects only one member of #. But then the same is obviously true
of the set Q" ~ {v, v'} itself. M

The following result is stated for simplicity in a Banach space, but the proof
clearly applies to more general topological vector spaces.

1.5. THEOREM. Suppose that T is a countable convex tiling of a Banach space X,
and F is the collection of all sets F such that F is the intersection of two tiles and the
affine hull of F is dense in o closed hyperplane of X. Then the interiors of the various
tiles are precisely the components of X ~cl|J&.*

Proof. If F is the intersection of a tile T' with another tile, then F is a convex
subset of I°s boundary, and the affine hull of F, being the union of all lines that
contain a segment in F, misses the interior of T. This implies that the present col-
lection # is (when 7 = %) the same as the collection 4 of Lemma 1.4. If a com-
ponent V' of X~ cl{JF intersects two tiles, then it intersects their interiors and
the conclusion of 1.4 is contradicted. Hence ¥ is contained in a unique tile T Since
V is open and intT is a connected subset of X~ cl(J&, it must be the case that
V=intT ®

1.6. COROLLARY. If X, I and F are as in 1.5, and F is finite, then I~ is finite.

Proof. Since |J# is closed, it follows from Theorem 1.5 that the boundary
of any tile is the union of a finite subcollection of #. There are only finitely many
such. subcollections, and no set is the boundary of more than two tiles. B

1.7. COROLLARY. If 7 is a countably infinite tiling of @ Banach space of dimension
=2, there are infinitely many sets that are the intersections of two nonrotund tiles.

Forno d>2 we know whether R admits a smooth be-tiling. The remaining
results. of this section are relevant but they do not settle the question. *

1.8. Tuoorem. If R does not admit a smooth be-tiling then neither does R° for
any e>d.

Proof. The proof is by induction on e. Suppose that e>d, 7 is a smooth
be-tiling of R%, and H is a hyperplane in R°. Each member of 7 is supported by
two translates of H, and since there are only countably many tiles there is a trans-
late J of H that does not support any tile. The collection

{TAJ: TeT, Tnl+ 0}

is easily seen to provide a smooth be-tiling of J and hence of R

* See note added at end of paper.
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1.9. THEOREM. Suppose that

J is a smooth be-tiling of R*;

B is the union of the boundaries of the tiles;

A (resp. A'") is the collection of all singletons {resp. segmentsy that are the
intersections of two tiles; A" = A"V A"

& is the collection of all segments [p, q) such that [p, q] is a maximal segment
in the boundary of some tile and 1p, q[ intersects no other tile.

Then the following statements are all true:

(i) No point belongs to more than two tiles.

(i) The members of A" are pairwise disjoint and the set R*~ ot is connected
but not continuumwise connected; indeed, no contimuum in R*~ ) A intersects more
than one tile.

(iii) If Sy, Sy ... i a sequence of pairwise disjoint segments in B, converging
to a limit Sy that is neither empty nor a singleton (boundedness of S, not assumed),
then Sy lies in a member S of & and Sy = lim (S;nJ), where J is the closed

i

halfplane that contains § and misses the interior of the tile that contains S.
i) If ky, ko, ... is a sequence of points converging to a point ko, where k; e K,
and the K;5 are distinct members of A, then K, = {ko} e A" or

lim (length of X)) =0

i~
and k, is an endpoint of the segment Ky e A",

Proof. (i) Considér an arbitrary point p € B. For each tile T p there is, by
smoothness, a unique line L(T') that supports T at p. For each pair of tiles T and
T, such that peT; n T, there is a line L(Ty, T,) that separates T; from T,, and
plainly L(Ty) = L(Ty, T;) = L(T,). If p should belong to a third tile 7, then
L(Ty, T,) = L(T5, T3) = L(T3, Ty), which is plainly impossible.

(if) Tt is immediate from Sierpifiski’s theorem that no continuum in R*~ (&
intersects more than one tile. Plainly & is countable and no member of 4 sepa-
rates R%, so if the segments that belong to 2" are pairwise disjoint it follows from
a theorem of Mullikin [12] (see also Miller [11]) that R* ~ {J " is connected. That
the members of %" are pairwise disjoint is a consequence of (i).

(i) Since boundedness of Sy is not assumed, convergence of (S}) to Sy is
assumed only in the sense [16] that

liminf(S;) = S = limsup(S,).

Plainly S, is a segment, ray or line and hence lies in a line L. For an appropriate
closed halfplane J bounded by L, there is an infinite set I of positive integers such
that the midpoint of §; belongs to J for each ie I, and such that either S, N L is
empty for each i€, or S; n L is a singleton for each i€ I and these singletons
progress monotonically on L as ie7 increases. In conjunction with the fact that
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Sy = lim S, this implies that the length of §;~.J converges to 0 as i e I increases,
iel ’

whence Sp = lim (S; nJ). From this it follows that (int7T)nJ = @& for each
©iel

tile T that intersects the interior of Sy, and hence the interior of S, is covered by
the boundaries of tiles that miss intJ. By smoothness, no point of L lies in two such
tiles, and hence by Sierpiniski’s theorem there is a unique tile that intersects (and
hence contains) the interior of S;. This establishes the existence of § as described
in (iii), and it is now also clear that Sy = lim (S; N J).
i+ co

(iv) Suppose that the set K, e is not a singleton, whence it is a segment
that is the intersection of two tiles Ty and T,. The point k&, being the limit of the
sequence (k;), is not intcrior to Ty U T, and hence is an endpoint of K. If the length
of K; does not converge to 0 as { — co then the sequence (X)) admits a subsequence
(S;) which converges, as in (iii), to a segment .S, that lies in a member of &. But
then Sy, N Ky = {ko} and k, belongs to three tiles, contradicting (i).

We do not know of any bc-tiling of R that satisfies conditions (i)-(iv) of
theorem 1.9. However, A. H. Stone (private communication) has constructed
a tiling of RY, by rectangular boxes with their edges parallel to the coordinate axes,
such that no point belongs to more than two tiles. When d = 2 his tiling satisfies
(ii) as well as (i).

We include the following result because of our belief that it may be useful
in deciding whether R? admits a smooth tiling.

1.10. THEOREM. Suppose that € is a countable compact covering of R?,
g ={C, nCy: C, CLe%, Cy # Cy, 1C1.00 Co >},

H is a closed subset of R? that contains \)9, and & {resp. M) is the collection of
all components of H that do (resp. do not) separate R2. If each -member of M is
bounded then the set \ )& is unbounded.

Proof. Assuming that cach member of .# is bounded and the set U¥Z is
bounded, we shall derive a contradiction. Let S§* denote the one-point compactifi-
cation of R, with p the point at infinity. Let 4" denote the collection of all singletons
in S2~ H and Ict @ = % U U A" From results of Whyburn [15] it follows that:

& 4 1s countable; ’

@ is an upper semicontinuous decomposition of S2;

there is 2 continuous mapping f of S2 onto a continuum Z such that the f~in-
verses of the points of Z are precisely the members of 2;

the cutpoints of Z are precisely the f-images of the members of &Z;

each true cyclic element of Z is topologically a 2-sphere.

Since the set |J.2Z is bounded in R?, the point f(p) admits a neighborhood U
in Z such that U is homeomorphic with R* and L

UcfIs*~H] v fIU.#].
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Let

Y = {yeR?: {y} = C; n C, for some C, C,e®ru{p}. v
From the relationship of . to %, the compaciness of M u ¥, and the countability
of # and of Y, it follows that there exist

v, wefHUI~{(UMYu T)

such that v and w belong to different members of ¥ and each to a unique member
of €. Then f(v) and f(w) are distinct points of the arcwise-connected set

U~fiU#) v Y]

and hence are joined by an arc 4 in this set. The sot f =14 is compact and the
restriction of f to this set is biunique and continuous, so f 14 is an arc in R? that
is simply covered by its intersections with the members of %. That contradicts
Sierpifiski’s theorem and completes the proof. &

2. Some examples of unconntable fc-tilings. Many basic questions concerning
tilability are still open. For example, it is apparently unknown for each dz>2
whether R? admits a smooth be-tiling, * and unknown whether the separable Hilbert
space (%) admits any be-tiling at all. However, on the basic of evidence from [5] and
[6] it seems reasomable to expect that uncountable tilings may behave quite dif-
ferently from countable tilings. That expectation is strengthened by the present sec-
tion, whose main goal is to construct, in a certain locally convex space, an un-
countable disjoint fe-tiling whose tiles are all smooth and rotund —in fact, they
are “canonical ellipsoids”. The construction is based on ideas from [5] and [6]
and is first described in an abstract setting, for it may be useful in other contexts
as well.

The general setup is a bit complicated, but seems to be necessary for our
purposes. The following assumptions are made: ‘

() » is an infinite initial (hence a limit) ordinal and (S,).<, is & system of
sets indexed by the ordinal numbers o <#;

(i) e<psn=58,<8;

@iii) 8, = S, where for each ordinal < n, S5 -= U Sy

(iv) for each « <n, K, is a family of collections of subsets of S,, with |K]>1
whenever K e A e K,; the empty collection belongs to K,;

(v) for each a<n, I, is the function whose domain is the collection

{K: K= S, and K n S, # O},

with I(K) = K~ S, for each set K in this domain;

(i) if w<n, A ek, and A=A or A = u{{p}} for a point
peS,~ A, then there exists £ €K, such that the restriction of I, to the col-
lection % is a one-to-one mapping of & onto the collection %';

* See note added at end of paper.
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(vii) for each limit ordinal A<n, J, is the function whose domain is the
collection

{K: K<=S8, and |[Kn S5[>1},

with Jy(K) == K n S5 for each set X in this domain;
(viii) if A is a limit ordinal <n and 2 is a collection of subsets of S; each of
cardinality >1, such that for cach a <4,

{KnS,: Ked and |Kn §)|>1}ekK,,
then there exists & € K, such that the restriction of J; to the collection % is a one-

to-one mapping of & onto .
Since # is an initial ordinal number, it is also a cardinal number, and the sct

Oy = {ordinal ¢: a < f}
is of cardinality <n for each ordinal f<n. The cardinal n is said to be regulur
if each cofinal subset of O, is of cardinality n.

2.1, TrEorREM. If the above conditions (i)~(viii) are satisfied, the cardinal muber
n is regular, and the set S, is of cardinality n, then there is a member of K, that
covers S,,.

Proof. Since |S,| = n, we may assume that the set S, is well-ordered by an
antireflexive relation < so as to be order-isomorphic with O,. Let « denote the
first member of S, and define the functions

£:8,-0, and (:8,—0,
as follows:
E(t) = min{xe 0,: t€S,}
{(@) = E@+1,

(1) = max{£(1), sup (@}+1 @eS,~{d).

(t € S}I) 3

The last definition involves a routine transfinite induction, and it follows from n’s
regularity that {(t) <n.
Now by a second transfinite induction we are going to define a function

H(): 8, 205
S0 ask to satisfy the following conditions:
H(@t)eKyy, 1€ Ua@ ((tesSy),
LK) = K(s) (or K(s)u {r) G<teS).

To start the construction, note that by (iv), the empty collection belongs to K-
and hence the application of (vi) with #” = {{a}} yields a collection " (a)
(= #)e Ky, with ae A ().
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Let b denote the second member of S, with respect to the well-ordering <,
and proceed as follows:

if €(b) < {(a) then b e Sy and {(b) = {(a)+1; comstruct A (b) € Ky by
applying (vi) with o7 = A'(a) or X' = A (@) v {{b}} according as be U A (a)
or b¢U A (a); '

if ¢{a) < E(B) then bé Sy, and { (%) = £(b)+1; apply (vi) and (viii) ap-
propriately to “extend” the collection (@) € Ky to a collection in Keayets ooos
working through the intermediate stages and arriving eventually at an extension
A € Kgpy- Then proceed as in the first case, applying (vi) to % or o U {{b}} ac-
cording as be or b¢ K, to obtain &£ = A (D).

For an arbitrary member ¢ of S,~ {a}, the construction of °(¢) from the
collections " (s) for s <t is entirely analogous to the construction of 4 (b) from
A (d). By induction, then, #(z) is defined for all e S, so as to satisfy the stated
conditions. The desired member of K,, covering S,, is then obtained by a final
application of (vii) with 4 =n. &

For a cardinal number n and for 1< p <o, let I”(n) denote the space of all

real-valued functions x on O, such that Y, |x(a)|’ < o0, and let I;(n) denote the
ae 0,

subspace consisting of all members x of ["(n) for which the support
suppx -= {a € 0, x(2) # 0} is finite.

2.2. COROLLARY. Suppose that m and n are infinite cardinal numbers, m™® = m,
and either n = m* (the successor of m) or m is regular and n = m. Let S, denote
1%(n) or 1(n), and for each a €O, let

S, = {x€S,: suppx<=0,}.

If families K,lEZZS' are given, for each w<n, such that conditions (iv)~(viii) are
satisfied, there is a member X of K, that covers S,. For each choice-function
et A - 8, (ie., c(K)eK for each Ke X) there exists U= O, for which |{U| = m
and the subspace

Sy = {xeS,: suppx = U}
is covered by the collection
{Kn Sy: KeK and ¢(K)eSy}.

Proof. Plainly the system (S,),<, satisfies conditions (i) and (ii). The hypo-
theses imply that n™ = n, whence |S,| = n (see 1.2 of [5] for the argument). They
imply also that » is regular, and from this it follows, since n >, and each member
of I”(n) has countable support, that condition (iii) is satisfied. Since conditions
(iv)—(viii) are part of our hypotheses, Theorem 2.1 is applicable and there exists
A eK, with YA = S,. )

To deal with the choice-function ¢, we adapt part of the reasoning (suggested
by W. Henson) of 3.2 of [6]. For each point s € S,, choose K(5) € 2" with s € K(s)

* ©
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and then set k(s) = ¢(K (s)) € K(s). Set U, = O,, and then construct the transfinite
sequences

CicCc..cCe... and UclUc ...cUﬂc...v

B<wy)
inductively as follows:
when f is a limit ordinal, C; = U C, and Uy = U Ug;
a<f x<p

when f = a+1, Cp = C,Uk(Sy,) and Uy = U,u U supps.
In the latter case, s6Cp

U, ~Ul<| U

supps| < Molk (Sy,)| < ol S| <ol U™
seCp~Cy

and from U, = m = m™ it follows that [Ug] = m. In the former case,
|Ul Sxosup{|Ul: «< B},

and when all relevant |U,|s are equal to s, so is | Uy|. Hence by induction, [Uy} = m
for all f <w,, and then with

. C=UC and U= U Uy,
B<oy p<oy
we have |U| <2%m = m and hence |U| = m. Plainly the subspace Sy has the
stated property. M
The following result was proved in [5], [6].

2.3, COROLLARY. If 1 < p <00 and m is an infinite cardinal for which m = m,
then the space 1%(m) is covered by a collection of balls of unit radius whose centers

form a 2MP-dispersed set. For p = 1 these balls provide a disjoint tiling of the space.

Proof. Apply 2.2 with n = m™. For edch « < n, let K, consist of all collections
of balls of unit radius in S, such that the centers form a 2! /. dispersed set (pairwise
distances > 2!/7). Tt follows from reasoning in [6] that the families K,, satisfy con-
ditions (iv)~(viii). For each ball K in the collection A of 2.2, let c(K) denote the
center of K. With |U| = m, the subspace Sy of 2.2 is in effect a replica of I*(m),
and the desired conclusion follows. B

When X is 12(n) or 1,(n), ce X, and a: O, — [0, 1], we define the set

E(e; @) = {xeX: 4@ = 0= x() = c@®; ¥ (M> < 1} :
ieOn a(i)>0 a(?)

Being closed for the I2-norm topology, it is also closed for any finer topology, and
being of I2-diameter <2, it is certainly finitely bounded. The set of all points of
E(c; a) for which = (resp. <) holds in < is the radial boundary tbd E(c; &) (resp.
radial interior tinE(c; a)). It is easily verified that the set E = E(c; a) is convex,
is radially rotund in the sense that rbd E contains no segment, and is radially smooth
in the sense that, relative to the affine hull of E, no point of rbd E lies on more than
one hyperplane that misses rinE. The set E(c; g) has nonempty interior with
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respect to the /% topology for X if and only if inf{z(i): i€ 0,} >0, and when

X = I%(n) the same is true with respect to the finest locally convex topology for X.
However, when X = I (n) and 2({)>0 for all ie O,, the set rinE(c; a) is open
with respect to the finest locally convex topology, and hence for this topology
E(c; a) is genuinely smooth and rotund in the sense defined earlier.

When a: 0,—]0, 1], the set E(c; @) will be called an n-canonical ellipsoid, or
simply an ellipsoid if there is no danger of confusion.

2.4. THEOREM. If m is an infinite cardinal for which m™ = m then each of the
spaces 1*(m) and 1,(m) admits a digjoint covering by m-~canonical ellipsoids. For | (m)
this is a smooth rotund fc-tiling with respect to the finest locally convex topology.

Proof. Let n = m*, and let S, and the S,s be as in Corollary 2.2. For each
a<n let K, denote the family of all disjoint collections of «-canonical ellipsoids
in S,, so that condition (iv) is certainly satisfied. To apply Corollary 2.2 we want
to prove that condition (vi) is satisfied if the Is are defined by (v) and condition
(viii) is satisfied if the J;s are defined by (vii).

Suppose that 2™ is as in (vi), so that for each K& o#” with |X|> 1 there exist
cg €S, and ag: 0,—~]0, 1] such that

K= {xeS,: Z (}—E—(%:G_c—)"(i)yg 1}.
ieO« K

I A" = A, then for each Ke X let

) o [s)-ckV
Ee= {"ES“”' Z( ak(i)‘") <1} :

where cx = (cg, 0) € S,.4 and ak = (ag, 1): Oy —]10,1]; set & = {Lg: Ke o
If o = A w {{p}}, take in S,.., (equipped with the /> norm) the ball B of unit
radius and center p’ = (p, 1). It follows from B’s uniform rotundity that each
Ke A is at positive distance from B; hence

inf{y: (x, ) e B for some xeK} =dg>0.

Set £ = {Lx: Ke A} U {B), where the Lgs are defined as above with cg = (cg, Oy
and ay = (ax, min{l, di/2}). In both cases the collection .& belongs to K., and
the restriction of I, to % maps % onto 2. This establishes (vi).

Now consider a limit ordinal A<n and a collection o of subsets of Sy as.
described in (viii). We want to produce a collection & € K » such that the restriction
of J;, to & is a one-to-one mapping of % onto #". Note that for each K & o it is

true that |K]> 1 and hence there exists ay <7 such that K n S, is an a-canonical
ellipsoid whenever ay <« < 1; also,

KnS)nS,=KnS, for op<a<f<i.

From this it follows that if Ly is the closure of K in’ S, (with respect to the /%
topology) then Ly is a A-canonical ellipsoid. (Note that Ly = K in the case:
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of 1,(n), and also in the case of 1%(n) when 1 is of cofinality >,.) The collection
P ={Ly: KeX } is mapped one-to-one by J; onto . Also, £ is disjoint, for
if G,Ke', pelsnLg, and

max{ug, oxt <f <A

then the natural projection of p onto S, belongs to both G NSy and K n S, an
impossibility since these intersections belong to the same member of Kj. Since
(vi) and (viii) have been verified, the first part of 2.2 yields the existence of A" K,
with U % equal to I2(n) or I(n). To pass from A to the desired covering of 1?(m)
or I (m), apply the second part of 2.2 with the choice-function that associates to
any K€ 4 its center. Note that the subspace Sy is a replica of I%(m) or 1,(m), and
cach intersection K n Sy is a canonical ellipsoid in Sy. B

3. Finding points that are covered by many nonoverlapping tramslates, Various
terms (e.g., packing, disjoint, tiling) are used to describe a collection .%’ of rooted
bodies if they apply properly to the collection of bodies associated with 4", The
main results of this section concern packings of rooted bodies. They are applied
in Section 4 to establish limitations on smoothness and rotundity of tilings.

A tooted body (K, r) is homothetic (zesp. positively homothetic) to a rooted
body (K, ) if there exists A 7 0 (resp. > 0) such that K—r = /I(K’——r’). ,

For cach rooted body (X, r) in X, let #(K,r) denote the set of all Ge¥
such that T(K n F) = G for some d-dimensional affine szlbs?ace (flat) F of X
through » and some affine transformation T of F onto R thh.T(r) = 0. Thus
SU(K, r) represents the d-sections of K through r. For each collection o of Tooted
bodies, let

Sy = UK, D (K, n)e A}

and let S%.(#") denote the closure of FUA) in ¥°. The “nonoverlappigg translates”
of the section heading are in $%(#") and they appear in the following theorem.
3.1. THEOREM. Suppose that A is a packing of rooted bodies in a normed linear
space X, and that there exist functions & A —10, o and n: A -10, o[ such that
(2) for each (K, r)e A, r+Beg,n < Ker+Byg,ns :
(b) sup (K, NEE, <o,
(K,ryaat

© inf (K, r)>0.

(X, r)ex’ . R ).
Suppose also that there exist a subset V of X and a function (&), r( ))VI:PEvf
such that V has an accumulation point in X and for each veV, K(Cv') n o 5;,, ( %)
Then for each positive integer d<dimX there are members Ci, s Ca € co;;;mon
and points by, .., 1, of R* such that the translates Cy+ty, -os Catla h“‘fe_al omo=
boundary point but disjoint interiors. If the members of A are all P‘:’?w;; 5 C. i
thetic (resp. homothetic) to a single rooted body, it can be arr anged that eaclt Cj
equal to C, (resp. +Cy).

§ -~ Fundamenta Mathematicae CXXVL 3
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Proof. We start by noting that the packing 2 can be assumed to be normal,
i.e. to satisfy condition (a) with constant functions ¢(K, r) and n(K, r). To prove
this claim, consider the subset of " whose elements are the rooted bodies (K @), r(v),
for ve V. For notational simplicity set

$@) = {(KW), r@),
& = inf £(v),
veV

1(v) = (K@), r(v),

o= SH}?W(D)/E(U%
Define, for each ve V, the (affine) function fir X=X

S = (&E@)x+ (1 —(E/E@))v
-and set
K'(w) = fu(K(v)), r'(v) = fu(r(v)) .
“The collection %~ = {(K'(v), r'(v))} is a packing, because K'(v) < K(v) for each v,
and, for the same reason, K'(v) N V = {v}. Moreover, for a suitable §> 0, and
for each ve ¥,
r'@)+ B r'()+B; c K'() = r'()+B; < r'(v)+ B;.

Since FL(A") =S L(A), we can replace in the proof conditions (a), (b) and (c)
by the assumption that, for some positive §.

(@) r+B;-icKcr4B;.

We assume also, without loss of generality, that the origin 0 is an accumulation
point of V. For each positive integer i let v}, ..., v¢ be d distinct points of the set V
at distance< 1/7 from 0. Set K/ = K@, r{ = r(v)), and for eachi let A; be a d-di-
mensional subspace of X such that

., rf} < 4;.
Set

M= &l-r)n 4,
‘Then for each i 1
By-1 nﬁicMicBa N 4;
because of (a’). It follows that
Mc&*M;n —M),

whence, by the theorem of Mahler [10] and Macbeath [9] mentioned earlier, there
is a linear transformation T; of 4; onto R? that carries M; onto a body

T(M)eG

Q4o *
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The transformations T and T7* are equibounded, for

(Tl = sup || Tyl <6 sup [ITixl| <6 sup [[¥l = p 5
xa M1

xedind: yEBﬂdd’

- _-1 s
T H| = sup [IT7 Yl < sup )HTi ¥l <6,

yaB} yeTu(My

The bound on ||T;Y|| implies that, for all i and j,
133'..2 cT(M) e Bgd,,.
because if y & Bi-a then [T~y €6™* and hence
Ty e Byes Ay M.
In particular, T(M})e %) for all i and j, and since the set
{GeG": Bi-zc G By}
is compact, we may assume (passing to a subsequence if necessary) that for each Jj,

as i - 00 .

TM)) = Cje FL(H)

At this point, it may be helpful to outline the remainder of the proof.
The next step is to show that . 17 in
(i) points z/ e Kj A 4, can be chosen, for j=1,...,d and i=1,2,.
such a way that for cach j,
20 asi— .
We then define

d
(i) ] = Tfzl—rl) e By
and may assume (passing to further subsequences if necessary) that for each j,

(i) tl-teC; asi- o0

ness of B the member-
where the convergence is 4 consequence of com.p'actneSs of . By s;:i e ote
ship of ¢, in C follows from the relevant definitions. We then pr

(1V) Cj"fj

have the stated propertics, ¢ are all homothatc
A final paragraph considers the cuse in which the members of A a

to a single rooted boxly. o o exist
Now suppose that (i) fails, Then an 2> 0 and an infinite set Iy of i

that, for at least one j,

s such

Akl n A, 0)>e foralliel.

6*


GUEST


284 V. Klee, E. Maluta and C. Zanco

We may also assume |[of]| <& for ie I, whence vf ¢ 4;. For such j and iel, in
the 2-dimensional subspace spanned by o/ and rJ, set
ul = erflId|

and consider the line through the points v} and u] and the line through rf parallel
to the segment [0, v]]. Let w{ be the unique point of intersection of these lines. For
each eIy, the two triangles co(0, #, o) and co(r!, ui, wl) are homothetic, and
eventually we have

1Kl < 45/3
because d(0, K{) <1fi and K{c ri{+B,. Therefore, as i — oo and llv]] = 0, also
v —rll > 0.
But w{_ does not belo_ng to kI, because ui, that isa convex combination of u,j (e Kd)
and w{, is not in KJ; hence, in consequence of (a'),

liwl=rj| > 672,
a contradiction.
Now we want to prove that the sets C;~1; introduced in (iv) have disjoint
interiors but all have a common boundary point. It is obvious from the relevant
definitions that 0 belongs to all the (C;~1;)s. Suppose now that two of them have

overlapping interiors, i.e. suppose that a € R, >0, and two indices Jjand k #j,
exist such that

a+Bic (C;— ) 0 (Ce—1) .
Then

a+t4+ Bl ()

and, in view of the definitions of t; and Cj, taking into account the fact that if B is
a ball contained in the (Hausdorff) limit C of a sequence of convex sets, with
dist(B, 8C) >0, then B is eventually contained in any set of the sequence (this
fact can be proved as an easy consequence of the separation theorem), we obtain

a+tij+Bf,2 cT{(M}) fori> ip.
Since each T; is one-to-one and the set {lIT;ll} is bounded, for a suitable >0
T @+t + By o 4y M.
Then, by linearity of 7;* and the relevant definitions
T YD) +2~r+B, n 4, = EK—r) n 4,
Since T; '(4) and r! belong to 4;, and z{ —» 0, eventually

Ti—‘l(a)'l‘.Bg/z Ia} A; [ .K;’ N
_ Analogously, for &,

T74@)+Byy N A; < K.
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The hypothesis that 2 is a packing implies that 77 1(a)+B,,,2 n A4;, being con-
tained in KI N K¥, is contained in the boundary of each of the two sets. B‘itl this
is contradicted by the fact that it contains points of the open segment ]r{., T; (a)j[,
which is contained in 4, because both r{ and T; *(d) are, and which is 11:11261‘101: to Kj .

To complete the proof of Theorem 3.1, we consider the case in which th_e
members of 2 are all positively homothetic (homothetic), with respect to their
roots, to a single rooted body (X, 0). In this case

Kl =r+ME, M>0@ eRr).
Under this assumption
Mi=MKnA) and T(M)=HT(KnA4).
Since
ByinAicMicByn 4,
and we may obviously assume (passing to a bigger § if necessary)
By-ic Kc B
we obtain for any i,/ )
32 <M <82
From this inequality, and from the fact (proved in the preceding pages), that for
e Bl T(M)cBln
we can deduce (passing to a subsequence if necessary) that, as i -
TKnA)>C

and, for any j,
H->4>0 (#£0)

It is easy to see that
CTAMD = HT(K n4) — X4C.
Hence the C;s can be chosen of the form Cj= ’IJC:' To pro’duce iets 1C é atx;lci
points ¢; which satisfy the required conditions and anth the Cjs all equal to
same set Cj {+C}), assume, without loss of generality,
Ayl =min{|4]: j=1,..,n}.

Set, for each j,
C) = 4G =4C, 1= (A2t

Obviously
Ci—tj = [ [M|(C=1) = G515,
hence the sets (Cj—1))s have pairwise disjoint interiors, but all contain the point 0.

This completes the proof. B -
In the situation described in the next result, the conditions of Theorem 3.1

are satisfied in a strengthened form.
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3.2. PROPOSITION. Suppose that & is disjoint collection of rooted bodies in
@ normed linear space, and L is a line covered by the bodies. Then there exist A = 2,
6>0, an uncountable subset V of I, and a Sunction (K(-), () V= A such that
Jor each (K,r)e A,

r+B;=Kcr+By;,

and for each ve V, K(v) o L = {v}.
Proof. For each x e L let the rooted body (K(x), r(x)) € # be defined by the
condition that x € K(x) and let o(x) > 0 be such that

() + B,y = K(x) < r(x)+ B, Jo(x) -

For each x e L the intersection K(x) N L is the singleton {x} or a closed proper
subsegment of L. The former must occur for uncountably many x e L, for otherwise
(since ¥ is disjoint) L would be the union of a countable disjoint collection of
singletons and segments, contradicting Sierpifiski’s theorem. In the uncountable
set of x e L for which K(x) N L = {x}, there is an uncountable subset ¥ for which

info() = 5> 0.
veV

A collection % of sets is point-finife if no point belongs to infinitely many
members of #. The following result is an aid in applying Theorem 3.1.

3.3. PROPOSITION. Suppose that € is a be-tiling of a normed linear space X that
has an infinite-dimensional reflexive subspace. Then there exist a convergent sequence
{8} = Vin X and a function C(): V'— € such that for eachve V, C(v) A V = {v}.

Proof. By Corson’s theorem [1], % is not locally finite. We may assume that
% is not locally finite at 0, whence for any positive integer n there exists an infinite
subcollection %, of % such that any member of %, intersects the open ball By
Choose C; € %y, v, €intC; ~ B, and let C(vy) = Cy, then choose C, € ¥~ {C.},
v, €intC, N By, and let C(v;) = C,. Continuing in this manner leads to the
desired conclusion. B

4. Some limitations on tile-shape, Recall that a normed linear space X is said
to be smooth or rotund if its unit ball has these properties, and that uniform
smoothness and uniform rotundity have also been much studied (see Day [2], for
example). Intuitively, X is uniformly smooth (resp. uniformly rotund) if and only
if its unit sphere does not “come arbitrarily close to” containing a segment (resp.
having more than one supporting hyperplane at some point). In terms of the defi-
nitions of Section 3, involving collections 2 of rooted bodies, this is made precise
in the following result from [7], whose proof depends on the theorem of Mabhler {10]
and Macbeath [9] mentioned earlier.

4.1. THEOREM. Suppose that d is an integer >2, X is a normed linear space of
dimension >d, B, is the unit ball of X, and o is the collection {(B,, 0)} of rooted
bodies. Then X is uniformly smooth (resp. uniformly rotund) if and only if each member
of PEAH) is smooth (resp. rotund).
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Because of 4.1, an arbitrary collection 2 of rooted bodies is said to be uniformly
d-smooth (resp. uniformly d-rotund) if each of the bodies is of dimension >d and
each body in the set &7 4(A") is smooth (resp. rotund). It is shpwn in [7] that if"
2<d< e and each member of A" is of dimension e, then the conditions for d imply
those for ¢, and when each rooted body in " is symmetric with respect to its root,
the conditions for d are equivalent to those for e.

Theorems 4.6 and 4.7 below assert that under certain additional conditions,
a tiling of an infinite-dimensional space cannot be uniformly smooth or un.iforn?ly
rotund. The proofs are based on Theorem 3.1 and on the intersection properties.
of smooth and rotund bodies that are expressed in Corollary 4.5.

4.2. ReMARK. If A is a smooth convex subset of a topological vector space and
B is a convex set that intersects A but misses the interior of A, then A and B admit
a unique separating hyperplane.

Proof. Use the basic separation theorem and the definition of smoothness. B

We note in passing that as a property of balls, 4.2 characterizes smooth spaces:

4.3. PROPOSITION. The following three conditions on a normed linear space X'
are equivalent: ‘

() X is smooth; ) .

(ii) Whenever two balls in X intersect but have disjoint interiors, there is a unique
separating hyperplane; )

(iii) (ii) restricted to balls of unit radius.

Proof. In view of 4.2, it suffices to show that if (i) fails so does. Gi). If G
and H are hyperplanes that support the unit ball B, at a boundary point p, then
—G and — H both support the set —B; = By at the point —p. But —G = G—2p
and —H = H-2p, so the hyperplanes G and H support both By and B;+2p at:
the point p, hence separate B, from B;+2p. B

4.4, PROPOSITION. The following three conditions on a normed linear space:
X are equivalent:

(53 vﬂ:ze:?;wg;nd V are balls in X, with centers u and v, with disjoint interiors
and a common boundary point p, then p € [u,v];

(i) (i) restricted to balls of unit radius. ‘

Proof. If (i) fails then -the unit sphere Sy contains. a sn?gme{lt. gq, r']. th
U= B, and ¥V = B;+q+r, Uand V are balls of unit radius with disjoint nlitenotrs
and common boundary points ¢ and r. Of cou.rse. q) a?.nd I;e:ag;lot both belong to

r], so (iii) fails. This shows (iii) imp .
e ;?E::viifx()g’ g]:t ](i) im;liz,s (i), we may assume that U = By and V' = B+ 1:
Let g = (1+9) ‘v e [0, v]. Since V intersects U, ||v]| <1+y and hence ge U. At
the same time,
llo—gll = y(L+)~Hlell <y
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and hence ge V. But if U and V are as in (i) and U is rotund, then of course
UnV={p} and hence p =gelu,v]. H

4.5. COROLLARY. If @ is a packing of smooth convex sets or of rotund balls,
then no point belongs to more than two members of 2.

Proof. Suppose that some point p belongs to three distinct members U, V
and W of @. If U, ¥ and W are smooth it follows from 4.2 that there is a single
hyperplane through p which simultaneously separates U from V, V from Wand W
from U. That is obviously impossible. If U, ¥ and W are rotund balls with centers
u, v and w it follows from 4.4 that

pelu,vln o, wlnw, ],

another impossibility. B

It follows from Corollary 1.2 that there is no rotund tiling of a separable
normed linear space of dimension >2. We do not know whether some such spaces
admit smooth be- or fe-tilings. However, Theorem 4.7 below gives some results
for uniformly d-smooth bec-tilings. For the nonseparable case, the following
results may be compared with the examples in Section 2.

4.6. THEOREM. Suppose that % is a collection of balls in a uniformly rotund
normed linear space X. If

() € is disjoint or

(i) X is complete and at least 2-dimensional, and the radii of €’s members are
bounded away from 0,
then € is not a diling of X.

4.7. THEOREM. Suppose that X is a normed linear space and the collection A~ of
rooted bodies in X is uniformly d-smooth for some dz2. If

() A is disjoint or

(i) 2<dimX <0 or X contains an infinite-dimensional reflexive subspace, and
there exist functions £: A" —10, oo and n: A —10, o] satisfying conditions (a),
(b) and (c) of Theorem 3.1, :
then A is not a tiling of X.

Proof of 4.6 and 4.7. When X is finite dimensional, 4.6 is subsumed by 1.2,
and 4.7 () by [5]. To prove 4.7 (ii), assume that 5" is a tiling. We claim that it is
locally finite which, by known results, contradicts the smoothness assumption. To
prove the claim, suppose 2 is not locally finite at a point x. For a bounded neighbor-
hood W of x, consider the infinite subcollection of A4~

AL T e

L

Erey TR L

K, = {Ked: Ko W# D).

R v i ol

Working as in the first part of the*pf‘oof of Theorem 3.1, produce a normal packing
2 = {P} such that any P meets W. By normality of &, a bounded subset of the
finite dimensional space X contains an infinite set with no accumulation point,
a contradiction.
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Now we may assume X is infinite-dimensional. For 4.6, form a collection £
of rooted bodies by rooting each member of % at its center; then " is uniformly-
2-rotund by Theorem 4.1. Under 4.6 (ii), X is reflexive (for it is a vniformly rotund
Banach space) and conditions (a), (b) and (¢) of 3.1 are satisfied by taking both,
& A -10, oof and n: A —]0, oof as the radius function. We can now deal simul-
taneously with 4.6 and 4.7. Suppose that the collection X" is a tiling of X. Then it
follows from Propositions 3.2 and 3.3 that Theorem 3.1 is applicable. By 3.1 there
are members Cy, C, and C; of S2(#") that have a common boundary point but
disjoint interiors. The C;s are smooth under 4.7, rotund and centrally symmetric:
under 4.6, And under 4.6 it can be arranged that C, and C; are translates of Cj.
Thus 4.5 is contradicted and the proof is complete. W

The first part of the following was announced in [5].

4.8. COROLLARY. If a normed linear space X is uniformly smooth or uniformly
rotund, then X does not admit a disjoint tiling by balls. If, in addition, X is complete
and infinite-dimensional, then X does not admit a tiling by balls whose radii are bounded'
away from 0.

Comments added in proof. The following beautiful generalization of Sierpifiski’s theorem
is proved by Dijkstra in [17]: If # is a nonnegative integer, X is a compact Hausdorff space, and
{F,, Fy,...} is a countable closed covering of X such that dim(Fy n Fj) < n whenever i # j, then
every continuous mapping from F, into the n-sphere S™ is continuously extendable over X. As Dijkstra
observes, this implies that if ~ is a countable compact covering of R% and & is the collection of
all sets G such that dimG = d—1 and G is the intersection of two distinct members of G,then &'
is nonempty. When 7 is actually a be-tiling, this % is the same as the collection & of our Theo«
rem 1.5, and the stronger conclusion of 1.5 applies.

In [18] Klee and Tricot define the notion of a plump convex body in such a way that every
rotund body and every smooth body is plump. They prove the following: For an arbitrary complete-
metric linear space, each locally countable tiling by plump bodies consists of the parallel strips given:
by a countable family of mutually parallel hyperplanes. This implies, in particular, that no complete:
metric linear space of dimension 2 admits a smooth fe-tiling.
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