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The “local” law of the iterated logarithm for processes
related to Lévy’s stochastic area process
by
K. HELMES* (Bonn)

Abstract. For a class of stochastic processes which includes Lévy's stochastic area process
as a special case we prove the law of the iterated logarithm at zero. Based on this result we also
prove the law for the /!-norm of a finite number of independent copies of area processes.

1. Introduction. Let (W) = (X,, ¥,) be a 2-dimensional Brownian motion
and let

t
L = [(JW, dW,y, where J= [0 l:l

and (-, ) denotes the usual scalar product in R*. The “area process” (27* L,)
was introduced by Lévy in 1939 (cf. [9], for further references see [7]) but
was only sporadically studied until the mid-seventies [5, 8, 10, 12]. As has
been noticed by Gaveau [5, see also 1], the process (E,) or, more precisely,
the diffusion process (W, L), is a useful tool for solving certain problems
which naturally occur in analysis and differential geometry. Dugué’s recent
note [4] shows that the process (L,) also plays a certain role in statistics, viz.
in hypothesis testing; for a special parameter estimation problem of 2-
dimensional Gauss-Markov processes it was previously used in [10, Ch.
17.4]. Asymptotic fine properties of its sample paths were investigated in [2]
and [6] (cf. also [11]). In these papers a law of the iterated logarithm at
infinity is proved for classes of stochastic processes which include (L) as a
special case. In [2], processes

t t
ZpP = o [ X dY,+ B[ Y, dX,, t>0,
o 0

t
are investigated while in [6] processes L4 = [ (AW, dW,>, where Ais a d xd
o]
skew symmetric matrix, 'd = 2, are dealt with.
In this paper we shall prove the “lil” (law of the iterated logarithm) at

* This work was supported by the Deutsche Forschungsgemeinschaft (DFG),
Sonderforschungsbereich 72 (SFB 72), at the University of Bonn, Bonn,” West Germany.
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zero for the latter class of processes. The method of proof to derive the “lil” at
zero differs from the one used in [2] to derive the result at infinity. To be
more specific, we derive the “upper class result” from Doob’s submartingale
inequality combined with the formula for the characteristic function of (L),
whereas we derive the “lower class result” from a variant of the second
Borel-Cantelli lemma and good lower bounds for certain tail probabilities
of the conditional increments of (L,). Moreover, we prove the “lil” for the
I*-norm of a finite number of independent copies of processes (L,).

2. Auxiliary results. For the sake of completeness we list some of the
basic properties of (L) which will be used in the following.

ProposiTion 2.1. (1) (Scaling property). (L) ={cLy), ¢ >0, is the -areu
process associated with the Wiener process (W) = (\/E Wie)-

(2) (Symmetry property). (—L,) is an area process.

(3) For any t 20, h>0, Ly, —L, =L, + W, W,,) where (L) denotes
the area process associated with the Wiener process (W) = (W,,,—W,), s = 0.

(4) For any ¢ >0, (exp[cL,]) is a submartingale.

[ e*ch ‘@G nx/H)dx, leR, t >0

-

(5) E[exp(iAL)]=ch™ (i) = (25!
(cf. [9]).
(6 E [€*YW, =x]=

2 %
(M)e ——(1 ~tA coth (tA) J (cf. e.g. [9]).

(7) E[exp(il[L,+ <y, W,)])] =ch™!(A)exp[—4%4 th (AH)[y>] (combine
(5) and (6)).

Since (L,) does not have independent increments the following variant of
the Borel~ Cantelli lemma turns out to be useful in the proof of Theorem

3.1. Tts proof is, with but a minor modification, a duplicate of the proof of
the original version of the Lemma.

Lemma 2.2. Let (2, §, P) be a probability space. Let (4,) be a sequence of
events and let (,) be a sequence of sub-c-algebras of & such thar

gn+1 DU(AI|+15A11+2: '--): neN.

If (a,) is a sequence of positive real numbers such that

(1) P[Anl %n+ 1] = o P-Cl.S.,
(ii) Y a, = oo,
n=1
then P[lim sup 4,] = 1.

Let A, = o(W,, s < t); an immediate consequence of Proposition 2.1 (3),
(5) and of the independence of the increments W, = Wos—W,s,t 20, given
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M,, is a formula for the conditional Laplace transform of the increments
of (L,).

ProposiTiON 2.3. For any'0
AT < /2,

<r <s, T=s—r, and for any /. = 0 such that

®) E [exp(A[Ls—L]|.#,)] = cos™* (AT)exp [ tg (A1) |W}I>].

To derive a lower bound for tail probabilities of the conditional
increments of (L,) we shall examine the second factor of the product which
appears on the right-hand side of (7).

LemMa 24, Let o, T2 0 and @(z) =exp(—oz th(zT)), zeR. The
transformation @ is the characteristic function of an (infinitely divisible)
symmetric distribution function.

Proof. Since ¢ is real-valued, symmetry of the distribution function
associated with ¢ is clear provided that we have already shown that ¢ is a
characteristic function. So we shall prove that for any §>0

¥y(z)=(1+z th(B2)~*

is a characteristic function. Hence,

z
Z tll(;;n) 1
<1+-~————-—) , neN,
n

is a characteristic function too, and the assertion follows from the continuity
theorem. Now consider the product representation of ch(fz) and ch(fz)
+zsh(fBz), respectively. Since these functions are entire functions of order 1,
real-valued and symmetric (about zero) for zeR, it follows from Hadamard’s
factorization theorem (e.g. [3, p. 291]) that ‘I’,, is given by

where +ia, and =+ iy, denote the purely imaginary zeros of ch(fz) and ch(fz)
+z sh(fz), respectively. Note that |y] < |l for all ke N. Hence,

o 2
Yi ( Yk ) % }
= e 1= .
k];[l [OC)% '}’

Each factor in (9) corresponds to a mixture (convex combination with
coefficients y2/a? and 1—7p¥/ed) of the Heaviside distribution function (at
zero) and a bilateral exponential distribution function. Since ¥j is
continuous and an infinite product of characteristic functions it follows that
¥, is a characteristic function. =

© ¥ (2)
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Remark 2.5.Another way of proving the assertion is by obtaining
the Kolmogorov representation of ¢, viz.

log ¢(2) = dK (x),

cos(tx) 1
x?
7 x? ch(3nx) N
2 sh?(3nx)
Lemma 2.6. For any 0<r<s, T=s—r and (cR",

where dK (x) =

(100 P[L~L, > &4]> (4T) jch (Fmx/T)dx > (2m)” ' exp (3 g/ T).

Proof. By Proposition 2.1 (3), (5),
=P[Lr+ <y, W) >¢&] Paas,

where y=JW,(-). By Lemma 24 there are two independent random
variables U, and U, with characteristic function ch™*(zT) and exp[ —%]|y*
xz th(zT)], respectively, such that

PLLr+<y, Wy 2 E]1=P[U,+U, > &].

Since U; and U, are independent and the distribution function of U, is
symmetric (about zero) we have

P[U+U,2¢&]=P[U;+U, 2¢|U, = 0] P[U, = 0]
+P[U+U, 2 U, <01P[U, < 0]
2 P[U,+U, >¢U, 201P[U, 2 0] 2 $P[U, > ¢]
Together with Proposition 2.1 (3) we obtain (10). =

3. Main result.
THeEOREM 3.1.

L
1 limsup——————— =1 Puas.
1y P Gt Tog log () L L
(12) fiminf—— 2 ~1  P-as.

o (2/m)tlog log(1/)

Proof. We only have to prove (11); the second assertion follows from
the first one and Proposition 2.1 (2). The proof of (11) is divided into two
parts, the “upper class result” (lim sup > 1) and the “lower class result”
(imsup < 1). We prove first the “upper class result”. Define h(f)
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= log log (1/¢), (1) = (2/n)th(t) and choose 0 <O <1, t=6"1 0<6 <1
and ¢ = (m/2t)(1+8)" ' By the submartingale inequality and Proposmon
2.1 (5), we have

P[max {cL} > JI+6h@] = P[max {exp(cLy)} > exp(\/T+8 h(1)]

0Ss<t
<exp(— \/1+_5 k() E [exp(cL)]
= comnst - (n—1)"V1*e,
which is the general term of a convergent sum. So by the first Borel-Cantelli
lemma,
2 .
P[ max' {L} <(1+8)=6""1h(@" Y, n oo]: 1.
0<sgon 1 n
Further, for sufficiently large n and 6" <t < 0" 1,
. - 1 h@" 1)
L< max {L}<1+8)e@" <1485 00—
omgsson- 0 h(6")

since h is monotone increasing for small ¢. Letting 6 # 1 and 6 0 completes
the proof of the “upper class result”.
To prove the lower class result set

= {[LO)=-LOH] 2 (1= @)}, 0<O<l n>1,
and choose the g-algebras §,., = #y,+;. By Lemma 2.6,
P[A,| §p+1] = const-n™ =0
which is the general term of a divergent series. Thus, by Lemma 2.2,
L >(1—0)2¢(0"+L(0""?) infinitely often (i.0.)..
Also
L™ < (1+0)p(67)
as n— oo by the first part of the proof. So
LO" > (1=02 o0 —(1+0)p(0"") 2 (1-48) (0" io.
as n— o0, Le.
lil‘x;l %up L/o(t) > 140,
and the proof is compléled by letting 0 0. =
Remark 3.2. For a l-dimensional Brownian motion (b,) the sample

path behaviour “at infinity” can be read from the behaviour of the paths “a
zero” by using the fact that the time-scaled process (b, ) = (thy,) is again a
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Brownian motion. This method does not seem to work for (L,). Therefore,
in order to prove the “liI” at infinity one has to repeat the essential steps
of Theorem 3.1 (cf. also [2] or [6]).

4. Related processes.

(«7) We now extend the result obtained so far for (L) to processes (L)
defined by

(13) Lt = [CAW, AW,
0

A a dxd skew symmetric matrix and (W) a d-dimensional, d = 2, Wiener
process. It turns out that the asymptotic behaviour of the sample path of the
1-dimensional process (L) only differs by a constant a from the behaviour of
(L) and that

(14) a:=max{|al| +ig, eigenvalues of A}.

THeOREM 4.1.

LA
15 lim sup—————— =1  Pug, N
(15) 5 P @/m)ar log log (/1) *
LA
(16) lim in d —1 P-a.s.

50 f(2/7:) ar log log(1/1) =

Proof. The proof of Theorem 4.1 is very much the same as that of
Theorem 3.1. The only difference is that instead of Proposition 2.1 (5) and (7)
one uses the formulae (cf. [7])

[d/2]1
{17 E[exp(AL#H] = [] ch™ (itay),

k=1

[d/2] the integer part of d/2 and {+ia} the eigenvalues of A, and

P

19/2]
(18)  E[exp(iz(L+ ¢, W)] = [T ch™! (ztay)
k=1

xexp[ — 5093~ +(0pi.)z th (zTew)],

where O is an orthogonal matrix which reduces A4 to its “standard form™.

The “upper class result” is then derived exactly as in the previous case,
putting

T

o Jive

To prove the “lower class result”, we again need a lower bound for the tail

2
o) = ;at log log(1/t) and

icm
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probabilities of the conditional increments of the process (I£). By Lemma 24,
/21

(19) 22) = T exp[~3(09)%- 1 +(0930)z th(zTay)]
k=1

is a characteristic function associated with a symmetric distribution function
and thus

14121
(20) 2@[] ch™ ' (T

k=1

is too, the prime indicating that the product is taken over all ,’s except one
whose modulus equals a. Therefore, as in the proof of Lemma 2.6 one gets,
for 20, T=t—s5>0,

(1) PILI— Lt > &4, = (2n)" P exp(—$n &/(aT)).

The proof can then be completed in the same manner as the previous
one. m

() Let (I!", <;<m be m independent area processes, ie. there are m
independent 2-dimensional Brownian motions (W®), each of them defining
the associated area process

t
L(ri) — " <JI/VS(1)’ dW;‘"’), 1 <i<m.
0

m
We examine here the asymptotic behaviour of [L]; := Y |I¥].
i=1

THEOREM 4.2,

(22) lim sup Iy

Proof. We shall reduce the problem so that we can apply Theorem 4.1.
Note that

m
(23) ILJ = sup {|<e, 13;>l}=Hsup1{lzle;L‘:’l‘,
ely=1 i=

el =1

where |¢|,:= max {|¢/}, esR" If E denotes the dxd, d=2m, skew
1€ism
symmetric matrix

E =diag{e; J}1<isms

t
we can express {e, L,> as IF =j<EWs, dW,>. Hence, if |e|,, = 1 it follows
[}
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from Theorem 4.1 that the “upper class result” holds. To show the converse
inequality we -assume the left-hand side of (22) to be larger than ¢, ¢ > 1
(Assumption (x)). Now, there are N = 2" vertices e'V), ..., ™ of the m-
dimensional cube A, = {ecR™ ||, < 1}. So, for ¢ >0, let

K®:={xeR" [{x, e} >1—¢}, 1<i<N,
and observe that
m N i
0x = [xeR" |xl; = Y Ixl=1} < U K&
i=1 i=1

Then, for some ipe{l, ..., N}, 6 sufficiently small and

@(2) = (2/mytlog log(1/1)
the assumption (*) implies

P{lim supl*l:'—[i>1+5, L eKZiO)J>O.

o - @) lzrll
Thence,
. €Ly K", Ly F; (1 — ]
4) P [hrrtl\‘soup o0 |- hntl\‘soup ——]]:,—1——— 20, >(1+4+d)(1—e) >0

and, since ¢ can be chosen so that (1+8)(1—¢) > 1, (24) contradicts Theorem
41. =

Remark 43. There are equivalent results to Theorems 3.1, 4.1 and 4.2
which describe the asymptotic behaviour of the sample paths at infinity. The
proofs of these results run along the same lines as the given proofs.

Acknowledgement. I very much thank S. Kwapien for showing me the
Kolmogorov representation of ¢, ¢f. Remark 2.5.
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