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A characterization of the Banach property
for summability matrices
by
F. MORICZ and K. TANDORI (Szeged)

Dedicated to Prof. Z. Ciesielski on his 50th hirthday

Abstract. A doubly infinite matrix A = {ay: n k=1,2,...} of real numbers is said to
have the Banach property if for every orthonormal system {¢, (x): k =1, 2, ...} in (0, 1) we have

"
lim Y app(x)=0 ae
vt g |

We define a norm ||4]] in such a way that a matrix 4 has the Banach property if and only if
||l < co. Some consequences of this characterization are also included.

1. Introduction. Let ¢ = {¢.(x): k=1, 2,...} be an orthonormal system
(in abbreviation: ONS) in the unit interval (0,1) and let A = {ay,: n k
=1,2,...) be a doubly infinite matrix of real numbers. Following Banach
(see eg. [2]) we say that the matrix 4 has the Banach property (shortly,
AeBP)) il for every ONS ¢ in (0,1) we have

(1.1) im Y au@e(x) =0 ae
nerot k=g
Taking ¢ to be the Rademacher ONS r= {r,(x) =sign sin2*nx: k
=1,2,...] (see eg. [5, p. 212]), one can easily deduce that if Ae(BP), then
(1.2) lim a,=0 (k=1,2,..).
ner ot

In fact, since

rxkd) = —r (%), R(xHD) =nx) k=2,3,..)

one can write

o

3 apr(x+4) = ~2a,r, (x)+kZ g Ti (%)
k=1 =1

If (1.1) with ¢ = r holds for both x and x-+1/2 (which happens for almost
every x in (0,1)), then letting n— co in the last equality yields (1.2) for k = 1.
The proof for k =2, 3, ... is quite similar.


GUEST


264 . F. Méricz and K, Tandori
In this paper we assume that
o
(1.3) Y lagl <0 (n=1,2,..).

k=1

This condition is satisfied if the matrix A is row finite, i.e. for each n there
exists k, such that

=0 fork>k, (n=1,2..).

N o
Under condition (1.3) the infinite sums Y au ¢, (x) in (1.1) exist a.e. for every
k=1
ONS since

1 1
£|‘Ph(x)| dx < {grpf(x)dx}“z =1.

Remark 1. As is known (see e.g. [5, p. 74]), conditions (1.2) and
(14) 2 layl < C

with a finite constant C, are necessary and sufficient in order that for every
sequence {se: k=1,2,...} of real numbers tending to 0, the sequence

{o, = Z ausin=1,2,..
k=1
stronger than (1.3).
Remark 2. Hill [1] proved that if (1.1) holds for ¢ =r, then

-} also tends to 0. Condition (14) is somewhat

lim Za,2,&=0,

n-om k=1
which is weaker, in general, than (1.3).

2. Results. For 1 <M < N we introduce the quantity

1
l4; M, N|| = 2 dx} 2,
1= s ({2 | 5 oo o)

where the supremum is taken over all ONS ¢ in (0,1), and define

2.0 : 4l = Alrim ll4; 1, NIl (< o0).

gns limit exists since ||4; M, N|| is nondecreasmg in N for every fixed M.
early,

) .
Il4]l = sup jsupl}j O P (x X)) dx 2,
¢ 0 n21
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Qur main result is expressed in the following

TugoreM 1. (i) If ||All < oo, then Ae(BP).

(i) If lAll = oo, then there exists an ONS & =
(0, 1) such that

{®(x)}of step functions in

22) lim sup| Z g Py ()] = ae.

Ho=ror

In particular, A¢(BP). ‘
Afunction @ (x) is called a step function if there exists a partition of (0, 1) into
a finite pumber of disjoint intervals such that @(x) is constant on each of them.
The proofl of Theorem 1 is based on the following
Tugorem 2. (i) If ||Al] < oo, then

(23) lim |[4; M, Nl =0 (M<N);
M,N o
(i) If ||A]| = oo, then for every M =1, 2,.
(24) r}i{m i4; M, N|| =

The next theorem is interesting in itself.
TueoreM 3. If Ae(BP), then there exists a double sequence
o= s My k=120
of positive numbers such that
lim py =00  as max(n, k) o0

and pA == l,u,.,, a,.”e(BP) Conversely, if A¢(BP), then there exists a double
sequence p = {jy} of positive numbers such that
lim g =0  as max(n, k) - c0
and pd ¢ (BP). .
Remark 3. Under the usual addition and multiplication of matrices by
scalars, ||A|| satisfies the three axioms of vector norm.
Remark 4. Theorems 1 and 2 remain valid if definition (2.1) is changed for

Al = lim 1143 1, Nl ( £p<2),
where .
oo
[l4; M, Nlly = sup {[( max | ap @y (0] dx}'".
o O MEng€N gmy

~ Remark 5, The special case {a, = /), where {a,: k=1, 2, ...} is an
arbitrary sequence of numbers and {4, n=1,2, ...} is a nondecreasing
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sequence of positive numbers tending to oo, was extensively studied by the second
author [4]. The method of proof in the present paper is partially based on that of
[3] by the first author.

3. Auxiliary results.
LemMma 1. If 1< M < N, then
14; 1, Nif < [|4: 1, M=1]|+]|4; M, NJ|.

Proof. This inequality is a consequence of the Minkowski mequahty and
the fact that

max IZ e 04 (%] <

( max - max ) Z Gk P ()]
1<n€N §=1

1Sn€M~1 M<ngEN

LemMmaA 2. For every ¢ > Qand M >
Ne <N, <N,

14; 1, MIIZ+lA4; Ny, Noff* <

1, there exists No 2 M such that for all

145 1, Nyl +e¢.

The next two lemmas will be used in the proof of Lemma 2.

Lemma 3. For every ¢ >0 and 1< M

< N there exists K = 1 such that

1
(3.1) sup {f( max | Z g P (X )]) dx}'? <
0

o 0 MSnSN g=gK+1

consequently, there exists an ONS ¢ such that

1 K
H( max | Y ay @u(x)])?dx}V2 2 ||4; M, N||—c.

0 MSns€N =1

Proof. By the Minkowski inequality and (1.3),

1
sup {{( max | ¥

o) o0
1/2
A (2 dx}* <Y (max Jal) <
p O MsnsN k— +1

k=K+1 M<n€N
if K is sufficiently large.

LemMma 4. For every ¢ > 0 and K

2 1, there exists Ny >
Noe<M<N,

1 such that for all

(3.2) sup [f( max ]Z Ui P Y)' Ry

b
) 0 MSasSN

consequently, there exists an ONS ¢ such that
1

{{( max Ii

0 () dx)'? 2 (| 4; M, NY|—e.
0 MSnSN k=g
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Proof. Again by the Minkowski inequality,
1
sup, f( max |Z g P (X) ])

® 0 MSnsSN K=

”2 Z ( max |aul) <
k=1 MSnsN
if M= N, and N, is sufficiently large, due to (1.2).
Proof of Lemma 2. Given ¢ > 0, by Lemma 3 there exist an integer
K and an ONS § = ,(p,‘(vcJ such that

1
(3.3) {( max IZ U, B (0)) dx >
0 1SnsEM k=

By Lemma 4, there exists an integer N, such that for all N, and N,
Ny < Ny € N,, there exists an ONS § = (@, (x)} such that

lA4; 1, MII> —e/2.

1 ol

(34) f( max | Y au @) dx>

0 NiSnSNy g=K+1

We define for k=1, 2, ..., K,
{ /2(/),\(2>C

Il4; M, N||*—¢/2.

y for xe(0, 1/2),
Vi) otherwise;
while for k = K+1, K+2,...

V() = {\/2(/),\ (2x~1) for xe(1/2, 1),
13

otherwise.
Clearly, ¥ = {if, (x)
it follows that

45 1, MI*+114; Ny, NoJl*—e

tk=1,2,...] is an ONS in (0, 1). From (3.3) and (3.4)

K
( max | au @ (2x)))*dx

0 1SnSM k=1

1 ©

+2 [ ( max > a,,,,('/ik(Zx—IJDzdx
172 Ny SHSN k=K1

£ f( max lz a,,kt//k(x| ) dx

o FSnENy k=

<l4; 1, NoJI%
LiMMA 5. If for an ONS ¢ = {p(x): K; <k < K,}
1 K2

=([( max | ¥ aup(a)f)dx)'" >0,

D NySnSNy k=Kq

then there exists another ONS W = (Y (x): K; < k < K} of step functions in
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(0, 1) such that

Ky
max | Y auti(x)|=5/4 ae

Ny S$nS€Nj k=K,
A similar lemma was proved in [4] by the second author.

Proof. First we choose a (not necessarily orthogonal) system @
= {@(x): K; < k< K,} such that

35 f[fpk(x)—(f)x(x)]zdx <6 (Ky<k<Ky)

where & is a sufficiently small positive number to be specified later. We set

1

Oy == ( Pi(x) @1 (x) dx,

= Z
k Xy
Evidently, oy ~ 0 for k # [ and oy, = 1 provided 6 is small enough. More
precisely, by (3.5) and the Minkowski inequality,
1
([ @2 (0 dx}'"? < 148,

o

Ky
+ Y Hod Ky <k IS K.
k=1+1

whence, by the Schwarz and Minkowski inequalities,

1
(3.6) o — 1] = |§ [ (%)~ @ (¥)] [P () + i (x)] dx| < 6(2+9),

while for k # I, again by the Schwarz inequality,
o] < 8(2+9),

whence
(3.7) B <(K,~K)6(2+68) (K, <k<K,).
By (3.5),
1
3.8) §={[( max o By () dx )2
( ZENISn&NZIk,Z:l k‘Pk(x)]) \;

K3

>8-0 3 ( max |ay)>1S

k=K, Nl\n<N2
if & is small enough. Obviously,

2 1/2

) dx} = S""Sl,

1
K2
( max
Ny<n$N,
[

P (%)
’<=Z"<1 o e B

(3.9)
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Bunach property for summability matrices 269

\2 1/2
) dx} .

where
l' Ky
5, = “ ( max <1 _—n-:_:_,> Pi ()
1 y N{Sn<€N, krzZIL1 \/akk"l'ﬁk ol

Taking into account (3.6), (3.7) and the élementary inequality
1

\1 o

<t for t = ~%,

we obtain, for sufficiently small 8,
S;€ Y ( max
k=Ky NpSn&Np
S(1+9) ¥ (og—1+F)( max |a,) <35
k=K NisSnsNy

K2
) ( jp— L-f;z)(l +8)
\ﬁkk
Ka
Combining this estimate with (3.9) yields

1
K2 . 2 172
(3.10) {j( max | Y g »—w)- )dx} ;ls,-
- Ni€ns$Ny k=K \/akk+pk 4

Now we extend the domain of the functions in @ from the interval (0, 1)
to (0, 2) in such a way that @ will be an ONS of step functions in (0, 2). To
this end, we divide the interval (1,2) into as many subiniervals of equal length
as the number of the ordered pairs of integers k, [ with K, <k, I<K,,
k # 1. Denote the subintervals by I,; and set

oy lolt V2 for xely,
Bux) = 4 — (kI 7 sign g for xe Iy,
for xe(l, 2\ U U 1),
where y == (Ky— K, -+ 1)(K;—K,). Then

2 1

(B @ dx = {[+ [+ [} Be(x)Pi(x)dx

0 0 Iy Iy

= oy = |ogg| sign oy = 0,

2 1
[ER(dx = {{+2), [}1PF0)dx = oyt
b} b

l%klkl
These equalities mean that the step functions

e + P

5 -+ Studia. Muthematica (. 83 2. 3
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form an ONS in (0, 2). In addition by (3.10),

f_[( max |Z a,klp,,(x)l) dx 1/2/%;S.

0 Nl\n Ny k=K 1

3.11)

Since
K3

P(x)= max |3

NiSnSNy k=K,

Ok lpk (x)l
is a step function, we can divide the interval (0, 2) into a finite number of

subintervals (x,_y, x,), 0 =X, <x; <...<X,=2, such that ¥(x) takes a
constant value, say y,, on each subinterval (x,-, x,),r =1, 2, ..., 0. Set

1 7
Uy = 0; u, ='f’" Z ysz(xs’—xsml):

[

where

y (3.11), T > S/4. Furthermore, set
V() = ’“'pk( U= ) +x,_ 1) for ue(u.-(, u,)

r=12,..., 0.
In this definition we have tacitly assumed y, # 0. In case y, = 0, we have u,_,
=u,,
Now it is routine to check that {y, (1): K, <k < K,} is an ONS of step
functions in (0, 1). Indeed, performing the substitution
2 2

x =Iz—(u—u,_1)+x -1, dx= deu,
we get ’ ¥
1 e Y
6['/’1;(“) Y (w)du = 21 r ¥ (W) ¥, (w) du
r=lup—y
= 21 f e ) (x) dx = f|/7k ()P (x)dx = 6.

Finally, by the deﬁnmon of ¥(x) and y,(u), we can see that for each
ue(u.-q, u,) there exists an xe(x,_,, ,) such that

K3
max -
W LD ol =5 fofr«z lkZ g T ()]
= Lo =15 sp.

icm
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4. Proofs.

Proof of Theorem 2. (i) Assume ||4]| < co. By (2.1), for every ¢ >0
there exists M > 1 such that

14; 1, M||* > || 4] —e.

By Lemma 2, there exists Ny M such that for all Ng< N, <N,

(45 Nio Nl <1451, NolPP+e— 145 1, M* < 2e.

(i) In case |[A]| = oo, by (2.1) we have (24) for M =1. If M > 1, then
Lemma 1 shows

145 M. NI = |45 1, Nl[=|l4; 1, M—~1]|.

Since [[4; 1, M—1|| is finite for every M, (2.4) follows.
Proof of Theorem 1. (i) If [|A|| < co, then by Theorem 2 (i) for g, = 23"
there exists N, such that

IlA; N, NI <27 for N3N, (r=1,2,..).

We may assume N; < N, <... Then, given an ONS ¢,

5 =

f( max IZ“nk‘ka)’ dx 273,

0 N.SnsN, b1 k=1
By setting

H, = {xe(0,1): max |Z Qe 0 (%)] 2

N Sn€Np g k=1

this implies

o0
Y mes H, <0,

r=1

mes H, < 27", a fortiori

By mes H we denote the Lebesgue measure of the measurable set H. Thus, the
Borel--Cantelli lemma yields that for almost every x there exists rq = rq (x) such
that x¢ I, if r Zry; ie.

2" retl

max | Z e i (X)] < (r=rq).

nENy fs
This proves (1.1).

(ii) Since ||A|| = oo, we can choose M, =1 and N, such that

l4; My, N,|| = 5/4.


GUEST


272 F. Méricz and K. Tandori

By Lemma 3, there exist K; > 1 and an ONS ¢!V = {{" (x)} such that

4]

i s |

e (o)) dx} < 14,
® M{€nsNy k=K +1
Ky ,
{f( max | aw @i’ (x)|) dx}? = 1.
0 MySnsSNy k=1
By Lemma 4, there exists M, > N, such that for N 2 M,
Ky
supll( max [Z e P (9))) dx} 1 < 1/16.
o 0 My Sn€N k=
Now we choose N = N, in such a way that
l4; Mz, Noll = 17/8.

By applying Lemma 3 again, there exist K, > K, and an ONS @@ = [p{? (x)]
such that

o 2,412
sup{f max | Y auou(x) dx}/ < 1/16,
@ OMzSn$N7 k=Ky+1
1 Ky
max | Y
0 My<$nsNy k=K{+1

1/2

G 0P () dx]' > 2.

Following this pattern, by induction we can define two sequences
1 ~M1 <N1 <M, <N, <...and 0= K, <K, <...of integers and ONS

e" =l (x)! (r=1,2,...) such that
K1
@4.1) sup '_[ max | Y. du @ (x)])dx}i <277,
@ 0 M.SnsN, k=1
L & 2 . 412
4.2) sup {[( max | Y au e (x)) dx} T <27,
¢ 0 MySnsN, k=K, +1
1 K,
({( max | Y apol ) dx)2=r
0 M,$n<N, k=Kp.g+1
(r=1,2,..).
By Lemma 5, there exist ONS ¢ = {y{?(x)! of step functions such that
KI’
4.3) ‘ max | Y auylPx)|=r4 ae

M,.<n<N, k=Kp_y+1

We are going to define asingle ONS @ = {¢, (x)! of step functions such that

for all r
Kl‘
4.4) max | y

Uy Pr(x) Zr/4  ae.
M,S$n<N, k=Kyq+1 e P )l/ / .

icm
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We use an induction argument with respect to r. First we set
QX)) = (x) kh=1,2,..., K,).

Then (4.3) and (4.4) coincide for r = 1.

Now assume that the functions @, (x) are defined for k = 1, 2, ..., Kpg-1
so that (4.4) holds for r=1,2, ..., ro—1. Then we can divide the interval
(0, 1) into a finite number of submlelvalq say Iy, 1;5,...,1,, such that the
functions @, (x) for k < K, are constant in each /,. We denote by I and I/’ the
two halves of I, and set

@y (x) = Z D Ly x) =y (1 x)] (K,p-1 Sk <K, ),
where f(I; x) is defined for I = (u, v) by
(XU .
K (;—_——L;) if xe(u, v),
(I x) = ’
ST 0 otherwise.
It is not hard to check that the step functions &, (x), k=1, 2, ..., K., are
orthonormal and (4.4) is also satisfied for r = 7. This completes the proof of the
induction step.

To see (2.2), we can estimate as follows: for M, <

o L
] Z nk (I)k(x)| = | Z
k=1 ks

=K.+l

K-y
'”| )y ank‘pk(-\’)l—l by
k=1 k=K,

By using the same argument as in part (i), (4.1) and (4.2) imply that the inequalities
Ky ‘

max | ¥

M. SnEN, k=1

n< N,

e P (x)|

[ ¢k (X)I .

@y Pr(X) <27

o

max | ¥

Uy (pk (X)I $ 2
M, SnsN, k=Kt 1

are satisfied except for a finite number of r =1, 2, ...
Consequently, for almost every x

for almost every x.

Ky
limsup max | Y

Ak cph (\)’
M SHEN, k=Ko +1

lim sup| Z Uy By (X)) 2

g ¢l LaRa )

and the latter limit equals o, by (4.4).
Proof of Theorem 3. It runs along the same lines as that of Theorem 1.
Therefore, we only sketch it.
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(i) If Ae(BP), then there exist two sequences 1= N, <N; <... and
0=K, <K, <... of integers such that

14; Npy Npill €277 (r=1,2, .0),

. 1 Kepq 2 12 B
@.5) sup{[(max | ¥ aue () dx} <2
¢ 0 1SnSNp k=K, +1
Setting g = r+1for N, < n < N,y and K, <k <K, (r =0, 1,..)itiseasy
to check that [|ud|| < co.
(i) Similarly, if A¢(BP), then there exist two sequences 1= N,
<N, <...and 0=K, <K, <... of integers such that

4; Nyy Nesll 227 (r=1,2,..)

and (4.5) is satisfied. Now we set p, =(r+1)""' for N,<n<N,.; and
K,<k<K,.; r=0,1,..) and conclude that ||uA|l = co.
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Analytic functions in non-locally convex spaces
and applications
by
N. J. KALTON * (Columbia, Mo,)

Abstract. The aim of this paper is to determine, for a general p-normable space X, what can in
general be said about X-valued analytic functions on the disc. The results obtained are used to solve a
problem raised by Turpin [17] on tensor products of quasi-Banach spaces,

1. Summary of main results. Suppose 2 is an open subset of the complex
plane C and X is a quasi-Banach space. A map f: @ — X is said to be analytic if
for every zo € Q2 there exists » > O such that fcan be expanded in a power series for
lz—zo] <1, ie.

-]
@) =3 x,(z—z0)"
n=0
for |z —zy| < r. This definition of analyticity is forced on us by simple examples
which demonstrate that complex differentiability of f does not suffice to produce
reasonable properties (cf. Aleksandrov [3], p. 39 or Turpin [16], Chapitre IX).

A key property of analytic functions is ([16], p. 195) that 1t f: £ — X is
analytic and Q, < Q is open and relatively compact in Q then there is a Banach
space B, an analytic function g: Q, — B and a bounded linear operator T B — X
so that f'(z) = T(g(2)), zeQ,. From this many of the standard properties of
analytic functions in a Banach space can be lifted to quasi-Banach spaces.

In this paper we will primarily be concerned with the case Q = 4, the open
unit disc. In this case one has, for example,

f@)= Zoxnz", |zl <1,

where lim sup|x,|[*" < 1,

It seems that the main obstacle to developing the theory of analytic functions
for non-locally convex spaces is the failure of the Maximum Modulus Principle.
It has been observed by several authors (Etter [7], Aleksandrov [3], Peetre [14],
Davis-Garling-Tomezak [5]) that some standard spaces, e.g. L, for 0 < p < 1,
have a plurisubharmonic quasi-norm and hence iff: 4 — L, is analytic on 4 and
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