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Condition &:
(1) Fom = (s (20 0+ 3X) }‘%’D ]‘—fi%jl >0,
) Bin= (D004 v ) ) "
(£3) T Biw > max(X(i), 1+ ) max (Y (j), 1+ )

for all m, n iel(m), jeJ(n) such that é,(P) nEj(Q) # (. Here X (i) and Y(j)
are, respectively, the largest solutions of the equations

40, g0, 2
1= % %300 X
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Y o Y=-3p() Y-4"

where ¢(i) is the number of components of %,, and p(j) is the number of
components of %7, ‘
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Nilpotent groups with 7, primitive ideal spaces
by
A. L. CAREY (Canberra) and WILLIAM MORAN (Adelaide)

Abstract. We prove that second countable locally compact nilpotent groups containing a
compactly generated normal open subgroup have T, primitive ideal spaces.

§ 1. Introduction. We say that a locally compact group G has T, primitive
ideal space if the group C*-algebra, C*(G), has the property that every
primitive ideal (i.e. kernel of an irreducible representation) is closed in the
hull-kernel topology on the space of primitive ideals of C*(G), denoted
Prim G. Long ago Dixmier proved [5] that every connected nilpotent Lie
group has T, primitive ideal space (in fact, such groups, being type I, are
therefore CCR). More recently Poguntke showed [11] that discrete nilpotent
groups have T; primitive ideal space. This then suggests the obvious
conjecture that all locally compact nilpotent groups have T; primitive ideal
space.

This note proves the following result in that direction,

THEOREM. If G is a second countable locally compact nilpotent group with
a compactly generated open normal subgroup then G has T, primitive ideal
space.

The notation of this paper is the same as that of [2], to which we also
refer the reader for a more leisurely account of some of the techniques and
ideas used here.

Acknowledgement. We would like to thank Mike Keane for the reference
to the structure theorem for nilpotent groups cited in Section 2. The first-
named author thanks the Pure Mathematics Department at Adelaide
University for its hospitality while this work was carried out.

§ 2. Preliminary arguments. We note firstly the following structure
theorem for compactly generated nilpotent locally compact groups ([8], p.
104). Namely if G’ is such a group then there exists a maximal compact
normal subgroup K consisting of all elements whose powers form a relatively
compact set such that the quotient G' = G'/K is a Lie group. By this last
statement we mean that the connected component of the identity G, of G’ is
a (connected) Lie group and G'/G, is discrete (possibly infinite). If G is as in
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the Thec_)rem of the Intfoduction with G' normal and open in G, then K is
normal in G so that G = G/K is a Lie group. Then G, is the connected
component of the identity of G and we note that G, is simply connected by
Lemma 4 of Howe [9].

chl G, be the pullback to G of G, and note the following elementary
result:

Lemma 2.1, The group G, is type 1.

Proof. As the dual K of K is discrete and Go/K is connected G, acts
trivially on K. Thus the Mackey normal subgroup analysis [10] shows that
Gy is type I

Our strategy is to exploit the following result systematically.

TueorEM 2.2. If G is a second countable locally compact group and N is a
normal subgroup such that G/N is discrete abelian then G has T, primitive
ideal space if and only if G-quasiorbits in Prim N are closed.

This theorem is the main result of [2]. We recall for the reader’s
convenjence that a G-quasiorbit in Prim N is an equivalence class under the
relation: Iy ~ I, ;e Prim N, j = 1, 2, whenever I, lies in the closure of the
G-orbit through I, and vice versa. In order to use Theorem 2.2 we need to
show that G-quasiorbits in G, are closed and then (by an induction on the
length of an ascending central series from G, to G) deduce that G-quasiorbits
are closed “one level down” from G in the series and hence by Theorem 2.2
that G has T, primitive ideal space.

The first step in the argument is to note that, as a corollary of the proof
of Lemma 2.1, G, lies in the stabilizer S, < G of each xe K. Then we have
the following result

Lemma 2.3. With the notation as in the first paragraph of this section,
suppose that 0 < GO is a G-quasiorbit and, for each ne®, let n restrict on K to
a multiple of »,e K. Then 0 is closed whenever, Jor each me®, the quasiorbit
containing n of rhe stabilizer S, . O %o is closed.

Proof. Let g,, T Ty W1th Ty in the closure & of §. Then G Hog = H
but as K 1s discrete this says that g, %, = %, for all n > N for some N. But
then g,gn! "y, =2, for all n> N so that g,g5 eS . Now (g,95Vgn'n
-, as n-> oo'and so as, by hypothesis, the an quasmrblt in G, containing

“gy ' m is:closed, we conclude that there exists | ,} in S, such that h,-m,
~gx 7. But then gy'h,-n, > n proving that 6 is closed.

* Now notice' that if 0; denotes-the S, quaswrbxt in G, containing =,
and nzeg then x,,z‘— 2 becatsse thcre ex1sts {h,,},,=1 €8, with h,'m;
-, 1«:2 so "7‘1 = h “n = %y, for sufficiently large n. "
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Thus the stabilizer Sx,:, is constant on the closure of the quasiorbit €,

since every representation in , restricts on K 1o ,,
common stabilizer and note by the preceding lemma that to prove that the
G-quasiorbit containing = is closed, we need only show that 8, is closed.
Now let o, denote the Mackey cocycle on Sg which measures the
obstruction to extending x, to Go. Then we may identify &
homeomorphically with a subset of the a,,]-dual, (Gy» Uol)ﬁ of G,. (This
identification is defined in [10] and proved continuous for example in [7] by
noting that any irreducible representation of K is finite-dimensional so that
the hypotheses of Theorem 18 of [7] are satisfied.) Denote by (S,,I/K) the
central extension of S, /K determined by oy and by (Go/K) the
corresponding extension of Go/K. Then to show that ()1 =0, it is sufficient
to show that (Sal/K) quasiorbits in the dual of (Go/K)™ are closed. To do

this we establish first the following result.

. So we write S, for this

ProrosiTioN 24. If H is a second countable locally compact nilpotent
group whose connected component G, is a Lie group then the H-guasiorbits in
G, are closed.

Proof. We begin by noting that G, has the same Lie algebra g, as its
simply connected covering group and moreover its dual G, is a closed subset
of the dual of this covering group. It follows then from the Kirillov
conjecture as proved by Brown [1] that G, is homeomorphic to a closed
subset of the space of coadjoint orbits of the covering group in the dual g§ of
go. In fact, the coadjoint orbits of the covering group which lie in this subset
are just those that are integral orbits for the coadjoint G, action (cf. [3] for
this terminology and result). Now H acts by conjugation as automorphisms
of G, and hence, by differentiating, as automorphisms of go. Write Ad h for
this action of he H on g, and Ad*h for the dual action on g¥. Using the
Kirillov conjecture we need only show that the Ad* H-quasiorbits in g§ are
closed. Note that (Adh—1)" = 0 for sufficiently large n by differentiating

1=1[g, 09, [g,..-[g exptX].. ]

(n commutators) with respect to ¢t at t =0 for each Xego. Consequently
there is a basis of g¥ such that Ad* H is represented by upper triangular
matrices with one’s on the diagonal (Kolchin's theorem [12]). The
proposition is now a corollary of Theorem 1 of Abels [0] once we remark
that an Ad* H-quasiorbit in g% being closed is equivalent to it being a
minimal Ad* H space. :

Returning to the discussion precedmg Proposition 24 we see that we
may now conclude that the (S,,‘/K) quasiorbits in-the dual of (G o/K)~ are
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closed. This, together with the preceding results, may be combined into the
main result of this section.

ProposiTioN 2.5. If G is as in the Theorem of the Introduction then
G-quasiorbits in G, are closed.

§ 3. Proof of the Theorem. This section makes considerable use of
arguments from [2] to which the reader may refer for more details. Let G
be as in the statement of the theorem and adopt the notation of the first
paragraph of Section 2. Let {H;}/., be a sequence of subgroups with
H,=G, Hy=G,, [G, H] S H,-, and each H, of lower nilpotence class
than its predecessor H;, ;.

N

Lemma 3.1 If G-quasiorbits in PrimH,., are closed then G has T,
primitive ideal space.

Proof. This is immediate from Theorem 2.2.
)
LemMma 32. The Hp-quasiorbits in G, are closed for all i=1, ..., n.

Proof. Each group H; satisfies the hypotheses of Proposition 2.5, hence
the result.

Prorostrion 3.3. The G-quasiorbits in PrimH, are closed Jor all
i=1,...,n—1.

Proof. We induct on the length n of the central series {H}eo.
The induction starts at n =1 by Theorem 22. We may assume that the
result is true for all groups for which the sequence {H;} has length less than
n and hence, by Lemma 3.1, that such groups have T, primitive ideal space.
Secondly we induct on the label i of the ascending central series {H;} noting
that the induction starts at i = 0 by Proposition 2.5. Thus we may assume
that we have a group G with ascending sequence {H,}/-, of length n, each H,
having T; primitive ideal space and closed quasiorbits in Prim H, for k<i
< n. Moreover, we assume that the G-quasiorbits in Prim H, for k < i are
closed and now proye as a consequence that G-quasiorbits in Prim H; are
closed.

With this in mind, let § < Prim H; be a G-quasiorbit, xe0 and ye and
let {g,} =G be such that g,-x—y. Both x and y being primitive ideals,
define Hi-quasiorbits x, and y, respectively in Prim H;_ by restriction (cf.
Green [7] or Gootman-Rosenberg [6]). Thus g, x, ~ y, and by closure of
G-quasiorbits in Prim H;_, there exists a sequence {g,} in G with g/, y, — xo.
Let I'=(H,/H;_,)". Now the ideal induced from a primitive ideal in x,, or
equivalently all of x,, has as its hull the closed subset I'-x of Prim H; (cf.
Section' 2 of [2] for the definition of the I' action on Prim H; and a similar
argument). So by continuity of induction g, I"+y —» I'- x. Thus we can find a
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sequence {y,}=; =T such that
Gn Pn Y2V X
for some yeI. Observe that as H;_,, H; are successive terms in a central

series the I and G actions commute. Therefore there is a sequence {y,} &I
with

Gn ey > X
But I' is compact and so a subsequence of {y,} converges to some y, ler.
So we have g,'y— yo-x and hence y,-xef(y) where 8(y) denotes the
quasiorbit containing y.

Before continuing we need a result.

LemMMA 3.4. Let G be a second countable locally compact group and N a
closed normal subgroup. Then every G-quasiorbit in Prim N is contained in the
closure of a maximal G-quasiorbit.

Proof. We will state the following argument in slightly greater
generality by considering (following Green [7]) the situation wh.ere G'acts on
a second countable totally Baire space X (cf. [7], p. 222 for this notion and
the fact that Prim N is totally Baire). We will show that every G-quasiorbit
in X is contained in the closure of a maximal one. Taking the quasiorbit
space (X/G) ~ it is enough to show that the partial ordering defined by: ic
<y if and only if x lies in the closure of y, satisfies the hypotheses of Zorn’s
Jemma. Let A be a chain in X and let B be the closure of 4. It is enough to
show that B is the closure of a single point. Since B is closed it is a Baire
space [7]. Let {U,: ne N} be a basis for the open sets of B. If xe U, and x
<y then yeU,. It follows that U, contains a cofinal subset of B and so is
dense in B. Thus (U, is dense in B. Now if y is any element of OU,,, y is

dense in B and the result follows.

Remark 3.5. This argument is just a variation on the proof in Dixmier
([4], Corollaire 2) of the existence of minimal primitive ideals.

We return to the proof of the proposition noting that as a consequence
of Lemma 34 we may as well assume that 6 is maximal, for if n{aximal
quasiorbits are closed then all quasiorbits are closed. T_he F action on
Prim H, clearly takes maximal quasiorbits to maximal quasiorbits. Hence we
have 7, -0 maximal and y,-9 gm. But this means that y,-0 = 8(y) so 0(»)
is maximal. But by the original hypothesis

00 =8 =y5"000),

so that @(y) =0 as required.
Combining the results of this section completes the proof of the
theorem.
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Egorov’s type convergence in the Dedekind completion
of a C*-algebra

by

KAZUYUKI SAITO (Sendai)

Abstract. The conmcept of comvergence in Egorov's semse for nets in an abelian
AW*-algebra is introduced. We say that an abelian AW*-algebra A has property E if every
order convergent net in 4 also converges in Egorov’s sense to the same limit. It is shown that
the Dedekind completion of the hermitian part B, of a given separable unital C*-algebra B
(regarded as an order unit vector space) satisfies property E if and only if B is abelian and its
spectrum contains a dense subset of isolated points.

C*-algebras have very nice properties as ordered vector spaces, they
have not, however, the order completeness property in general. Since the
hermitian part of a C*-algebra is an Archimedean partially ordered vector
space, it can be embedded, with preservation of suprema and infima, in a
bounded complete vector lattice (the hermitian part of an abelian
AW*-algebra) called the Dedekind completion (of the C*-algebra) (see, for
example, [7] and [13]).

Our claim in this note is that this completion is very badly behaved for
almost all separable C*-algebras as far as the order convergence is
concerned, in the following sense:

TueoreM. Let A be a separable C*-algebra and let & be the Dedekind
completion of the hermitian part of the C*-algebra A, obtained from adjunction
of a unit to A, regarded as an order unit vector space. Then any bounded net
{a;) in @ which converges to a in the order sense also converges in Egorov’s
sense (see below) to the same limit a if and only if A is an abelian C*-algebra
whose spectrum contains a dense set of isolated points.

This is, however, an easy consequence of the following

PRrOPOSITION. Keeping the above notations and definitions in mind, @ is
atomic (in the sense that it has sufficiently many minimal projections) if and
only if A is abelian and its spectrum has a dense set of isolated points.

Let Z be an abelian AW*-algebra and @ the spectrum of Z. If we
denote by Z, the set of all hermitian elements in Z, then Z, is *-isomorphic
to the set C.(Q) of all continuous real-valued functions on Q. In its natural
ordering, C,(®) is a boundedly complete vector lattice ([2]).
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