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vertex of the cone. Then K, (D) _—~=K*(15) and we get the following exact
sequence:

1
k(D) Ko —2F

K'(Y)

KoY)

pr KO0) Ko(D)

Finally, if we drop the condition on the blocks, we get

ExaMpLE 5. Let X and Y be compact spaces and f: Y— X a continuous
function. Let C, be the mapping cone of f and D the C*-algebra of maps
from C, into M, whose values on the canonical image of X in C, are block
diagonal matrices with blocks of size k x k. Let D :=kerev, where ev is the
evaluation at the verlex yoeC,. Then K,(D)=K,(J) and K, (D)
= Z @ Ky (D). Moreover, we have the following exact sequence:

1
Ky(5) SK'0n L ki
Koy B KOX) Kol
(<55 @K o)
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t-smooth linear functionals on vector lattices
of real-valued functions

by
WOLFGANG ADAMSKI (Mtinchen)

Abstract. A vector lattice E of real-valued functions is said to be a strong Daniell lattice if
every positive linear functional #: E— R is t-smooth (ie. im®(f,)=0 for every net (f,) in E
with f,10). Under some additional assumptions which, in general, cannot be omitted, several
characterizations of strong Daniell lattices are given. These results are then applied to the vector
lattices (%, #) and 6°(%, #) of £-continuous (and bounded) functions with #-bounded
support, where .# denotes a lattice of sets and # is an #-bounding system.

1. Introduction. This paper is a continuation of [4]. However, whereas in
[4] we are concerned with the characterization of Daniell lattices (i.e. vector
lattices E of real-valued functions having the property that every positive
linear functional on E is o-smooth), we consider in this paper only such
vector lattices on which every positive linear functional is z-smooth. Under
some additional assumptions which, in general, cannot be omitted, we give
several characterizations of these so-called strong Daniell lattices. As
application of these general characterization theorems, we can prove, among
others, the following results:

(1) For a completely regular space X the following statements are equivalent:
(a) X is realcompact.
(b) The space of all continuous functions on X is a strong Daniell lattice.
(c) The space of all Baire-measurable functions on X is a strong Daniell
lattice. )

(2) If (X, o) is a measurable space, then X is sf-complete ([1]) iff the space
of all sf-measurable functions on X is a strong Daniell lattice. In
particular, a topological space X is Borel-complete ([11]) iff the space of
all Borel-measurable functions on X is a strong Daniell lattice.

Some special cases of our results can be found in [10] and [17].
However, the methods of proof are different. Our proceeding seems to be
more direct; in contrast to [10] and [17], we do not make use of any
compactification.

Throughout this paper X will denote an arbitrary nonvoid set and
E < R a vector lattice (with respect to pointwise operations). 1, denotes the
indicator function of a subset @ of X. For feE we put |fll
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:=sup{|f(x): xeX}. We write I'(E) for the subfamily of R¥ consisting of all
positive linear functionals. For xeX we denote by I, the evaluation
functional on E pertaining to the point xe X. For a net (f,) < E we write
£10if (f,) is decreasing (i.e. o > B implies f, < fy) and converges pointwise to
zero.

E is said to be a strong Daniell lattice if every @eI'(E) is t-smooth
(ie. liar‘n(b( f.) =0 for every net (f) = E with f,;]0). ‘

A family o of subsets of X is said

(i) to have the finite [countable] intersection property if every finite
[countable] subfamily of s has nonvoid intersection;

(ii) to be a compact [semicompact] class if every [countable] subfamily of
X having the finite intersection property has nonvoid intersection.

Let o be a nonvoid family of subsets of X, closed under finite unions
and finite intersections. A nonempty subfamily 2 of o is called an
H-filter [H-ultrafilter] f 2 satisfies the following conditions (x)-(y)
[@H&)]:

() O¢ 2;

(B) 2 is closed under finite intersections;

(y) D1€2, Dye # and Dy < D, imply D, P;

(®) He ¥ and HNAD # Q for all De2 imply He 2.

If each s -ultrafilter with the countable intersection property has nonvoid
intersection, we say, following [1], that X is J#-complete.

Let #(E): = {{f> 1}: feE}. Then J#(E) is closed under finite unions
and finite intersections. In addition, we have Qe ) (E). .

If X is a topological space, then %(X) [®(X)] denotes the collection of
all [bounded] continuous real-valued functions on X. A zero-set in X is a set
of the form {f= 0} with fe%¢(X). We write Z(X), #(X), %(X) for the
family of all zero-, closed, open sets in X, respectively. %,(X) [#(X)]
denotes the Baire [Borel] o-algebra in X.

) 2. Some characterizations of strong Daniell lattices. The following four
properties (P1)}-(P4) will play an important role in the sequel:
(P1) For every feE there is some ge E such that {f# 0cf{g=1).
(P2) Every f¢E is bounded.
(P3) min(l, f)eE for every feE (Stone’s condition).
(P4) 'For every xeX there is some fe E with f(x) 0.

The folbﬁng basic result can be proved in the same way as Theorem 1
in [4].

‘ 2.1. TreoreM. Consider the following four statements:

(S1) E iis a strong Daniell lattice. :

(S2)  The family #(E) is a compact class.
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(S3)  Every net (f,) = E with f,|0 converges uniformly on X to zero.

(84)  For every & >0, for every net (f),ea < E with £,|0, and for every
geE, satisfying {f,,# 0} = {g =1} for some aoe A, there exist a
sequence (a,) = A and a function heE with h> Y (f, —min(eg, f,,))-

neN

Then the following implications are valid:

(a) (S2)=>(83) =(S4).

(b) If E satisfies (P1), then (S4)=(S1).

(©) If E satisfies (P2), then (81)=(S3).

(d) If E satisfies (P3), then (83)=>(S2).

2.2, CoroLLARY. If E satisfies.(P1), (P2) [and (P3)], then the statements
(S1), (S3), (S4) [and (S2)] are equivalent. ,

2.3, Remarks. (a) By means of the examples 1-3 in [4] one can see
that, in general, the assumptions (P1)-(P3) cannot be omitted from the three
last parts of 2.1 »

(b) It is a consequence of Zorn’s lemma that every subfamily of »# (E)
with the finite intersection property is contained in an J (E)-ulirafilter. Thus
statement (S2) is equivalent to
(S2)  Every (E)-ultrafilter has nonvoid intersection.

2.4. ExaMPLE. Let @ be a ring of subsets of X. If E denotes the class of all
step functions for 2 (cf. [14], 1.7.8), then E is a vector lattice satisfying the
conditions (P1)}-(P3). In addition, we have 5#(E) = &. Thus 2.2 implies that
E is a strong Daniell lattice iff 42 is.a compact class. In the same way, it
follows from [4], Corollary 1, that E is a Daniell lattice iff # is semicompact.
If X is uncountable, then the algebra of = {4 c X: Aor X — A is finite} is a
semicompact, non-compact class. Consequently, the space of all step
functions for «f is in this case a Daniell lattice which fails to be a strong
Daniell lattice. :

In the following we denote by 7 the topology on X generated by
E (ie. T is the coarsest topology on X making all functions feE
continuous).

A functional ®eI'(E) is said to be tight if for every He M (E) and for
every net (f,) = E satisfying {f.# 0} < H for all « and sup [l < o0, we

have lim () = O provided that (f,) converges uniformly on all 7, E-compact

subsets of H to zero.
We can now prove the following new resuit.
2.5. THEOREM. Assume that E satisfies the conditions (P1)-(P4). Then the
following assertions are equivalent:
(S1) E is a strong Daniell lattice.
(85) ~ Every ®eI(E) is tight.
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(S6)  Every set He # (E) is J g-compact.
(S7)  Every function fe E has 7 g-compact support.

Proof. (85)=(S1). It suffices to show that every tight de I(E) is
t-smooth. Let @< I'(E) be tight and let (f,),.4 be a net in E with f,] 0. Fix
some ape A and put Ay :=lae A: o > a,}. Then sup || £l = lfaoll < o0 and, by

. . 3 e 0 .
(P1), there is a set Hye #(E) with {j,o # 0} = Hy. By Dini’s theorem, the
net (f,)ea, converges uniformly on all 7 g-compact subsets of H, to zero.
This implies Iiﬁn @(f) =0 and hence Ii:}ia d(f)=0.
as. 1] ae.

(S1)=(S6). Let Hye s (E) be given. Furthermore, let (F,),; be a family
of Fg-closed subsets of X such that () (H,nF,) = @. By [2], 3.2, there exists,

iel

€.
for every iel, a subfamily .#; of E with HynF,= () {f> 1]. Putting

SeF;

F = {min(fy, ..., [,): fie F

for i=1,...,n;neN},

F:=JF and

iel

we have fﬂg {21} =@. Since #°(E) is a compact class by 2.2, there exist

finitely many functions fi, ..., f,e # such that () { fj =1} =@. Choosing
. j=1

N n
jjel with fje #, for j=1,...,n, we obtain () (HonF)=0.
=1

J
(S6)=(S7). Let fe E be given. By (P1), there is an # (E)}-set H o {f# 0}.

As H is F g-compact by (S6), so is the support of f.
(S7)=(85). Let e I'(E), He # (E) and ¢ > 0 be given. Furthermore, let
(fsea be a met in E such that sup|if)l < oo and {f, # 0} = H for all a

Assume- that (f,) converges uniformly on all .7 ;-compact subsets of H to
zero. As H is Jg-compact by (S7), (f;) converges uniformly on X to zero.
Let feE, be such that H = {f>1}. Putting &' :=e¢/max(l, ®(f)), there
exists an index ap, such that |f)<e&f for all a>a,. This implies
AP < P(f) <eP(f)<e for all o > ay. Hence @ is tight. =

If X is a topological space and E is a'sublattice of %(X) such that the
topology J; is coarser than the given one, then, in general, Theorem 2.5
does not remain true if in the statements (S5), (S6) and (S7) the topology ¥
is replaced by the given one:

2.6. ExampLes. (a) Let X be the real line (with the Euclidean topology)
‘and let E be the lattice consisting of ‘the constant functions. Then E is a
strong Daniell lattice by 2.1. However, X ¢ #(E) is not compact.

(b) Let X :=[0, 1] be equipped with the discrete topology and let E be
the space of all real-valued functions on X continuous wrt, the Euclidean
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topology. By 2.1, E is a strong Daniell lattice. Let & be the family of all
finite subsets of X. Put g:= 1y for Fe & and &(f):= [f d4, feE, where
A denotes Lebesgue measure on X. We have [grdi=1 and gr
=sup{feE: 0<f< gy} for all FeF. As & is r-smooth, there exists for
every Fe & a function freE such that 0 < fr < gr and @(f;) > 0.5. Then
(fr)res 1s a net in E with sup {||fzll: Fe #} <1 converging pointwise (i.e.
uniformly on all compact subsets of the discrete space X) to zero. On the
other hand, the net (@ (fr))r.s does not converge to zero.

3. The vector lattice % (%, #). In the following let &% be a family of
subsets of X containing @ and X and closed under finite unions and
countable intersections. Let #(%):={feR*: f ! (F)e¥ for all closed
F < R} denote the family of so-called #-continuous functions. €(&) is a
vector lattice and an algebra containing the constants ([6]). 4°(%) denotes
the space of all bounded functions in %(%).

Furthermore, let 4 be an #-bounding system ([10], [17]), ie. # is a
nonvoid family of subsets of X satisfying the following two conditions:

(i) #1X (ie. U# = X and for B,, B,c % there is a set Bye % such that
B, U B, < By).

(1)) For every set B, e 4 there exist a function fe (%) and a set B,e %
such that f|B, =1 and {f# 0} < B,.

Put 4(¥,B):={fc¥(¥): {f#0} =B for some Be#}. Then
G(¥, #) is a vector lattice satisfying conditions (P1), (P3) and (P4).
Moreover, € (%, #) is an ideal in %(%¥).

Notice that Xe# implies 4(.%, %) = ¢ (%).

It has been shown in [4] that (%, &) is a Daniell lattice. However, in
general, % (%, ) fails to be a strong Daniell lattice (see [18], Remark 4, p.
178). In the sequel we shall give several conditions necessary and sufficient
for 6(#, %) to be a strong Daniell lattice. For this purpose we need

3.1. LEMMA. Let .o/ be the o-algebra generated by € (%, #), and let 1 be a
measure on o such that (%, B) = £ (X, o, p). Then, for any fe 6 (&, B),
there is a constant re(0, co) such that u({{f]| >r})=0.

Proof. Assume that there is a function fe% (%, %) with
u#({lf] > ) > 0 for all r > 0. Then one can inductively define two sequences
(a,), (b,) of real numbers such that n <a, <b, <a,.; and pu(4,) > 0 holds
for all neN, where A,:={a, <|f|<b,}. Choose a continuous function
g: [0, 00) ~ R such that ¢(0) = 0 and g(t) = (u(4,))"* for te[a,, b,] and all
neN. Then h:=go|fle¥(¥,B) and [hdp> Y [hdu=oco which

neN A,
contradicts the assumption he &, (X, &, ). =

Now consider a maximal ideal .# in ¢(%, %). Then the residue-class
ring F:= ¢(%, #)/7 is a field (see [10], section 9). If the mapping T: R— F
defined by T(r):=[rf*], where [f*] denotes the unit element of F, is
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surjective, then .# is said to be real. On the other hand, .# is said to be fixed
if #={fe¥(ZL,B): f(xo) =0} for some x,¢eX.

We can prove the main theorem of this section which is a common
generalization of several well-known results.

3.2, THeOREM. For E:=%(%, #) the following four statements are
equivalent:

(S1) E is a strong Daniell lattice.

(S8)  Every nonzero multiplicative linear functional on E is an evaluation.

(S9)  Every real maximal ideal in E is fixed.

(S10) X is o€ (E)-complete.

) Proof. (S1)=(S8). We consider X as the topological space equipped
with the topology J¢, and we denote by int(Q) [cl(Q)] the interior
[closure] of a subset { of X. Let @ # 0 be a multiplicative linear functional
on E. If fe E,, then f=(f?) with f'?cE and so &(f) = (P(f¥?)*> 0.
Thus @ is positive and hence z-smooth by (S1). By [8], 72E, there is a Borel
measure 4 on X with the following properties:

B.1)  ®(f)= (fdp for all feE;
(3:2)  p(A)=sup{u(F): F = 4, Fe #(X)} for all Borel sets 4;
(3.3)  u(G,) =supu(G,) for every increasing net (G,) = %(X).

There is a function fo e E with &(f,) # 0. Choosing B,e # and fe E such that
{fo# 0} By, 0<f<1 and f|B, =1, we have f, =ff,, hence 03 &(f)
= &(f) ®(fo) and so

34 1=o(f) = [fdp < p(X).

For a given Be # choose a #-set B, with BU B, — B, and a function fe E
with 0<f<1 and f|B; =1. Then (3.4) implies 1 = (fdu> (/1 - d

o H
= u(cl(By)) > p(cl(B)). Thus we have 57842 5 oy

"(3.9) uel(B)<1 for all' Be.

-For any xe X, there is a #-set B, with xe B,. Choose fe E and B, e # such
that f|B, =1 and {f# O} = B,. Then xe {f+ 0} cint(B,). Thus we have
{int(B): Be #)}1X . which, together with (3.3), (34) and (3.5), implies
1 < p(X) = sup {u(int(B)): Be B} < sup {u(cl(B)): Be#} < 1. Hence 4 is a
probability measure.

14 }I.I.et Gef?(X) with u(()}’) >0. Then lg =sup{feE: 0<f< 14} by [2],
4. Hence, for any te(0, 1), we have G = {{f>1}: feE, 0<f<1 d
so, by (3.1) and (3.3), . t b d ‘G} o

tu(G) = sup{ty({f> t): JeE, 0 <f< g} <sup {®(f): feE,0<f< 1g).
For (11 we thus obtain 0 < pu(G)=sup{®(f): feE, 0<f<lg). In
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particular, there is a function feE with 0<f<1s and &(f)>0. Then
fiecE, fi"g1g and (PN =d(fM<pu(@ <1 for all neN. As
(®(/NY"—~ 1, we obtain u(G)= 1.

Thus we have shown u(G)e {0, 1} for all Ge %(X) which, together with
(3.2), implies that p is {0, 1}-valued. Let Fy:=X—{) {Ge 4(X): u(G) = 0}.
By (3.3), we have u(Fo) = 1, in particular F, % Q. Fix some xoe Fo. Then it
follows from (3.2) that u(4) =0 for any Borel set A with xo¢ A. Thus p is the
Dirac measure pertaining to the point x,; hence @ = I, by (3.1).

(S8) =(S9). Let .# be a real maximal ideal in E. For any fe E put &#(f)
i=rif [f] = [1f*], where [f*] denotes the unit element of the residue-class
field generated by .#. & is a nonzero multiplicative linear functional on E. By
(S8), we have & = I, for some xoe X which implies # = {fe E: #(f) =0}
= {feE: f(xo) =0}. Hence S is fixed.

(S9)=(S8). Let @ # 0 be a multiplicative linear functional on E. It can
be shown by routine arguments (cf, [9]) that £ := {fe E: #(f) =0} is a real
maximal ideal in E. By (S9), we then have .# = {feE: f(xo) = 0} for some
xo€ X which implies & =1, .

(S8)=>(S10). Let 4 be an s (E)-ultrafilter with the countable
intersection property. For any He #(E) put A(H)=1 or 0 according as
He% or not. Then 4 can be extended to a {0, 1}-valued measure u on the o-
algebra of generated by E (of. the proof of Theorem 2.1 in [1]), and we have
Ec £,(X,o, p) (cf. [13), (12.60). In addition, $(f):= {fdp,feE, is a
nonzero multiplicative linear functional on E (cf. [13], (20.52) (c)). Thus (S8)
implies ® = I, for some xoe X. Now let Ue % be given. Then U = {f=1}
for some feE,, and we have 1 = u(U) < [fdu = ®(f) =f(x0). Thus xoeU.
As Ue % was arbitrary, we obtain x,e()#. This proves (S10).

(S10) =(S1). Let ®e I'(E) be given. By [4], Corollary 2, @ is s-smooth.
Hence, by [8], 71G, there is a measure p on the g-algebra generated by E
such that (3.1) holds. Let (f,),.4 be a net in E with £,|0. We first prove

(3.6) ir;f,u({ fize})=0 for all £>0.

Suppose that we have c:=infp({j;>s})>0 for some & > 0. Choose a
sequence (x,) = A such that ; ﬁixyu({ Jo, 2 ¢}) where w.lo.g. (f,)wn can
be assumed to be decreasing. Put Fo:= ) {L_ > e} Then p(Fo) =c¢ >0,
and the family @:= {He#(E): u(H ~Fo)=pu(Fo} is an s (E)filter.
Since {f, >e}e@ for all xe 4, we obtain ‘

3.7 N2 =0.

Now we choose an i (E)-ultrafilter 25> 2. In order to prove (3.6), it
suffices to show that B, has the countable intersection property, since in this
case (S10) implies )2, # @ which contradicts (3.7). .
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Suppose that there is a sequence (D,) = %, with D,|@. Then one can
find a sequence (h,) = E with h,|0 and h,[D, > 1 for all neN (cf. the proof
of Theorem 1d) in [4]). Choose a function feE, with {h, # 0} = {f'=1).
Then h:= 3 (h,—min(f/2, h))e E (cf. the proof of Theorem 2 in [4]) and

nelN
h|D, = n/2 for all neN.
By 3.1, we have u({h>r})=0 for some re(0, o). Then D,n{h<r)
=@ for all n> 2r. Furthermore, we have :
U Zetnfh<r} = {f, 2 e} n {r+)min(1, £, /o)~ h > 1} e #(E),
#({fey 28} {h <7} O Fo) = ul{h <1} A Fo) = u(Fo)
which implies {f, >&} n{h<r}eP < 9, Thus we have, for all n > 2,

G=D,n{h<r} =D,n {foy Z e} n{h<r}e 9,. This contradiction proves
(3.6).

Now fix some %ye4 and choose a function fe E,
Then, for all o> «; and any ¢ >0, we have

D(f)= Ifa du < ffaol(f,,za) d#'*“ff;l[o <fy<e} du < jfao l(fa?‘e) du+ed(f)
which together with (3.6) implies im®(f) =0. w
a

with}'j{faoaéo} =1,

If % is the family of closed subsets of a completely regular space, then
the implication (89)=>(S1) of 3.2 is exactly Theorem 11.2 of [10].

For the subsequent. applications of 3.2 we need the following two
additional properties of the family % ([6]):

& is said to be normal if, for any two disjoint sets L, L,e %, there exist
disjoint sets K, K,e %" = {X—L: Le %} such that I, c K, for i =1, 2.

Z is said to be complement-generated if every set. Le % is a countable
intersection of .%'-sets.

3.3. CoroLLARY. If % is hormal and complement-generated, then %(%) is
a strong Daniell lattice iff X is $-complete.

Proof. By [5], Lemma 7, we have % = (%(#)). Now our claim
follows from 3.2. = ‘

The assumptions of 3.3 are in particular satisfied if % is a o-algebra. In
this case %(.%) is the space of all #-measurable real-valued functions on X,
Thus we obtain from 3.2 and 3.3 the following new result.

34. CoROLLARY. Let (X, of) be a measurable space. Then the Jollowing
assertions are equivalent: ‘

(1) X is of-complete.

(2) €(#) is a strong Daniell lattice.

(3) Every nonzero wmultiplicative linear Junctional on €(sf) is an
evaluation. .

(4) Every real maximal ideal in €(HA) is fixed.
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If X is a topological space and E:=%(X), then E =% (% (X))
=%(Z(X) and # (E)= #(X). Since, by [1], Corollary 2.3, (X))
completeness and #,(X)-completeness are equivalent properties, we thus
obtain from 3.2 and 34

3.5. CoroLLARY. For a topological space X, the following five statements
are equivalent (if, in addition, X is completely regular, then each of these
statements is equivalent to the realcompactness of X):

(1) X is & (X)-complete,

(2) % (X) is a strong Daniell lattice.

(3) 6 (#0(X)) is a strong Daniell lattice.

(4) Every nonzero multiplicative linear functional on %(X) is an
evaluation.

(5) Every real maximal ideal in %(X) is fixed.

- For completely regular X, statement (5) of 3.5 is exactly the definition of
realcompactness given originally by Hewitt [12] (“Q-space” in the original
terminology), whereas the statements (1) and (4) of 3.5 are classical
characterizations of realcompact spaces (see [9] and [12]). Furthermore, an
analysis of the proof of 3.2 reveals that every Baire measure on a
realcompact space which integrates every continuous function is
automatically t-smooth (ie. Z(X)2Z,lQ implies infu(Z,)=0). Note,
however, that there are realcompact spaces supporting finite Baire measures
that are not t-smooth (see [19], p. 128).

In accordance with [11], #(X)-complete topological spaces X are called
Borel-complete. By 3.4, these spaces can be characterized in the following
way.

3.6. COROLLARY. A topological space X is Borel-complete iff % (#(X)) is a
strong Daniell lattice.

As in a discrete space
realcompactness, we obtain from 3.6 and [9],
characterization of nonmeasurable cardinals.

Borel-completeness is the same as
122 the following

3.7. COROLLARY. For a set X, the following two statements are equivalent:

(1) card(X) is nonmeasurable.

(2) The space of all real-valued functions on X is a strong Daniell lattice.

If (X, o) is a measurable space and E:= % (&) is a strong Dani_ell
lattice, then all elements of I'(E) are of the same structure, as the following
result shows.

3.8. ProrosimioN. Let (X, &) be a measurable space and let E := 6 ()
be the space of all s/-measurable real-valued functions on' X. Then the
Jollowing two assertions are equivalent:

(1) E is a strong Dc el lattice.

2 - Studia Mathematica LXXXIIL?2
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(2) Every ®eI'(E) is elementary ([7]), i.e. there exist ay, ..., a,e Ry and

n
o X,€ X such that ® =Y a;1,.
i=1
Proof. Since any elementary @ e I'(E) is t-smooth, it remains to prove

(1) =(2). Let ®eI'(E) be given and put p(A4):= ®(1,) for Ae.o/. Then pis a
finite measure on «/ which is t-smooth at Q@ (i.e. o/ 24, |Q implies iEf 1A,

=0). As @(f) =

¥ a;0,, with ;eR, and xeX for i=1,..,n.
i=1

By [15], 2.1 and 2.2, there are measures p, j, on & with p = p, +u,
such that p, is nonatomic and p, is purely atomic, i.e. there is a countable

disjoint family {B,: ke N,} of u,-atoms such that
ta(A) = pa(An U By) for all Aeos.
keNg

{fdu for feE, it suffices to show that u is of the form

It follows from [3], 2.1 that, for any xe X, one can find a set A, e.o7 with
xe A, and p,(A,) = 0. Denoting by & the collection of all finite unions of
sets A} we obtain |J % = X, hence p, (X) = sup{p, (D): De @} = 0, since y,
is also t:smooth at (0. Thus we have u; =0, ie.

Y wAnB) forall ded.

keN g

RN

o u(d) =

Now Aem’ - /l(Af\Bk) (u(BY)™" defines a {0, 1}-valued measure, hence a
Dirac measure by 3.4 and [1], 2.2, Therefore we obtain

PR by’ b s U= Z /"‘(Bk)éxk
keNg

Now: our ¢laitih follows from the fact that the family {B,: keN,} is finite,

since otherw1se we would have &(f) = oo for f:= 2 (#(By) ™t 1pcE. »

with x,e B,.

for E =% f &£ is not a o-algebra: Consider X = [0, 1] with the
Euclidean topology and ¥ = F(X). By 3.5, E:= %(%) = %(X) is a strong
Daniell latticé. On 'thé ‘dther hand, it follows from the Riesz representation
theorem that the functional &(f):= [fdJ, f<E, where A denotes Lebesgue
measure, is ‘hotelémentary.

'(b) Erom' 3.4 and 3.8 we obtain an alternative proof of the equivalence
of the statements (2): and'(3)of [3], Theorem 2.6. This result also reveals that
the assertions (c) and (d) of Theorem 1 in [7] are equivalent.

() Fx;}om 3.7 and 3.8 We obtain the main theorem of [16] and, in
partxcula;, Satz 546 of [17]

4. The vector lamce '6"(.? .9?) Under the same assumptions as in the
preceding section, we are now concerned with the vector lattice (L, B)

.“Re marks (a) The implication (1) =(2) of 3 8 does not remain true

icm®

Functionals on vector lattices 115

:={fe%(Z, #): £ bounded). As %" (&, #) satisfies the conditions (P1)-(P4),
the statements (S1)«(S7) are equivalent for %°(.%, #). Four further equivalent
statements are given in

4.1. TueoreM. The following statements are equivalent:

(S1)  6*(%, B) is a strong Daniell lattice.

(S11)  Every Be# is relatively T g-compact (with E := 4> (2, #)).

(S12) 6°(&, B) =% (%L, B) and € (L, B) is a strong Daniell lattice.

(S13)  Every maximal ideal in €°(%, #) is fixed.

(S14)  Every nonzero nultiplicative linear functional on %°(%., #) is an
evaluation.

Proof. For abbreviation we put E := %°(.%, #).

The equivalence of (S1) and (S11) follows from 2.5, since any Z-set is a
subset of some ) (E)-set and conversely.

(S11) =(812). It is obvious that every fe ¥ (¥, %) is bounded. Thus the
second assertion follows from the equivalence of (S1) and (S11).

Since the implication (S12) = (S1) is trivial, the statements (S1), (S11) and
(S12) are equivalent. Therefore the implication (S12) =>(813) can be proved in
the same way as Theorem 7.2 in [10].

(S13)=>(814) can be proved in the same way as the implication
(S9)=-(S8) of 3.2,

(S14) = (S1). According to 2.3 (b) it suffices to show that every ¢ (E)-
ultrafilter has nonvoid intersection. Let % be an #(E)-ultrafilter and put
Uo:= UV {X}. Define ®(f);=sup te[0, ||f||]: {f=1t}e} for feE,
and @(f): ~di(f") &(f7) for feE One can easily verify that ¢ is a
multiplicative linear functional on E. If Ue %, say U = {f > 1} with feE,,
then @(f)> 1. Thus & is nonzero and hence, by (S14), & = 1, for some
xo€e X, which implies xpe(\%. =

It follows from 4.1 and [4], Theorem 3, that %"(¥, #) is a strong
Daniell lattice iff %°(.%, #) is a Daniell lattice and (¥, #) is a strong
Daniell lattice.

For the special case of a completely regular space X and the family &
of closed subsets of X, the equivalence of the statements (S5), (S11), (S12) and
(S13) for %*(.#, #) has been proved by other methods in [17], Satz 5.1.4 and
Satz 5.2.2.

If X is an arbitrary topological space and E:= 4°(X), then E
=6 (F(X) =% (;ﬂ"(X)) and o (E) = Z(X), and each of the statements
(S2)~(S7), (S11)~(S14) is necessary and sufficient for E = %4*(X) to be a strong
Daniell lattice. If, in addition, X is completely regular, then the given
topology on X equals 7, and we obtain from 3.5 and 4.1 the following
well-known characterization of compactness (see [9], 5H, and [19], 8.1).


GUEST


116 W. Adamski

4.2. CoroiLArYy. For a completely regular space X the following
statements are equivalent:

(1) X is compact.

(2) X is pseudocompact and realcompact.

(3) ¢*(X) is a strong Daniell lattice.

We now consider the special case where % is a o-algebra and hence
%°(%) is the space of all bounded .#-measurable functions. The following
result gives several necessary and sufficient conditions for 4*(%) to be a
strong Daniell lattice.

4.3, THEOREM. For a measurable space (X, sf) the following statements
are equivalent:

(1) 6°(o#) is a strong Daniell lattice.

(2) ¥°{(?) is a Daniell lattice.

(3) o is finite.

(4) o is a compact class.

(5) o is a semicompact class. ]

Proof. As we have o/ = #(%°(#/)), the equivalence (1)<>(4) follows
from 2.2, whereas the equivalence (2)<>(5) follows from [4], Corollary 1,
Since the implications (3)=>(4)=>(5) are trivial, it remains to prove (5)=>(3).
Assume that o/ is infinite. Then there exists a sequence (A,),.v of pairwise
disjoint nonvoid of-sets with X = (J A,. We then have

neN

QN(X—A,)=(D and [k]l(X—A,,);éQ) for all ke N,

So o is not semicompact. w
For the special case where .o is the power set of X, we obtain from 4.3

4.4. CoroLLARY. A set X is finite iff the space of all bounded real-valued
Junctions on X is a (strong) Daniell lattice.
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