

vertex of the cone. Then $K_*(D) \cong K_*(D)$ and we get the following exact sequence:

Finally, if we drop the condition on the blocks, we get

Example 5. Let X and Y be compact spaces and $f\colon Y\to X$ a continuous function. Let C_f be the mapping cone of f and D the C^* -algebra of maps from C_f into M_{nk} whose values on the canonical image of X in C_f are block diagonal matrices with blocks of size $k\times k$. Let $\mathring{D}:=\ker$ where \ker is the evaluation at the vertex $y_0\in C_f$. Then $K_1(D)\cong K_1(\mathring{D})$ and $K_0(D)\cong Z\oplus K_0(\mathring{D})$. Moreover, we have the following exact sequence:

References

- M. J. Dupré-and R. Gillette, Banach bundles, Banach modules and automorphisms of C*-algebras, preprint, 1980.
- [2] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, 1952.
- [3] J. Hilgert, Foundations of K-theory for C*-algebras, Tulane Dissertation, 1982.
- [4] M. Karoubi, Foncteurs dérivés et K-théorie, in: Lecture Notes in Math. 136, Springer, Berlin 1971, 107-186.
- [5] -, K-Theory, An Introduction, Springer, Berlin 1978.
- [6] J. Milnor, Introduction to Algebraic K-Theory, Princeton University Press, 1971.
- [7] J. Rosenberg, Homological invariants of extensions of C*-algebras, preprint, 1980.
- [8] -, The role of K-theory in noncommutative algebraic topology, preprint, 1980.
- [9] C. Schochet, Topological methods for C*-algebras III, axiomatic homology, Pacific J. Math. 114 (1984), 399-445.
- [10] J. L. Taylor, Banach algebras and topology, in: Algebras in Analysis, J. H. Williamson (ed.), Academic Press 1975.

FACHBEREICH MATHEMATIK, TECHNISCHE HOCHSCHULE

Schlossgartenstr. 7, 6100 Darmstadt, West Germany

Received August 29, 1983 Revised version February 14, 1985 (1916)

τ-smooth linear functionals on vector lattices of real-valued functions

by

WOLFGANG ADAMSKI (München)

Abstract. A vector lattice E of real-valued functions is said to be a strong Daniell lattice if every positive linear functional Φ : $E \to R$ is τ -smooth (i.e. $\lim_{\alpha} \Phi(f_{\alpha}) = 0$ for every net (f_{α}) in E with $f_{\alpha} \downarrow 0$). Under some additional assumptions which, in general, cannot be omitted, several characterizations of strong Daniell lattices are given. These results are then applied to the vector lattices $\mathcal{C}(\mathcal{L}, \mathcal{B})$ and $\mathcal{C}^{b}(\mathcal{L}, \mathcal{B})$ of \mathcal{L} -continuous (and bounded) functions with \mathcal{B} -bounded support, where \mathcal{L} denotes a lattice of sets and \mathcal{B} is an \mathcal{L} -bounding system.

- 1. Introduction. This paper is a continuation of [4]. However, whereas in [4] we are concerned with the characterization of Daniell lattices (i.e. vector lattices E of real-valued functions having the property that every positive linear functional on E is σ -smooth), we consider in this paper only such vector lattices on which every positive linear functional is τ -smooth. Under some additional assumptions which, in general, cannot be omitted, we give several characterizations of these so-called strong Daniell lattices. As application of these general characterization theorems, we can prove, among others, the following results:
- (1) For a completely regular space X the following statements are equivalent:
 - (a) X is realcompact.
 - (b) The space of all continuous functions on X is a strong Daniell lattice.
 - (c) The space of all Baire-measurable functions on X is a strong Daniell lattice.
- (2) If (X, A) is a measurable space, then X is A-complete ([1]) iff the space of all A-measurable functions on X is a strong Daniell lattice. In particular, a topological space X is Borel-complete ([11]) iff the space of all Borel-measurable functions on X is a strong Daniell lattice.

Some special cases of our results can be found in [10] and [17]. However, the methods of proof are different. Our proceeding seems to be more direct; in contrast to [10] and [17], we do not make use of any compactification.

Throughout this paper X will denote an arbitrary nonvoid set and $E \subset \mathbb{R}^X$ a vector lattice (with respect to pointwise operations). 1_Q denotes the indicator function of a subset Q of X. For $f \in E$ we put ||f||

:= $\sup\{|f(x)|: x \in X\}$. We write $\Gamma(E)$ for the subfamily of R^E consisting of all positive linear functionals. For $x \in X$ we denote by I_x the evaluation functional on E pertaining to the point $x \in X$. For a net $(f_x) \subset E$ we write $f_x \downarrow 0$ if (f_x) is decreasing (i.e. $\alpha \geqslant \beta$ implies $f_x \leqslant f_{\beta}$) and converges pointwise to zero.

E is said to be a strong Daniell lattice if every $\Phi \in \Gamma(E)$ is τ -smooth (i.e. $\lim \Phi(f_{\alpha}) = 0$ for every net $(f_{\alpha}) \subset E$ with $f_{\alpha} \downarrow 0$).

- A family \mathcal{H} of subsets of X is said
- (i) to have the finite [countable] intersection property if every finite [countable] subfamily of \mathcal{H} has nonvoid intersection;
- (ii) to be a compact [semicompact] class if every [countable] subfamily of \mathcal{H} having the finite intersection property has nonvoid intersection.

Let \mathscr{H} be a nonvoid family of subsets of X, closed under finite unions and finite intersections. A nonempty subfamily \mathscr{D} of \mathscr{H} is called an \mathscr{H} -filter [\mathscr{H} -ultrafilter] if \mathscr{D} satisfies the following conditions (α)-(γ) [(α)-(δ)]:

- (α) Ø ∉ Ø;
- (β) \mathcal{D} is closed under finite intersections;
- (y) $D_1 \in \mathcal{D}$, $D_2 \in \mathcal{H}$ and $D_1 \subset D_2$ imply $D_2 \in \mathcal{D}$;
- (δ) $H \in \mathcal{H}$ and $H \cap D \neq \emptyset$ for all $D \in \mathcal{D}$ imply $H \in \mathcal{D}$.

If each \mathcal{H} -ultrafilter with the countable intersection property has nonvoid intersection, we say, following [1], that X is \mathcal{H} -complete.

Let $\mathscr{H}(E) := \{ \{ f \ge 1 \} : f \in \overline{E} \}$. Then $\mathscr{H}(E)$ is closed under finite unions and finite intersections. In addition, we have $\phi \in \mathscr{H}(E)$.

If X is a topological space, then $\mathscr{C}(X)$ [$\mathscr{C}^b(X)$] denotes the collection of all [bounded] continuous real-valued functions on X. A zero-set in X is a set of the form $\{f=0\}$ with $f\in\mathscr{C}(X)$. We write $\mathscr{Z}(X)$, $\mathscr{F}(X)$, $\mathscr{G}(X)$ for the family of all zero-, closed, open sets in X, respectively. $\mathscr{B}_0(X)$ [$\mathscr{B}(X)$] denotes the Baire [Borel] σ -algebra in X.

- 2. Some characterizations of strong Daniell lattices. The following four properties (P1)-(P4) will play an important role in the sequel:
- (P1) For every $f \in E$ there is some $g \in E$ such that $\{f \neq 0\} \subset \{g \geqslant 1\}$.
- (P2) Every $f \in E$ is bounded.
- (P3) $\min(1, f) \in E$ for every $f \in E$ (Stone's condition).
- (P4) For every $x \in X$ there is some $f \in E$ with $f(x) \neq 0$.

The following basic result can be proved in the same way as Theorem 1 in [4].

- 2.1. THEOREM. Consider the following four statements:
- (S1) E is a strong Daniell lattice.
- (S2) The family $\mathcal{H}(E)$ is a compact class.

- (S3) Every net $(f_{\alpha}) \subset E$ with $f_{\alpha} \downarrow 0$ converges uniformly on X to zero.
- (S4) For every $\varepsilon > 0$, for every net $(f_{\alpha})_{\alpha \in A} \subset E$ with $f_{\alpha} \downarrow 0$, and for every $g \in E_+$ satisfying $\{f_{\alpha_0} \neq 0\} \subset \{g \geq 1\}$ for some $\alpha_0 \in A$, there exist a sequence $(\alpha_n) \subset A$ and a function $h \in E$ with $h \geq \sum_{n \in N} (f_{\alpha_n} \min(\varepsilon g, f_{\alpha_n}))$.

Then the following implications are valid:

- (a) $(S2) \Rightarrow (S3) \Rightarrow (S4)$.
- (b) If E satisfies (P1), then $(S4) \Rightarrow (S1)$.
- (c) If E satisfies (P2), then $(S1) \Rightarrow (S3)$.
- (d) If E satisfies (P3), then (S3) \Rightarrow (S2).
- 2.2. COROLLARY. If E satisfies (P1), (P2) [and (P3)], then the statements (S1), (S3), (S4) [and (S2)] are equivalent.
- 2.3. Remarks. (a) By means of the examples 1-3 in [4] one can see that, in general, the assumptions (P1)-(P3) cannot be omitted from the three last parts of 2.1.
- (b) It is a consequence of Zorn's lemma that every subfamily of $\mathcal{H}(E)$ with the finite intersection property is contained in an $\mathcal{H}(E)$ -ultrafilter. Thus statement (S2) is equivalent to
- (S2') Every $\mathcal{H}(E)$ -ultrafilter has nonvoid intersection.
- 2.4. EXAMPLE. Let \mathcal{R} be a ring of subsets of X. If E denotes the class of all step functions for \mathcal{R} (cf. [14], I.7.8), then E is a vector lattice satisfying the conditions (P1)-(P3). In addition, we have $\mathcal{H}(E) = \mathcal{R}$. Thus 2.2 implies that E is a strong Daniell lattice iff \mathcal{R} is a compact class. In the same way, it follows from [4], Corollary 1, that E is a Daniell lattice iff \mathcal{R} is semicompact. If X is uncountable, then the algebra $\mathcal{A} = \{A \subset X : A \text{ or } X A \text{ is finite}\}$ is a semicompact, non-compact class. Consequently, the space of all step functions for \mathcal{A} is in this case a Daniell lattice which fails to be a strong Daniell lattice.

In the following we denote by \mathcal{F}_E the topology on X generated by E (i.e. \mathcal{F}_E is the coarsest topology on X making all functions $f \in E$ continuous).

A functional $\Phi \in \Gamma(E)$ is said to be *tight* if for every $H \in \mathcal{H}(E)$ and for every net $(f_a) \subset E$ satisfying $\{f_a \neq 0\} \subset H$ for all α and $\sup_{\alpha} ||f_\alpha|| < \infty$, we have $\lim_{\alpha} \Phi(f_\alpha) = 0$ provided that (f_α) converges uniformly on all \mathcal{F}_E -compact subsets of H to zero.

We can now prove the following new result.

- 2.5. THEOREM. Assume that E satisfies the conditions (P1)-(P4). Then the following assertions are equivalent:
- (S1) E is a strong Daniell lattice.
- (S5) Every $\Phi \in \Gamma(E)$ is tight.

- (S6) Every set $H \in \mathcal{H}(E)$ is \mathcal{T}_E -compact.
- (S7) Every function $f \in E$ has \mathcal{F}_E -compact support.

Proof. (S5) \Rightarrow (S1). It suffices to show that every tight $\Phi \in \Gamma(E)$ is τ -smooth. Let $\Phi \in \Gamma(E)$ be tight and let $(f_{\alpha})_{\alpha \in A}$ be a net in E with $f_{\alpha} \downarrow 0$. Fix some $\alpha_0 \in A$ and put $A_0 := \{\alpha \in A: \alpha \geqslant \alpha_0\}$. Then $\sup_{\alpha \in A_0} \|f_{\alpha}\| = \|f_{\alpha_0}\| < \infty$ and, by (P1), there is a set $H_0 \in \mathcal{H}(E)$ with $\{f_{\alpha_0} \neq 0\} \subset H_0$. By Dini's theorem, the net $(f_{\alpha})_{\alpha \in A_0}$ converges uniformly on all \mathcal{F}_E -compact subsets of H_0 to zero. This implies $\lim_{\alpha \in A_0} \Phi(f_{\alpha}) = 0$ and hence $\lim_{\alpha \in A} \Phi(f_{\alpha}) = 0$.

 $(S1)\Rightarrow (S6)$. Let $H_0\in \mathscr{H}(E)$ be given. Furthermore, let $(F_i)_{i\in I}$ be a family of \mathscr{F}_E -closed subsets of X such that $\bigcap_{i\in I}(H_0\cap F_i)=\emptyset$. By [2], 3.2, there exists, for every $i\in I$, a subfamily \mathscr{F}_i of E with $H_0\cap F_i=\bigcap_{f\in \mathscr{F}_i}\{f\geqslant 1\}$. Putting

$$\widetilde{\mathscr{F}}:=\bigcup_{i\in I}\mathscr{F}_i$$
 and $\mathscr{F}:=\{\min(f_1,\ldots,f_n)\colon f_i\in\widetilde{\mathscr{F}}\}$

we have $\bigcap_{f \in \mathcal{F}} \{f \ge 1\} = \emptyset$. Since $\mathscr{H}(E)$ is a compact class by 2.2, there exist finitely many functions $f_1, \ldots, f_n \in \widetilde{\mathcal{F}}$ such that $\bigcap_{j=1}^n \{f_j \ge 1\} = \emptyset$. Choosing $i_j \in I$ with $f_j \in \mathscr{F}_{i_j}$ for $j = 1, \ldots, n$, we obtain $\bigcap_{j=1}^n (H_0 \cap F_{i_j}) = \emptyset$.

 $(S6) \Rightarrow (S7)$. Let $f \in E$ be given. By (P1), there is an $\mathcal{H}(E)$ -set $H \supset \{f \neq 0\}$. As H is \mathcal{F}_E -compact by (S6), so is the support of f.

 $(S7)\Rightarrow (S5)$. Let $\Phi\in \Gamma(E)$, $H\in\mathscr{H}(E)$ and $\varepsilon>0$ be given. Furthermore, let $(f_{\alpha})_{\alpha\in A}$ be a net in E such that $\sup_{\alpha}||f_{\alpha}||<\infty$ and $\{f_{\alpha}\neq 0\}\subset H$ for all α . Assume that (f_{α}) converges uniformly on all \mathscr{F}_{E} -compact subsets of H to zero. As H is \mathscr{F}_{E} -compact by (S7), (f_{α}) converges uniformly on X to zero. Let $f\in E_{+}$ be such that $H=\{f\geqslant 1\}$. Putting $\varepsilon':=\varepsilon/\max(1,\Phi(f))$, there exists an index α_{0} such that $|f_{\alpha}|\leqslant \varepsilon'f$ for all $\alpha\geqslant\alpha_{0}$. This implies $|\Phi(f_{\alpha})|\leqslant \varphi(|f_{\alpha}|)\leqslant \varepsilon'\Phi(f)\leqslant \varepsilon$ for all $\alpha\geqslant\alpha_{0}$. Hence Φ is tight.

If X is a topological space and E is a sublattice of $\mathscr{C}(X)$ such that the topology \mathscr{F}_E is coarser than the given one, then, in general, Theorem 2.5 does not remain true if in the statements (S5), (S6) and (S7) the topology \mathscr{F}_E is replaced by the given one:

- 2.6. EXAMPLES. (a) Let X be the real line (with the Euclidean topology) and let E be the lattice consisting of the constant functions. Then E is a strong Daniell lattice by 2.1. However, $X \in \mathcal{H}(E)$ is not compact.
- (b) Let X := [0, 1] be equipped with the discrete topology and let E be the space of all real-valued functions on X continuous w.r.t. the Euclidean

3. The vector lattice $\mathscr{C}(\mathscr{L}, \mathscr{B})$. In the following let \mathscr{L} be a family of subsets of X containing \mathscr{O} and X and closed under finite unions and countable intersections. Let $\mathscr{C}(\mathscr{L}) := \{ f \in \mathbf{R}^X : f^{-1}(F) \in \mathscr{L} \text{ for all closed } F \subset \mathbf{R} \}$ denote the family of so-called \mathscr{L} -continuous functions. $\mathscr{C}(\mathscr{L})$ is a vector lattice and an algebra containing the constants ([6]). $\mathscr{C}^b(\mathscr{L})$ denotes the space of all bounded functions in $\mathscr{C}(\mathscr{L})$.

Furthermore, let \mathcal{B} be an \mathcal{L} -bounding system ([10], [17]), i.e. \mathcal{B} is a nonvoid family of subsets of X satisfying the following two conditions:

- (i) $\mathcal{B} \uparrow X$ (i.e. $\bigcup \mathcal{B} = X$ and for B_1 , $B_2 \in \mathcal{B}$ there is a set $B_3 \in \mathcal{B}$ such that $B_1 \cup B_2 \subset B_3$).
- (ii) For every set $B_1 \in \mathcal{B}$ there exist a function $f \in \mathscr{C}(\mathcal{L})$ and a set $B_2 \in \mathcal{B}$ such that $f|B_1 = 1$ and $\{f \neq 0\} \subset B_2$.

Put $\mathscr{C}(\mathscr{L}, \mathscr{B}) := \{ f \in \mathscr{C}(\mathscr{L}) : \{ f \neq 0 \} \subset B \text{ for some } B \in \mathscr{B} \}$. Then $\mathscr{C}(\mathscr{L}, \mathscr{B})$ is a vector lattice satisfying conditions (P1), (P3) and (P4). Moreover, $\mathscr{C}(\mathscr{L}, \mathscr{B})$ is an ideal in $\mathscr{C}(\mathscr{L})$.

Notice that $X \in \mathcal{B}$ implies $\mathscr{C}(\mathcal{L}, \mathcal{B}) = \mathscr{C}(\mathcal{L})$.

It has been shown in [4] that $\mathscr{C}(\mathscr{L}, \mathscr{B})$ is a Daniell lattice. However, in general, $\mathscr{C}(\mathscr{L}, \mathscr{B})$ fails to be a strong Daniell lattice (see [18], Remark 4, p. 178). In the sequel we shall give several conditions necessary and sufficient for $\mathscr{C}(\mathscr{L}, \mathscr{B})$ to be a strong Daniell lattice. For this purpose we need

3.1. Lemma. Let \mathscr{A} be the σ -algebra generated by $\mathscr{C}(\mathscr{L}, \mathscr{B})$, and let μ be a measure on \mathscr{A} such that $\mathscr{C}(\mathscr{L}, \mathscr{B}) \subset \mathscr{L}_1(X, \mathscr{A}, \mu)$. Then, for any $f \in \mathscr{C}(\mathscr{L}, \mathscr{B})$, there is a constant $r \in (0, \infty)$ such that $\mu(\{|f| > r\}) = 0$.

Proof. Assume that there is a function $f \in \mathscr{C}(\mathscr{L}, \mathscr{B})$ with $\mu(\{|f| > r\}) > 0$ for all r > 0. Then one can inductively define two sequences (a_n) , (b_n) of real numbers such that $n < a_n < b_n < a_{n+1}$ and $\mu(A_n) > 0$ holds for all $n \in \mathbb{N}$, where $A_n := \{a_n \leqslant |f| \leqslant b_n\}$. Choose a continuous function $g : [0, \infty) \to \mathbb{R}$ such that g(0) = 0 and $g(t) = (\mu(A_n))^{-1}$ for $t \in [a_n, b_n]$ and all $n \in \mathbb{N}$. Then $h := g \circ |f| \in \mathscr{C}(\mathscr{L}, \mathscr{B})$ and $\int h d\mu \geqslant \sum_{n \in \mathbb{N}} \int_{A_n} h d\mu = \infty$ which contradicts the assumption $h \in \mathscr{L}_1(X, \mathscr{A}, \mu)$.

Now consider a maximal ideal \mathscr{I} in $\mathscr{C}(\mathscr{L}, \mathscr{B})$. Then the residue-class ring $F := \mathscr{C}(\mathscr{L}, \mathscr{B})/\mathscr{I}$ is a field (see [10], section 9). If the mapping $T: R \to F$ defined by $T(r) := \lceil rf^* \rceil$, where $\lceil f^* \rceil$ denotes the unit element of F, is

surjective, then $\mathscr I$ is said to be *real*. On the other hand, $\mathscr I$ is said to be *fixed* if $\mathscr I = \{f \in \mathscr C(\mathscr L, \mathscr B): f(x_0) = 0\}$ for some $x_0 \in X$.

We can prove the main theorem of this section which is a common generalization of several well-known results.

- 3.2. Theorem. For $E:=\mathscr{C}(\mathscr{L},\mathscr{B})$ the following four statements are equivalent:
- (S1) E is a strong Daniell lattice.
- (S8) Every nonzero multiplicative linear functional on E is an evaluation.
- (S9) Every real maximal ideal in E is fixed.
- (S10) X is $\mathcal{H}(E)$ -complete.

Proof. (S1) \Rightarrow (S8). We consider X as the topological space equipped with the topology \mathcal{F}_E , and we denote by $\operatorname{int}(Q)$ [cl(Q)] the interior [closure] of a subset Q of X. Let $\Phi \neq 0$ be a multiplicative linear functional on E. If $f \in E_+$, then $f = (f^{1/2})^2$ with $f^{1/2} \in E$ and so $\Phi(f) = (\Phi(f^{1/2}))^2 \geq 0$. Thus Φ is positive and hence τ -smooth by (S1). By [8], 72E, there is a Borel measure μ on X with the following properties:

- (3.1) $\Phi(f) = \int f d\mu \text{ for all } f \in E;$
- (3.2) $\mu(A) = \sup \{ \mu(F) : F \subset A, F \in \mathcal{F}(X) \}$ for all Borel sets A;
- (3.3) $\mu(\bigcup G_{\alpha}) = \sup \mu(G_{\alpha})$ for every increasing net $(G_{\alpha}) \subset \mathcal{G}(X)$.

There is a function $f_0 \in E$ with $\Phi(f_0) \neq 0$. Choosing $B_0 \in \mathcal{B}$ and $f \in E$ such that $\{f_0 \neq 0\} \subset B_0, \ 0 \leq f \leq 1 \ \text{and} \ f|B_0 = 1, \ \text{we have} \ f_0 = f \cdot f_0, \ \text{hence} \ 0 \neq \Phi(f_0) = \Phi(f) \cdot \Phi(f_0) \ \text{and so}$

$$(3.4) 1 = \Phi(f) = \int f d\mu \leqslant \mu(X).$$

For a given $B \in \mathscr{B}$ choose a \mathscr{B} -set B_1 with $B \cup B_0 \subset B_1$ and a function $f \in E$ with $0 \le f \le 1$ and $f | B_1 = 1$. Then (3.4) implies $1 = \int f \, d\mu \ge \int f \, 1_{\operatorname{cl}(B_1)} \, d\mu = \mu(\operatorname{cl}(B_1)) \ge \mu(\operatorname{cl}(B))$. Thus we have

$$\mu(\operatorname{cl}(B)) \leq 1 \quad \text{for all } B \in \mathcal{B}.$$

For any $x \in X$, there is a \mathscr{B} -set B_1 with $x \in B_1$. Choose $f \in E$ and $B_2 \in \mathscr{B}$ such that $f|B_1 = 1$ and $\{f \neq 0\} \subset B_2$. Then $x \in \{f \neq 0\} \subset \operatorname{int}(B_2)$. Thus we have $\{\operatorname{int}(B): B \in \mathscr{B}\} \uparrow X$ which, together with (3.3), (3.4) and (3.5), implies $1 \leq \mu(X) = \sup \{\mu(\operatorname{int}(B)): B \in \mathscr{B}\} \leq \sup \{\mu(\operatorname{cl}(B)): B \in \mathscr{B}\} \leq 1$. Hence μ is a probability measure.

Let $G \in \mathcal{G}(X)$ with $\mu(G) > 0$. Then $1_G = \sup\{f \in E: 0 \le f \le 1_G\}$ by [2], 3.4. Hence, for any $t \in (0, 1)$, we have $G = \bigcup\{\{f > t\}: f \in E, 0 \le f \le 1_G\}$ and so, by (3.1) and (3.3),

$$t\mu(G) = \sup \left\{ t\mu(\{f > t\}) \colon f \in E, \ 0 \leqslant f \leqslant 1_G \right\} \leqslant \sup \left\{ \Phi(f) \colon f \in E, \ 0 \leqslant f \leqslant 1_G \right\}.$$

For $t \uparrow 1$ we thus obtain $0 < \mu(G) = \sup \{ \Phi(f) : f \in E, 0 \le f \le 1_G \}$. In

particular, there is a function $f \in E$ with $0 \le f \le 1_G$ and $\Phi(f) > 0$. Then $f^{1/n} \in E$, $f^{1/n} \le 1_G$ and $(\Phi(f))^{1/n} = \Phi(f^{1/n}) \le \mu(G) \le 1$ for all $n \in N$. As $(\Phi(f))^{1/n} \to 1$, we obtain $\mu(G) = 1$.

Thus we have shown $\mu(G) \in \{0, 1\}$ for all $G \in \mathcal{G}(X)$ which, together with (3.2), implies that μ is $\{0, 1\}$ -valued. Let $F_0 := X - \bigcup \{G \in \mathcal{G}(X): \mu(G) = 0\}$. By (3.3), we have $\mu(F_0) = 1$, in particular $F_0 \neq \emptyset$. Fix some $x_0 \in F_0$. Then it follows from (3.2) that $\mu(A) = 0$ for any Borel set A with $x_0 \notin A$. Thus μ is the Dirac measure pertaining to the point x_0 ; hence $\Phi = I_{x_0}$ by (3.1).

 $(S8) \Rightarrow (S9)$. Let \mathscr{I} be a real maximal ideal in E. For any $f \in E$ put $\Phi(f)$:= r if $[f] = [rf^*]$, where $[f^*]$ denotes the unit element of the residue-class field generated by \mathscr{I} . Φ is a nonzero multiplicative linear functional on E. By (S8), we have $\Phi = I_{x_0}$ for some $x_0 \in X$ which implies $\mathscr{I} = \{f \in E : \Phi(f) = 0\}$ = $\{f \in E : f(x_0) = 0\}$. Hence \mathscr{I} is fixed.

 $(S9) \Rightarrow (S8)$. Let $\Phi \neq 0$ be a multiplicative linear functional on E. It can be shown by routine arguments (cf. [9]) that $\mathscr{I} := \{ f \in E : \Phi(f) = 0 \}$ is a real maximal ideal in E. By (S9), we then have $\mathscr{I} = \{ f \in E : f(x_0) = 0 \}$ for some $x_0 \in X$ which implies $\Phi = I_{x_0}$.

 $(S8)\Rightarrow (S10)$. Let $\mathscr U$ be an $\mathscr H(E)$ -ultrafilter with the countable intersection property. For any $H\in\mathscr H(E)$ put $\lambda(H)=1$ or 0 according as $H\in\mathscr U$ or not. Then λ can be extended to a $\{0, 1\}$ -valued measure μ on the σ -algebra $\mathscr A$ generated by E (cf. the proof of Theorem 2.1 in [1]), and we have $E\subset\mathscr L_1(X,\mathscr A,\mu)$ (cf. [13], (12.60)). In addition, $\Phi(f):=\int f\,d\mu,\,f\in E$, is a nonzero multiplicative linear functional on E (cf. [13], (20.52) (c)). Thus (S8) implies $\Phi=I_{x_0}$ for some $x_0\in X$. Now let $U\in\mathscr U$ be given. Then $U=\{f\geqslant 1\}$ for some $f\in E_+$, and we have $1=\mu(U)\leqslant \int f\,d\mu=\Phi(f)=f(x_0)$. Thus $x_0\in U$. As $U\in\mathscr U$ was arbitrary, we obtain $x_0\in \cap\mathscr U$. This proves (S10).

(S10) \Rightarrow (S1). Let $\Phi \in \Gamma(E)$ be given. By [4], Corollary 2, Φ is σ -smooth. Hence, by [8], 71G, there is a measure μ on the σ -algebra generated by E such that (3.1) holds. Let $(f_a)_{a \in A}$ be a net in E with $f_a \downarrow 0$. We first prove

(3.6)
$$\inf \mu(\{f_{\alpha} \ge \varepsilon\}) = 0 \quad \text{for all } \varepsilon > 0.$$

Suppose that we have $c:=\inf_{\alpha}\mu(\{f_{\alpha}\geqslant\epsilon\})>0$ for some $\epsilon>0$. Choose a sequence $(\alpha_n)\subset A$ such that $c=\inf_{n}\mu(\{f_{\alpha_n}\geqslant\epsilon\})$ where w.l.o.g. $(f_{\alpha_n})_{n\in\mathbb{N}}$ can be assumed to be decreasing. Put $F_0:=\bigcap_{n\in\mathbb{N}}\{f_{\alpha_n}\geqslant\epsilon\}$. Then $\mu(F_0)=c>0$, and the family $\mathscr{D}:=\{H\in\mathscr{H}(E): \mu(H\cap F_0)=\mu(F_0)\}$ is an $\mathscr{H}(E)$ -filter. Since $\{f_{\alpha}\geqslant\epsilon\}\in\mathscr{D}$ for all $\alpha\in A$, we obtain

$$(3.7) \qquad \qquad \cap \mathscr{D} = \emptyset.$$

Now we choose an $\mathscr{H}(E)$ -ultrafilter $\mathscr{D}_0 \supset \mathscr{D}$. In order to prove (3.6), it suffices to show that \mathscr{D}_0 has the countable intersection property, since in this case (S10) implies $\bigcap \mathscr{D}_0 \neq \emptyset$ which contradicts (3.7).

Suppose that there is a sequence $(D_n) \subset \mathscr{D}_0$ with $D_n \downarrow \emptyset$. Then one can find a sequence $(h_n) \subset E$ with $h_n \downarrow 0$ and $h_n | D_n \geqslant 1$ for all $n \in N$ (cf. the proof of Theorem 1d) in [4]). Choose a function $f \in E_+$ with $\{h_1 \neq 0\} \subset \{f = 1\}$. Then $h := \sum_{n \in N} (h_n - \min(f/2, h_n)) \in E$ (cf. the proof of Theorem 2 in [4]) and $h | D_n \geqslant n/2$ for all $n \in N$.

By 3.1, we have $\mu(\{h>r\})=0$ for some $r\in(0,\infty)$. Then $D_n\cap\{h\leqslant r\}=\emptyset$ for all n>2r. Furthermore, we have

$$\{f_{\alpha_1} \ge \varepsilon\} \cap \{h \le r\} = \{f_{\alpha_1} \ge \varepsilon\} \cap \{(r+1)\min(1, f_{\alpha_1}/\varepsilon) - h \ge 1\} \in \mathcal{H}(E),$$

$$\mu(\{f_{\alpha_1} \ge \varepsilon\} \cap \{h \le r\} \cap F_0) = \mu(\{h \le r\} \cap F_0) = \mu(F_0)$$

which implies $\{f_{\alpha_1} \ge \varepsilon\} \cap \{h \le r\} \in \mathcal{D} \subset \mathcal{D}_0$. Thus we have, for all n > 2r, $\emptyset = D_n \cap \{h \le r\} = D_n \cap \{f_{\alpha_1} \ge \varepsilon\} \cap \{h \le r\} \in \mathcal{D}_0$. This contradiction proves (3.6).

Now fix some $\alpha_0 \in A$ and choose a function $\tilde{f} \in E_+$ with $\tilde{f} | \{ f_{\alpha_0} \neq 0 \} = 1$. Then, for all $\alpha \geqslant \alpha_0$ and any $\varepsilon > 0$, we have

$$\Phi(f_{\alpha}) = \int f_{\alpha} \ d\mu \leqslant \int f_{\alpha_0} \mathbf{1}_{\{f_{\alpha} \geqslant \varepsilon\}} \ d\mu + \int f_{\alpha} \mathbf{1}_{\{0 < f_{\alpha} \leqslant \varepsilon\}} \ d\mu \leqslant \int f_{\alpha_0} \mathbf{1}_{\{f_{\alpha} \geqslant \varepsilon\}} \ d\mu + \varepsilon \Phi(\tilde{f})$$
 which together with (3.6) implies $\lim \Phi(f_{\alpha}) = 0$.

If \mathcal{L} is the family of closed subsets of a completely regular space, then the implication (S9) \Rightarrow (S1) of 3.2 is exactly Theorem 11.2 of [10].

For the subsequent applications of 3.2 we need the following two additional properties of the family \mathcal{L} ([6]):

 \mathscr{L} is said to be normal if, for any two disjoint sets L_1 , $L_2 \in \mathscr{L}$, there exist disjoint sets K_1 , $K_2 \in \mathscr{L}' = \{X - L : L \in \mathscr{L}\}$ such that $L_i \subset K_i$ for i = 1, 2.

 \mathscr{L} is said to be complement-generated if every set $L \in \mathscr{L}$ is a countable intersection of \mathscr{L}' -sets.

3.3. COROLLARY. If $\mathcal L$ is normal and complement-generated, then $\mathscr C(\mathcal L)$ is a strong Daniell lattice iff X is $\mathcal L$ -complete.

Proof. By [5], Lemma 7, we have $\mathcal{L} = \mathcal{H}(\mathcal{C}(\mathcal{L}))$. Now our claim follows from 3.2.

The assumptions of 3.3 are in particular satisfied if \mathcal{L} is a σ -algebra. In this case $\mathscr{C}(\mathcal{L})$ is the space of all \mathcal{L} -measurable real-valued functions on X. Thus we obtain from 3.2 and 3.3 the following new result.

- 3.4. COROLLARY. Let (X, \mathcal{A}) be a measurable space. Then the following assertions are equivalent:
 - (1) X is A-complete.
 - (2) $\mathscr{C}(\mathscr{A})$ is a strong Daniell lattice.
- (3) Every nonzero multiplicative linear functional on $\mathscr{C}(\mathscr{A})$ is an evaluation.
 - (4) Every real maximal ideal in $\mathscr{C}(\mathscr{A})$ is fixed.

- If X is a topological space and $E := \mathscr{C}(X)$, then $E = \mathscr{C}(\mathscr{F}(X))$ = $\mathscr{C}(\mathscr{F}(X))$ and $\mathscr{H}(E) = \mathscr{L}(X)$. Since, by [1], Corollary 2.3, $\mathscr{L}(X)$ -completeness and $\mathscr{B}_0(X)$ -completeness are equivalent properties, we thus obtain from 3.2 and 3.4
- 3.5. COROLLARY. For a topological space X, the following five statements are equivalent (if, in addition, X is completely regular, then each of these statements is equivalent to the realcompactness of X):
 - (1) X is $\mathscr{Z}(X)$ -complete.
 - (2) $\mathcal{C}(X)$ is a strong Daniell lattice.
 - (3) $\mathscr{C}(\mathscr{B}_0(X))$ is a strong Daniell lattice.
- (4) Every nonzero multiplicative linear functional on $\mathscr{C}(X)$ is an evaluation.
 - (5) Every real maximal ideal in $\mathcal{C}(X)$ is fixed.

For completely regular X, statement (5) of 3.5 is exactly the definition of realcompactness given originally by Hewitt [12] ("Q-space" in the original terminology), whereas the statements (1) and (4) of 3.5 are classical characterizations of realcompact spaces (see [9] and [12]). Furthermore, an analysis of the proof of 3.2 reveals that every Baire measure on a realcompact space which integrates every continuous function is automatically τ -smooth (i.e. $\mathscr{Z}(X) \ni Z_{\alpha} \downarrow \emptyset$ implies inf $\mu(Z_{\alpha}) = 0$). Note, however, that there are realcompact spaces supporting finite Baire measures that are not τ -smooth (see [19], p. 128).

In accordance with [11], $\mathcal{B}(X)$ -complete topological spaces X are called *Borel-complete*. By 3.4, these spaces can be characterized in the following way.

3.6. Corollary. A topological space X is Borel-complete iff $\mathscr{C}(\mathscr{B}(X))$ is a strong Daniell lattice.

As in a discrete space Borel-completeness is the same as realcompactness, we obtain from 3.6 and [9], 12.2 the following characterization of nonmeasurable cardinals.

- 3.7. COROLLARY. For a set X, the following two statements are equivalent:
- (1) card(X) is nonmeasurable.
- (2) The space of all real-valued functions on X is a strong Daniell lattice.
- If (X, \mathscr{A}) is a measurable space and $E := \mathscr{C}(\mathscr{A})$ is a strong Daniell lattice, then all elements of $\Gamma(E)$ are of the same structure, as the following result shows.
- 3.8. Proposition. Let (X, \mathcal{A}) be a measurable space and let $E := \mathcal{C}(\mathcal{A})$ be the space of all \mathcal{A} -measurable real-valued functions on X. Then the following two assertions are equivalent:
 - (1) E is a strong De iell lattice.
- 2 Studia Mathematica LXXXIII.2

(2) Every $\Phi \in \Gamma(E)$ is elementary ([7]), i.e. there exist $a_1, \ldots, a_n \in \mathbb{R}_+$ and $x_1, \ldots, x_n \in X$ such that $\Phi = \sum_{i=1}^n a_i I_{x_i}$.

Proof. Since any elementary $\Phi \in \Gamma(E)$ is τ -smooth, it remains to prove $(1) \Rightarrow (2)$. Let $\Phi \in \Gamma(E)$ be given and put $\mu(A) := \Phi(1_A)$ for $A \in \mathscr{A}$. Then μ is a finite measure on \mathscr{A} which is τ -smooth at Φ (i.e. $\mathscr{A} \ni A_\alpha \downarrow \Phi$ implies $\inf_\alpha \mu(A_\alpha) = 0$). As $\Phi(f) = \int f d\mu$ for $f \in E$, it suffices to show that μ is of the form $\sum_{i=1}^n a_i \delta_{x_i}$ with $a_i \in R_+$ and $x_i \in X$ for $i=1,\ldots,n$.

By [15], 2.1 and 2.2, there are measures μ_1 , μ_2 on $\mathscr A$ with $\mu=\mu_1+\mu_2$ such that μ_1 is nonatomic and μ_2 is purely atomic, i.e. there is a countable disjoint family $\{B_k: k \in N_0\}$ of μ_2 -atoms such that

$$\mu_2(A) = \mu_2(A \cap \bigcup_{k \in N_0} B_k)$$
 for all $A \in \mathcal{A}$.

It follows from [3], 2.1 that, for any $x \in X$, one can find a set $A_x \in \mathscr{A}$ with $x \in A_x$ and $\mu_1(A_x) = 0$. Denoting by \mathscr{D} the collection of all finite unions of sets A_x ; we obtain $\bigcup \mathscr{D} = X$, hence $\mu_1(X) = \sup \{\mu_1(D): D \in \mathscr{D}\} = 0$, since μ_1 is also t-smooth at \mathscr{O} . Thus we have $\mu_1 = 0$, i.e.

$$\mu(A) = \sum_{k \in \mathbb{N}_0} \mu(A \cap B_k) \quad \text{for all } A \in \mathscr{A}.$$

Now $A \in \mathscr{A} \to \mu(A \cap B_k) \cdot (\mu(B_k))^{-1}$ defines a $\{0, 1\}$ -valued measure, hence a Dirac measure by 3.4 and [1], 2.2. Therefore we obtain

$$\mu = \sum_{k \in \mathbb{N}_0} \mu(B_k) \, \delta_{x_k} \quad \text{ with } x_k \in B_k.$$

Now our claim follows from the fact that the family $\{B_k\colon k\in N_0\}$ is finite, since otherwise we would have $\Phi(f)=\infty$ for $f:=\sum_{k\in N_0} \left(\mu(B_k)\right)^{-1}\cdot 1_{B_k}\in E$.

- 3.9. Remarks. (a) The implication $(1) \Rightarrow (2)$ of 3.8 does not remain true for $E := \mathscr{C}(\mathscr{L})$ if \mathscr{L} is not a σ -algebra: Consider X = [0, 1] with the Euclidean topology and $\mathscr{L} = \mathscr{F}(X)$. By 3.5, $E := \mathscr{C}(\mathscr{L}) = \mathscr{C}(X)$ is a strong Daniell lattice. On the other hand, it follows from the Riesz representation theorem that the functional $\Phi(f) := \int f d\lambda$, $f \in E$, where λ denotes Lebesgue measure, is not elementary.
- first (b) From 3.4 and 3.8 we obtain an alternative proof of the equivalence of the statements (2) and (3) of [3], Theorem 2.6. This result also reveals that the assertions (c) and (d) of Theorem 1 in [7] are equivalent.
- (c) From 3.7 and 3.8 we obtain the main theorem of [16] and, in particular, Satz 5.4.6 of [17].
- 4. The vector lattice $\mathscr{C}^b(\mathscr{L},\mathscr{B})$. Under the same assumptions as in the preceding section, we are now concerned with the vector lattice $\mathscr{C}^b(\mathscr{L},\mathscr{B})$

- 4.1. THEOREM. The following statements are equivalent:
- (S1) $\mathscr{C}^{b}(\mathcal{L}, \mathcal{B})$ is a strong Daniell lattice.
- (S11) Every $B \in \mathcal{B}$ is relatively \mathcal{F}_E -compact (with $E := \mathscr{C}^b(\mathcal{L}, \mathcal{B})$).
- (S12) $\mathscr{C}^{b}(\mathscr{L},\mathscr{B}) = \mathscr{C}(\mathscr{L},\mathscr{B})$ and $\mathscr{C}(\mathscr{L},\mathscr{B})$ is a strong Daniell lattice.
- (S13) Every maximal ideal in $\mathscr{C}^b(\mathcal{L}, \mathcal{B})$ is fixed.
- (S14) Every nonzero multiplicative linear functional on $\mathscr{C}^{\mathsf{b}}(\mathcal{L}, \mathcal{R})$ is an evaluation.

Proof. For abbreviation we put $E := \mathscr{C}^b(\mathscr{L}, \mathscr{B})$.

The equivalence of (S1) and (S11) follows from 2.5, since any \mathcal{B} -set is a subset of some $\mathcal{H}(E)$ -set and conversely.

 $(S11) \Rightarrow (S12)$. It is obvious that every $f \in \mathscr{C}(\mathscr{L}, \mathscr{B})$ is bounded. Thus the second assertion follows from the equivalence of (S1) and (S11).

Since the implication (S12) \Rightarrow (S1) is trivial, the statements (S1), (S11) and (S12) are equivalent. Therefore the implication (S12) \Rightarrow (S13) can be proved in the same way as Theorem 7.2 in [10].

 $(S13) \Rightarrow (S14)$ can be proved in the same way as the implication $(S9) \Rightarrow (S8)$ of 3.2.

(S14) \Rightarrow (S1). According to 2.3 (b) it suffices to show that every $\mathscr{H}(E)$ -ultrafilter has nonvoid intersection. Let \mathscr{U} be an $\mathscr{H}(E)$ -ultrafilter and put $\mathscr{U}_0 := \mathscr{U} \cup \{X\}$. Define $\Phi(f) := \sup \{t \in [0, ||f||]: \{f \geqslant t\} \in \mathscr{U}_0\}$ for $f \in E_+$ and $\Phi(f) := \Phi(f^+) - \Phi(f^-)$ for $f \in E$. One can easily verify that Φ is a multiplicative linear functional on E. If $U \in \mathscr{U}$, say $U = \{f \geqslant 1\}$ with $f \in E_+$, then $\Phi(f) \geqslant 1$. Thus Φ is nonzero and hence, by (S14), $\Phi = I_{x_0}$ for some $x_0 \in X$, which implies $x_0 \in \bigcap \mathscr{U}$.

It follows from 4.1 and [4], Theorem 3, that $\mathscr{C}^b(\mathscr{L}, \mathscr{B})$ is a strong Daniell lattice iff $\mathscr{C}^b(\mathscr{L}, \mathscr{B})$ is a Daniell lattice and $\mathscr{C}(\mathscr{L}, \mathscr{B})$ is a strong Daniell lattice.

For the special case of a completely regular space X and the family \mathcal{L} of closed subsets of X, the equivalence of the statements (S5), (S11), (S12) and (S13) for $\mathscr{C}^b(\mathcal{L}, \mathcal{B})$ has been proved by other methods in [17], Satz 5.1.4 and Satz 5.2.2.

If X is an arbitrary topological space and $E := \mathscr{C}^b(X)$, then $E = \mathscr{C}^b(\mathscr{F}(X)) = \mathscr{C}^b(\mathscr{Z}(X))$ and $\mathscr{H}(E) = \mathscr{Z}(X)$, and each of the statements (S2)–(S7), (S11)–(S14) is necessary and sufficient for $E = \mathscr{C}^b(X)$ to be a strong Daniell lattice. If, in addition, X is completely regular, then the given topology on X equals \mathscr{F}_E , and we obtain from 3.5 and 4.1 the following well-known characterization of compactness (see [9], 5H, and [19], 8.1).

- 4.2. COROLLARY. For a completely regular space X the following statements are equivalent:
 - (1) X is compact.
 - (2) X is pseudocompact and realcompact.
 - (3) $\mathscr{C}^{b}(X)$ is a strong Daniell lattice.

We now consider the special case where $\mathscr L$ is a σ -algebra and hence $\mathscr C^b(\mathscr L)$ is the space of all bounded $\mathscr L$ -measurable functions. The following result gives several necessary and sufficient conditions for $\mathscr C^b(\mathscr L)$ to be a strong Daniell lattice.

- 4.3. THEOREM. For a measurable space (X, \mathcal{A}) the following statements are equivalent:
 - (1) $\mathscr{C}^{b}(\mathscr{A})$ is a strong Daniell lattice.
 - (2) $\mathscr{C}^{\bullet}(\mathscr{A})$ is a Daniell lattice.
 - (3) A is finite.
 - (4) A is a compact class.
 - (5) A is a semicompact class.

Proof. As we have $\mathscr{A} = \mathscr{H}(\mathscr{C}^b(\mathscr{A}))$, the equivalence $(1) \Leftrightarrow (4)$ follows from 2.2, whereas the equivalence $(2) \Leftrightarrow (5)$ follows from [4], Corollary 1. Since the implications $(3) \Rightarrow (4) \Rightarrow (5)$ are trivial, it remains to prove $(5) \Rightarrow (3)$. Assume that \mathscr{A} is infinite. Then there exists a sequence $(A_n)_{n \in \mathbb{N}}$ of pairwise disjoint nonvoid \mathscr{A} -sets with $X = \bigcup A_n$. We then have

$$\bigcap_{n \in \mathbb{N}} (X - A_n) = \emptyset \quad \text{and} \quad \bigcap_{n=1}^k (X - A_n) \neq \emptyset \quad \text{for all } k \in \mathbb{N}.$$

So A is not semicompact.

For the special case where \mathcal{A} is the power set of X, we obtain from 4.3

4.4. COROLLARY. A set X is finite iff the space of all bounded real-valued functions on X is a (strong) Daniell lattice.

References

- [1] W. Adamski, Complete spaces and zero-one measures, Manuscripta Math. 18 (1976), 343-352.
- [2] -, An abstract approach to weak topologies in spaces of measures, Bull. Soc. Math. Grèce (N.S.) 18 (1977), 28-68.
- [3] -, On the relations between continuous and nonatomic measures, Math. Nachr. 99 (1980), 55-60.
- [4] -, Some characterizations of Daniell lattices, Arch. Math. 40 (1983), 339-345.
- [5] A. D. Alexandroff, Additive set-functions in abstract spaces, Mat. Sb. 8 (1940), 307-348.
- [6] G. Bachman and A. Sultan, Regular lattice measures: Mappings and spaces, Pacific J. Math. 67 (1976), 291-321.

- [7] L. E. Dubins, On everywhere-defined integrals, Trans. Amer. Math. Soc. 232 (1977), 187-194.
- [8] D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, Cambridge 1974.
- [9] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, New York
- [10] G. G. Gould, A Stone-Čech-Alexandroff-type compactification and its application to measure theory, Proc. London Math. Soc. (3) 14 (1964), 221-244.
- [11] A. W. Hager, G. D. Reynolds and M. D. Rice, Borel-complete topological spaces, Fund. Math. 75 (1972), 135-143.
- [12] E. Hewitt, Rings of real-valued continuous functions 1, Trans. Amer. Math. Soc. 64 (1948), 45-99.
- [13] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, Berlin-New York 1965.
- [14] K. Jacobs, Measure and Integral, Academic Press, New York 1978.
- [15] R. A. Johnson, Atomic and nonatomic measures, Proc. Amer. Math. Soc. 25 (1970), 650-655.
- [16] G. W. Mackey, Equivalence of a problem in measure theory to a problem in the theory of vector lattices, Bull. Amer. Math. Soc. 50 (1944), 719-722.
- [17] D. Sondermann, Maße auf lokalbeschränkten Räumen, Ann. Inst. Fourier 19 (2) (1969), 33-112.
- [18] V. S. Varadarajan, Measures on topological spaces, Transl. Amer. Math. Soc. (2) 48 (1965), 161-228.
- [19] R. F. Wheeler, A survey of Baire measures and strict topologies, Expositiones Math. 2 (1983), 97-190.

MATHEMATISCHES INSTITUT, UNIVERSITÄT MÜNCHEN Theresienstr. 39, D-8000 München 2, West Germany

> Received September 28, 1984 Revised version December 19, 1984

(2000)