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Kernel estimates for fractional integrals
with polynomial weights

by

JAN-OLOV STROMBERG (Tromso) and RICHARD L. WHEEDEN* (New
Brunswick, N.J.)

Abstract. A proof based on kernel estimates is given for a two weight function norm
inequality for fractional integrals. The inequality was previously proved by the authors using a
different technique. The present method can also be used to determine the form of the fractional
integral operator for general functions for which the norm inequality is valid.

§ 1. Introduction. For —oo < x < +co and « > 0, let (I, /) (x) denote the
fractional integral of order a of f defined by (I, ) (x) = |x| ™% (x), where “ ™
denotes the Fourier transform. This definition makes sense if f(x) vanishes
sufficiently rapidly as |x| — 0 and oo. For example, f could be any Schwartz
function such that f(x) = 0 near x =0, or such that (¢/dx% f(x) =0 at x
=0for k=0, 1,..., K with K sufficiently large. Also, f could be any (co, K)
atom, by which we mean any bounded f with compact support which
satisfies the moment conditions

}, *f(x)dx=0, k=0,1,..., K,

K sufficiently large.

The following weighted norm inequality for I, f is a special case of a
result proved in [11]. We use the usual notation A, for the class of weight
functions studied in [6], and we say that a weight function w(x) satisfies the
reverse Holder condition of order r, r > 1, and write weRH,, if

([w Gy dx/T)r < ¢ [w(x)dx/|1|
1 1

for all intervals I with ¢ independent of I. Also, IZ, denotes the class of f such
that :

Wl =( ] 1707009 dx)7 < eo.

* Supported in part by NSF Grant # MCS 83-01481.
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THEOREM A. Let 0> 0,1 <p< 0, 0K I/p~1/g <, f=0a—~(1/p—1/y),
and N be a nonnegative integer with N > f. Let v(x) = [x|""w(x) and u(x)
= |x[¥=P9w(x)9® where weA,, and assume in addition when q > p that
weRH,,,. Then oSl < C”f“L{,’ Sor all (0, K) atoms f.

Here, K must be chosen sufficiently large depending on a and N. We
note that the hypothesis wed,nRH,, (g=p) is equivalent to
W€ Ay, 1/p+1/p =1 (see § 2).

The proof given in [11] of this result, as well as its more general
versions, relies heavily on the results of [9] and [10]. One purpose of this
paper is to give a different proof based on kernel estimates. Another purpose
is to identify the form of I,f for general f e I%,. It is not hard to describe the
form when f'is an (c0, K) atom. In fact, if K is large enough, it then follows
from [3], p. 194-195, that

N =c0 | SOy for a1,3,5,...,

and
LN =c, [ f(DIx=y*""log|x—yldy for a=1,3,5,...

Since the class of f’s which are constant multiples of (oo, K) atoms is dense
in I ([9], [10]), it follows from Theorem A that I,f has an extension by
continuity to all of If,. This extension cannot have the form above since for
N > 1 there are functions in IZ which are not locally integrable: e.g, take
wx)=1 and f(x) = |x|"y(x| < 1).

We shall consider these questions for weights of a more general form.
To describe the results, we need some additional notation. Throughout the
paper, Q will denote a polynomial,

0=l ¢-af Tu=N,

with distinct real roots {a,,} and order N. Given a, f, p and ¢ as in Theorem
A, let

v(x) =1Q()"w(x), and

u(x) = 410 (I (1 + ) A (=% e
= )11 m) }w(x)q/n’

(1.1)

By = min (i, f).
The point to keep in mind is that u is formed by dividing Q(x) by essentially

|x|* when | is large and by |x~a,,lﬂ" when x is near a,. Note that for large
[x], w(x) e | x|V =My (xpare, '

e ©
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Associated with Q and any sufficiently smooth function ¢(x) is the
interpolating polynomial #2(x): ie., the polynomial in x of degree N—1
whose first u,—1 derivatives at g, coincide with the corresponding
derivatives of ¢ at g, k= 1,..., m. For more details about &, see § 4 and
[10]. For x # a,, we will need to consider expressions like (,_4,05;1( s

where x%~ ! is the function equal to x*~ ! if x>0 and to 0if x < 0. If ¢ is &
positive integer, note that T f(y)(x—y)y5 tdy is the ath iterated indefinite
integral of f. Note also tl;aoz if the first N moments of f vanish, ie., if
?f(y)y’dy =0for j=0,1,..., N—1, then wa(y)%?(y)dy-zo.

We will prove the following result.

THEOREM 1. Let « >0, 1 <p<oo, 0<1/p—1/g<a, p=a—(1/p—1/q)
and Q, u, v and P2 be as above. Let N > f and we A, and assume in addition
when q > p that weRH,,. Then if feI%, the expression

N = | SO = = AE 1}y

converges absolutely for a.e. x # a,, and ||I:f||L3 <cllifliz with c indepen-

dent of f.

In case 1/p < a, the restriction on g should be interpreted as p < g < co.

An analogous result holds for the function I f defined by replacing
()5 ' by ()Y, where x™ = |x*"! if x < 0 and x2~! = 0 otherwise. Thus,
(x—y)%! and (x— ‘)% ! above can be replaced resp. by |x—y*~! and
[x~-]*"!. In the case a=1,3,5,...,they can also be replaced by
[x—y/*~*log|x—y| and |x—-[*"'log|x—-].

The proof of Theorem 1 will depend on making careful estimates on the
size of the kernel (x—y)% 1 — 72- 2~ 1(y). These estimates are proved in § 4,
and Theorem 1 itself is proved in § 5. One ingredient of the proof which
may be of independent interest is as follows:

TueoreMm 2. If 1<p<oo, a>0, 0<1/p—1/g<a, B=a—(l/p—1/q)
and we A, RH,,, then

I g, SOV ey g, < €

This result is proved in § 2. The purpose of § 3 is to list some technical
lemmas which will be used to prove Theorem 1.

Let us now consider the extension results. We start with the assumption
that

(12) | Iefllzg < el llep
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for all f’s which are constant multiples of (co, K) atoms, or with the
analogous assumption for fx{x% '}. Such an estimate was proved in our
earlier paper [11] and also follows from Theorem 1. Alternatively, we could
assume (1.2) holds for all f in the class %, of Schwartz functions whose
Fourier transform has compact support not containing 0. For v as in (L1
with we 4,, each of these classes of f’s is dense in IZ (see [9] and [107).
Thus, I,f may be extended to all fel? by continuity. We denote the
extension by I,f again and refer to it as “the function obtained by extending
(1.2).” It is a function in If. The next theorem, whose proof follows easily
from Theorem 1, gives the form of this extension.

THEOREM 3. With the samé assumptions as in Theorem 1, if
a#1,3,5,... and Lf is the function obtained by extending (1.2), then

LI = [ f) {Ix—y"" = 2L a-1(3)} dy
Jor almost every x.

In case a=1,3,..., the conclusion holds if [-[*"! is replaced by
[-1*~*log|-]. Similarly, if « >0 and we assume that the analogue of (1.2)
holds for the operator f¥{x3"!} and all f’s in either dense subset, then the
corresponding extension is the operator I f of Theorem 1.

A result concerning the extension of I f'to the Hardy space H?, 1 < p < o,
is also discussed in § 6. Finally, in § 7, a theorem related to the Lusin area
integral is given. This result is a simple application of the HY results of [11].

§ 2. Theorem 2. As mentioned in the introduction, the condition that
w_eA,,mRHq,p, q = p, is equivalent to w"/"eA(W,H, 1/p+1/p' = 1. To see
this, recall that weA,, 1 <p< oo, means

(17 fwdx)(117 w405 g1 <
I T

Since the opposite inequality (with ¢ = 1) is always true, it is easy to see that
wed,nRH,, iff

(m—l j‘wq/pdx)p/qﬂll—l jw—ll(p- ”dx)”"‘ <ec.
I T

By a simple calculation, this is in turn equivalent to w“/"eA(q/l,/,H.
The proof of Theorem 2 uses interpolation, and we will need the
following two lemmas.

., Lemma (21). Let 1 < p, P2:41,92 S 00 and T be a linear operator such
that
TS Killy, < Millf-will,,  for i=1,2.

If0<t<1 and p,q, are defined by Up = (1=t)py +t/p, and /g, =(1

—1)/d1+1t/q,, then

ITS k3™ kelly, < MY~ My || f-ud =" ],
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This is Theorem 2 of [8].
Lemma (22). If 1Sr<p<s<oo and we A,, there exist uc A, and
ve dg such that w = yG=nls=n yE-njis=n,
Proof. This follows easily from the factorization result of P. Jones [5].
In fact, by [5], we may express w = Wi~ Pw, with w,, w, e A, . Rewrite this as
W= (Wi -rwz)(s—p)/(s-r) (wi—swz)(p—r)/(s-r)_

Now letting 4 = w!™"w, and v =w}{ *w,, and noting that ue A, and ve 4,,
we obtain the lemma.

Proof of Theorem 2. The proof is divided into the cases o < 1/p and
a2 1/p. f « < 1/p, fix o and p, and let 1/p* = (1/p)~a. The restriction on g
amounts to p < g < p*, and the corresponding range of fis a> B 0. We
will prove the theorem in this case by interpolating between the extreme
values g=p (B=a) and ¢q = p* {8 =0). Starting with g = p, we claim that

(2.3) ] S Mx— ==t dy||p cap SCllfllezif wyed,.
Iyl <2(x| %I = %Pw he

In fact, the left side of (2.3) is the L,, norm of

| flx—yrtay,
Iyl <2jx|

[

which is majorized by a constant times the Hardy-Littlewood maximal
function of f. Thus, (2.3) follows from [6]. On the other hand, for g = p*, we
claim that [7] implies
Q4 | f
Iyl <2|x|
In fact, the same is true even if the integral on the left is extended over all of
(—o0, ) since « < 1/p and the condition wy€4, "RH,., is equivalent to
the condition required for this conclusion in [7], namely,

(1 fwy (x)"1P dx)ele” (1)~ 1 _’[wl ()" VP gxp-1 g,
i

F()Ix— y]““dyllLa‘;l, apScllfily i wied, NRH,,,.

More generally, as noted above, the condition we A, nRH
same as w¥Pe Ay ey
then

4p 18 the
To apply the interpolation, note that if p < ¢ < p*

p=(p/P)+1 <(g/p)+1 < (p*/p)+1.
Thus, if we g+, We may use Lemma (2.2) with r, p and s there taken
to be (p/p)+1, (g/p)+1 and (p*/p)+1, respectively, to write

WP = (PP = a/P)B*P = BlP') alp’ ~ pIP)(P¥ P ~ bl P

with ue A, and ve Ay +- This is the same as

W = P ORI P PR R e Ay, vedpypar-
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Now pick ¢ = (p*—q) p/(p* —p)q and define w, =u and w, = v?'"". A simple
computation shows that w = w! ~'wh. Moreover, 0 <t <1, and in fact by
using the formulas f=a—(1/p—1/g) and a =1/p—1/p* we have 1 = f/a.

Also, w,(=wye A, and wi'* (= v)e A1, 50 that the inequalities in both -

(2.3) and (2.4) hold. Now apply Lemma (2.1) with ¢, = p*, g, =p; =p, =p;
kY =wy, k§ =|x|"*Pw,, uf =w,, u§ =w, and t as above. Then p, = p and

/g, = (1=1)/p*+t/p = 1/p*+1(1/p—1/p¥)
= (1/p—a)+(B/a) (o) = 1/p—a+f = 1/q.

Thus, g, = g. Also, (ki™'kb)? = (Wil ™27 |x| = w§?)? = |x| P4 w¥? and (u} ' u)
=W P wYP)? = w. This completes the proof of the case a < 1/p.

It remains to consider the case a > 1/p, in which the ¢ range should be
interpreted as p < g < co. Fix p, ¢ and w and pick o, < 1/p so close to 1/p
that the index p* defined by 1/p* =1/p—a, satisfies p < g < p*. Thus,
0<1/p—1/g < oy, and by the case already considered we have

@5 | f

Iyl <2x|

FOx=y" dy”qu ] <clfllez, Bo= % =(1/p—1/q).

~Bog, 4P

Since o > oo and |y < 2]x],

ag—1- ap=1

=yt = =yl )70 S elnf T~

Therefore

[ ONx=y "t dy,

[ 1fDNx=y~tdy <clxf*™"°
x| %] <2ix|

yl<2
and

I f

1%l <2}

If(y) [x= Pt dy||e

|x| ~ Bawalp

_ 00—t
el J SOOI D g g

Noting that (a—oao)g—fg = —foq and using (2.5), we obtain the desired
estimate. This completes the proof of Theorem 2.

§ 3. Lemmas for Theorem 1. In this section we list some technical
lemmas which will be used in § 5 to prove Theorem 1. The first two are
versions of Hardy’s inequality. Their proofs follow easily from the results of

[1].

Lemma (3.1). If 1 <p< g < 0, then

I § fOdylls < clifilee
191> 1x|

icm®

Kernel estimates for fractional integrals 139
Jor all f =0 if

( j u(x)dx)”q( j‘ v(x)—"'/”dx)”"'SC,

Ixt<r Ixi>r

r>0.

We will also use the compact version of this lemma: if 1 < p<g< o
and 0 < R < oo, then

o fOdyFudx)i<e( [ fx)Po()dx)t?
I

[x[<R x| <[y <R x| <R

for all f= 0 if
(32 (] ud)" (| e <,

|x] <r r<{x| <R

0<r<R.

This follows from Lemma (3.1) by letting u = 0,f=0and v= oo for x| > R.
(In Lemma (3.1), 0-c0 should be interpreted as 0)

LemMma (3.3). If 1 < p < q < oo, then
I f If(y) dy||ra < clifllee

Iy <]x]

Jor fz04

(] uGydx)s( | v(x)Prax)r <e,

|x|>r x| <r

r>0.

We shall also use the following lemma.

Lemma (34). If 1l <p< oo, p<q < o0 and wed, "RH,,, then for 6 >
—(1/p—1/g),

w(x)— 1(p-1)

. .
e dx< (| w(x)dx) e,

|x|>r x| <r

and for & < —(1/p—1/g),

w(x)~ 1=

de < cg PP ([ () ) Y= D),

|xl<r
where cg = cRU~YP+UM' gnd ¢ is independent of r.

Proof. The hypothesis on w is that w¥?e A, 4. Since for any W, the
statements WeA, and W™Ye"Ded. are the same, it follows that
w P De 4. If we then apply the fact (see (2.3) of [4]) that WeA,
implies

r<|x| <R

wdeC—l—( [ W(x)dx),

r>0,
'xls r |x] <r

(3.5) -

x| >r . .
we can prove the first part of the lemma. Instead of giving the details,
however, we will give a direct proof of the first part of the lemma which can
also be used to prove the second part.
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We have

w(x)~ 1/(p~1)

|(1 +é&)p’

w(x)~ =1 gy
r<|x| <R IX

dx<c Y (2n)maror g
K50

Z x| = 2kr
2k <R

<c Y (27 { w(x)dx)"te-D
k=0 |x|z2kr
2k <R
since we A, implies

§owe Mo dx <e@ ([ w(x)dx) e,

|x| = 2k¢ |x| = 2Ky

We will show that weRH,,, g > p, implies

(3.6) [wdx > et' "7 [wdx, ¢ 1,
i 1

for some & > 0. To see this, start with the inequality

(—L fw(x)er dx)m < ci fw(x)dx.
[¢e]] ;7 t1) ;1

Restricting the integration on the left to I, we get

1 (1 Jw (9P dx o < cl- 1 w(x)dx
o \Ii ) ST

so that bj Hoélder’s inequality,

1 1
m'm;"w(x)deC* (x) dx.

. 1 W
t I}y
This is equivalent to (3.6) with & = 0. The fact that (3.6) holds for some ¢ > 0
now follows since weRH,, implies we RH, for some s > q/p. In case g = p,
we obtain (3.6) from the fact that we A, implies weRH, for some # > 1.

Thus, the last sum above is at most

¢ Z (2kr)~dp'(2k(1~p/q+a) I w(x)dx)"l/(""'”
k20 |x] <r
2krgR
=cr"""'( .‘ w(x)dx)'”("'” Z (24~ Vpt La=sin)p',
I+l <r k50

If —~6~1/p+1/g <0, this last sum converges even if R = oo, and the first
part of the.lemma follows. If —6—1/p+1/g > 0, we drop the ¢ above and
obtain that the resulting sum w (R/r)(=%=Y2+10¥ The second part of the
lemma follows easily. .
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§ 4. The kernel estimates. Let Q(x) = ﬁ (x—a)* where a, is real, a,
<day; < ... <a,, W is a positive integer ;;cll Y e =N. Let Z2(x) be the
interpolating polynomial for ¢ based on Q, ie. :

Z2(x) = (%) 22 [o W)/(x—u)]
where 22 is the distribution with 22 [1/(x—u)] = 1/0 (x). Specifically, if
1 o Ay
ax_) - K=1is (e a)
is the partial fraction decomposition of 1/Q, then
9 = i gf A §U-1
==y (=1)! *

where 84" is the (I—1)th derivative of the é-function at a, (see [10]).
For ko=1,...,m, let

E, = {y: |J/"ak0| zmkinlJ"‘akJ}-

Thus, ye E, means that y is closer to @, than to any other a,. For yeE,,
we will consider the regions
) Ix—ayl<3}ly—a,,
@ 3Hy—a,) < x—a) <$1y—ay),
Q) #ly—a,l <lx—a,
intersected with
(a x< -2R,
(b) —2R < x< 2R,
(©) x=2R,
where R is chosen so that —R <a; < ... <a, <R. In this way, we obtain

" nine regions denoted (la), (1b), (1c), (2a), (2b), (2¢), (3a), (3b), (3c).

Lemma (4.1). Let Q, 2, = 2 and Ey, be as defined above. If y&Ey, and
X, y¢ {a,} then |(x— Wi =P yi-1(y)| is bounded by a constant times the
Sfollowing functions in the indicated regions:

(1a) [y—a, 7,

o1, 10O 1O Xkl

@) Y= e o Tr—ay
e
49 =4 o0 r=ay

(2a) |x—yP7t,
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R 12y = a*
@) k= RO G Ty e

1, Q) X~ al

(20 [x—)l

00 Ty—ay’

(3a) 0,

o) 2Ot (04 (0 GOl x— ) 2, ()]
Qe 7 Rl AT 4 e
[0 I

AT

These estimates can be rewritten in different but equivalent forms. For

. Mg . . .
example, in (1b), |Q(x)| = [x—a,| ® since x is bounded and xe Ey,. Similar

reasoning shows that |Q(x) ~ |x——ak0]”k° in (2b), and that in (3b) we have ‘

0| = |x—a,* if xeK,. Furthermore, for any case of type (2),
IQ(» = |Q(x)| as can be seen by considering the cases when |x| and |y| are
both large or both bounded. Note also that if |x] is large then |Q (x)| & |x|¥;
similarly, [Q(y)| ~ |V for large |yl.

Proof. We may assume without loss of generality that 4, = 0 since #
has the translation property #2(y—a) = #2028 (y). In all cases except (3b}
and (3c), we will estimate (x—p)%"! and l.-%,-,,ag:l(y)l separately.

In case (a), (x—)3"! is zero near every g, so that P -1 = 0. Hence,

we have only to estimate (x—y)}i"! for (la), (2a) and (3a). For (la),
(=5 <Ix—y*" < el yP7t since |y =4|x|. For (2a), we have simply
(x=y)3 ' < |x—y*" 1. For (3a), since x < —2R and ¥l <2|x|, we have
x—1 <0, so that (x—)% ! =0. This completes all cases of type (a).

We now consider cases of type (b). For (1b), |yl =%|x|, so that
(x=»3"" <clyl*~! as above, For (2b), (x—p% ' < |x—y]*~ 1. Now consider
(1b) and (2b) for Ple-pt=1(y). Write

—y- 1

and &, = 70+ @} where &0 is supported at 0 (= a,) and /! is supported
at the other zeros of Q. In (1b) and (2b), x is bounded and |x{ < %y Since v
is closer to 0 than to any other 4, it follows from |x| < %|y| that |x—af

2¢>0 for ks ko. Thus, since x is also bounded, e |x—a) e ! for
k # ko, and we obtain

7k ((—x——ﬂiw <c max

y—u K Bk
01
k#kg)

ly—a '+
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The expression on the right is at most ¢/(1+]y|) since yeE,,, and therefore,

(x—upt 12 ()
{’/),}( < .
'Q(y) y—u 1)yl
For 99, we have
et ;
50 ((—tu)—+> e omax  xFTiTH|y T
y—u 2

Osi+jl,€1uko—1
Since [yl >2|xl, [x*7" Y77 < ety 7, which is bounded by

ahgy
oyt

clx| since x is bounded and i+j< tey—1.  Finally,

Ix| ™0 % |0 ()" since x is bounded, yeE, and |x| < $|y, and we obtain
(x"-u)ffl) Q) Ix
y—u Q) |yl
This completes the estimation of (1b) and (2b).
For (3b), write

(X—}’)i_l—!?(,,_‘)ﬁ_—l(y) =052, [(

<c

ot 28|

x— Y5 —(x—uy
y—u

1
= (=351 Q) 7 (y—_;)

o fe—u!
-Q(») 2. (ﬁ)

o[y =yt
+Q(y)93[ = J

where 79 and &} are defined as before. We now have |x| > £|)] and x is
bounded. Since [x| = [y, (x—y)5 ' <c|x*"?, and therefore since |Z! [1/(y
—u)]| < ¢, the first term on the right above is at most c|x*"*|Q(y) in
absolute value. This is certainly bounded by ¢|x|*~*|Q()|/|@(x)| since x is
bounded, and if xe E,, k # ko, it is bounded by ¢|Q (y)| since |x| is bounded
away from 0 and oo. Thus the first term on the right above satisfies the
desired estimate for (3b).
For the second term, if xeE,,

x—u) !
@3 ((_..}.:)_{‘f_w

Lc[l+ max |x—a* 171

osjdp—1

TRk |x—aklu>
Sc(l+|x—ay )gc(l—i— 00

since x is bounded and |Q(x)| ~ |x—a/* for bounded x in E,. Thus,
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(=Y o)
’Q(y)g"( y—u )SCIQ(X)I

icm

(12 ()l +Ix~ay)

for bounded xekE,.
The remaining part of (3b) is

) S e
y—u '
If x <0, then for u near 0 we have (x—u)%~! = 0. Also, since |x| = 4|y, we
have x—y < 0 if x <0, so that (x—y)% ! = 0. Thus,

Q(y)»@i’[(

o= 1

Ce= 3 = (e —wy
y—u
for u near 0 if x < 0, and therefore the expression to be estimated is 0 if x
< 0. If instead x > O, then x—y > 0 if x| > %[y, and x—u > 0 for u near 0.
Thus,

=0

o=y = (=T = (x—wp
y—u y—u

1 d . )
y u!E {x—y—s(u_y)}a—l]ds= _(““I)J{X—y~s(u—y)}” 24
—4Yo 0

Note that when u=0, [x—y—s(u—)) = [x—(1—s)y| ~|x| since |x| > £|}I.
Thus

< cfxxm 2

F =y = (x—u)y
! y—u
Since x is bounded, it follows that

o[ =) — ey
’Q(y)@u[ = ]

=0

<clQIx o,

The right side is at most .c|Q(y)||x*"1Q(x) if xeE, since then
1Q ()| ~ |x|uk° (x is also bounded), and is at most ¢|Q(y)| otherwise since [
is then bounded away from 0 and oo. This completes the estimation for (3b).
For the (c) cases, we have x > 2R. For (1¢), |x| <2|y| and consequently
(e=yft S le—yI*™t 2 |y*T Y, while for (2¢), we simply have (x—y)%~' < |x
~y*~1. To estimate Pix—yx=1(y) for (1c) and (2c), we will use the fact that

2;(»=y if 0Kj<N-1 For x>2R and [l <R, we apply the
Maclaurin expansion of (x—u)*~! as a function of u to obtain

N-1
Ce—wfi7t =(x—uwf"! = ¥ o1 L R(x, u),
j=o

©
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where

R( — 1 t ] N—1 dN a— 1
X, u) —(N—l)!g( —s) dS—N[(x—su) lds

1
= O [(1 =81y (x— su)* 1=V gs.
0

We will first show that for x large compared to |u,

%R(x, u)

To see this, apply Leibniz's formula and note that if i = i’+i", then

< C’u|N—i|x'm~1-N.

(1 '—S)N—l |u|N—i’Si”lx__Sulu—l—N—I"ds < cluIN*i’lx’a—1—~N—i”

Oty

< c'uIN—ilx}z—1~N
since |x| > 2|ul.
It follows that since all the ags satisfy |a, < R,

N-1

P71 (W)= T e Y L P, ()
j=0

2. (R (x, u)>
y—u

since in (Ic) and (2c), the fact that x| is large implies that || is also large.
Hence, due to |Q(x)| = |x|¥,

with

< clQ 1Ny,

|Prex (9] =1 (Y]

QU B 1 _ o) I
Zren NS 00 o < Clo Gl ol
Moreover,
S N T\ A S
I}z:.:ocfx 1’J’j’<j§01011(m‘) [x] 1<C("|§T) [xpt

because |[y|/|x| > 3/4 in (lc) and (2c). Finally, since Q) =~ |x|¥ and
QW= [nN,

(DN 13 < e QU X () [ .-

This completes the estimation of (Ic) and (2c).

3 — Studia Mathematica LXXXIV.2
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Only case (3c) remains to be considered. In this case, x > 2R and
x > %|y|. The expansion used just above holds with u replaced by y:

N—-1

3 oexrm Y 4 R(x, y),
Jj=0

IR (e, I < elx*= 1=V yI".

We claim that [R (x, y)| < c|Q(y) %%~ /1Q (x)]. Since |x] is large, |Q (x)] = |x",
and so the claim will be established if | y|¥ < ¢|Q(y)|. This is obvious if | ¥y is

(=it = (x—ypt =

large, while if | | is bounded, it follows from | y|¥ < ¢| yl %0 < e|Q(y)), the last

inequality being due to |y—ay = ¢ > 0 if k % k. Thus, R(x, y) satisfies the
desired estimate, and since
(x—y5t— Pl gt (¥) = R(x, y)~ Prixy (V)

it follows that we only need to estimate Py, ,(y). Write

R R
|Pacen () < 100N |2 ( &, ‘”)}HQ g (-MQ‘«.‘L))‘.
y—u y—u
We have
R(x, u) &
D4 (y ” )\c n}’e’:x }(EL-‘—;R(X, u)uzak)

osisp,—~1
k#kg

since | y~a,cj >¢>0 if ks ky. By our earlier estimate, this is at most
elx*" 1N xelx* 110 (%) Fmally, 29 (R(x, Wf(y—u) =0 since
(8/6W) R (x, )y =0 for i=0,1,..., N—1. Thus,

| PRy (D < CIQ(y)I /12 (%),
and the lemma follows.

§ 5. Proof of Theorem 1. Under the hypotheses of Theorem 1, it is clear
from definition (see (1.1)) that v is locally integrable. Moreover, as we will
show, u(x) < cw(x)? for bounded x, and therefore u is also locally
integrable. In fact, from the definition of u, for bounded X,

u() < QI [T be—ay ™" w (e
< ew (x)q/p’
since |Q(x)|* contains the factor [x—a,|™* for each k.
Also, both 4 and v belong to the class Ay U A,, as we now show.

By considering the cases when |x| is large or small and using N—f = 0, we
see

'x'“akl N\ BRa
~ Ll (N—fa /
ulx ~J] (H-Ix'—ﬂkl) (1+x| ) w ()4,
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Thus, ue A, by Lemma (6.5) of [11] since w¥Pe A, (1, —p)g = 0 and (N
—PB)q = 0. The fact that ve A, can be deduced immediately from the same
lemma.

We will estimate the norm of I} f(x) by considering individually the
nine expressions obtained by decomposing the domain of integration mto
the regions (1a), (1b), (1c),... Writing

L f(x) = If =3 =P o1 (0]

where 2 = 22, we may assume without loss of generality that yekE, by

splitting f = 3 fi. o =f XE,» and considering each f, separately. We may also
k=1

assume as in the proof of Lemma (4.1) that g, = 0.

We first consider regions of type (1). For (la), the expression to be
estimated is

Lf (Ot dy ) () dx)

(54

x<=2R |y}|>(4/3)|x|
Here,

~ 4Bk

X—a] ,
|x—a ) S~

q Bq
u(x) =10 (I (1 +1x)" H(I—HX—-M
and since |x| and |y| are both large in (1a), we have u(x) = |x|V~P2w (x)2?
and |Q(y)| =~ |y/¥. Thus, we must estimate

(F { [ FOIQONYENdy ) V= Pay (x)77 dx) .

x<=2R |y|>(4/3)}x]|

Enlarging the x-domain to (—oc, 20) and applying Lemma (3.1), we will

obtain the desired bound ¢( | |fQPwdx)'/? = ¢jfllLp provided we show that

'V\‘(X)"“:’ Rda 1p

(51) ( j‘ ]xl‘N“”"’w(x)"”’dx)”" ( r [,—";_'TV—_TJ dx) <c
|x) <r |x{>r ,lxl

for r > 0. To estimate the second factor in this product, apply the first part

of Lemma (3.4) with § = N—o. The requirement that § > —(1/p—1/q)

amounts to N > a—(1/p—1/g), that is, to N = B, which is true by hypothesis.

Thus,

p 7-p
[W(X) :, dx < cre™ M ([ ydx)~ e,
|x]>r

"Clu_N_1 |x|<r
Furthermore, since N—f > 0, we have for the first factor in (5.1)

)‘ |x|(N—ﬁ)qw(x)q/pdx<r(N-lf)q j‘ waP dx.

|xf<r x| <r
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Hence, (5.1) will follow if

PR walrdx) N[ wdx) T e

I.\’I"r |x| <r
Since N—f+a~N =a—f =1/p—1/q, this is the same as

1 a/p 1
(— ) wdx) <c- [ wdx,

r [x| <r x| <r
which is true since weRH,,.
For (1b), there are three terms in the kernel estimate, and
correspondingly we consider

(5.2 (0 1Oy uedx)™,
|xf <2R |y} >(4/3)|x]

53 ( { romeo)-2 } (x)d )1”

. ux)dx N

( ) ‘|x|<§zn |y|>(£/3)!xl y > 1""—‘)‘
dy}‘*lx["‘“u(x) )”"

4 e memmdx )

54 (|x|é[zx{}yl>(£/3nx|lf(y)Q(y)l|Y| 1Q (x)| *

For the first of these, we consider separately the parts when |y| > 2R and ||
< 2R. The part of the inner integral in (5.2) with |y| > 2R is at most a
constant times

[ 17 QNIy=N"tdy
2R

Iyl>

w{x)” =1 1/p )
|y|(1+N'—T);"dy < C”f“L{,’

<([1rrigrway)s (I i

- y| > 2R

by Hoélder’s inequality and Lemma (34). Hence, the corresponding part
of (5.2) is bounded by

cMfllp( [ wdx)e =iy
|x| < 2R

since u is locally integrable. Thus, the estimation of this part is complete.
Consider next the part of (5.2) with | y| < 2R. Note that x is bounded,
and xe By since ye Ey . Thus, |Q( ) ~ lylﬂ"", [Q(x) = lxl"k", and the part of
(5.2) in question is at most
| N . - -1 g, = aoin(g of) 4
e F L NI e 0y g g ) 1.
1x] <2R 2R >|y| >(4/3)|x|
To this we apply Hardy’s inequality in the compact form (see (3.2)), obtaining
the bound

c(j |le"de)w = ¢ HfHL,’,’

@ ©
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provided that for 0 <r < 2R we show

(55 ( § 1x"*0T k0 (xyr gxa
|x| <R

1+ —a , .
x( [ [ o w(x)P]7 dx)t " g e
2R>|x|>r
By Lemma (3.4), the second factor in (5.5) is at most
cr(r O piip= iy [ wdx)~ e,

|xf<r

and the first is clearly bounded by cr“k°—pk°( { woPdx)'4. Thus, (5.5) is less
x| <r

than

=Py | Pk~ Brgt Lip-1lig

cr{r +r O § woPdx)a( | wdx)THe,
fx]<r x| <r
Since r is bounded, the term in curly brackets is less than ¢(r*~# +ri/P=1/a)
=cr'/P=14, and (5.5) follows from weRH,,. This completes the estimation
of (5.2).
For (5.3) and (54), we again have u(x) =~ |x]| w(x)¥? since x is
bounded and in E, . Applying Holder’s inequality to the inner integral in

(5.3) shows that (5.3) is at most

o . I» ® W Ue-1 ~’q/p' }1/4
L,j (J rigtwdyy (-L(Hlyi)"'d)) Hedx ]

|x| <2R ~

Mg B

Each of the two inner integrals here is independent of x, and since u is
locally integrable, we obtain the bound cl| fliz by performing the x-

integration.
Since |Q(x)| ~ |x|“k° in (5.4), (54) is less than

x— i/q
c( | { i If(y)Q(y)lﬂ}qlxl( ”“°”w(x)q/"dx) .
jx]<2R

13> (413)]%] B

T

. . (@ -
The facts that |x| is bounded and B, < f give |x| < clx|*M and

consequently it is enough to estimate

56 ( i { [ 1f()ew) dl}ﬂxt“-ﬂ’«w(x)q/ﬂdx)

=0 Uyl >4/3)]x [

1/q

By Lemma (3.1), this is bounded by ellfQlly, = cllfll,z provided that for
r>0,

( J‘ ]x|(a—ﬁ)qw(x)q/pdx)llq( J‘ [|x|w(x)‘/"}_‘"dx)1“”'sc.

|x|<r |x]>r
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Since we A, this is the same as

PR o wiPdx) ([ owdx)T P e,

Jxf<r Ixf<r

which follows from we RH,, since a—f§ = 1/p~1/q. This completes case (1b).
For (1c), the expression to estimate is

) qa—1 'Q(y)‘lic’: q‘ 1/q
("J“‘{W(!M)lxl'f())'[l T M]dy} Mx)dx)

The part arising from |y/*~' can be estimated exactly as for (la). The
remaining part, since |x| is now large, is bounded by ‘

14

dy )4 1
(Ld o el e i)
x>2R |y >(3/4)|x| [yl
This is less than (5.6), which was treated above. We have now completed all
cases of type (1).
Next, we shall consider cases of type (3). The kernel estimate for (3a)is 0
and so there is nothing to do in this case. For (3b); there are three parts:

7 (f { [ ool uwax) "
t2n Wi<cion ) IQ GO y} ue) x) ’
xsEkO '
(58) If () Q)N dy} u(x)dx)"",
|x|<2R |y <(3/4)|x|
xeEy,
(59)

lx—-ak]" q’ L
( ﬂ:i?{lqusf/wﬂ et ol uwa) "

For (5.7), since x is bounded and in Eys

= amin(ug,0)

u(x) = |Q (/x|
Thus, (5.7) is less than

=%

o(J{ [ 170)IQUIdy) |~ Dayy (e gx) i,
~o0 [yl <(3/4)]x|

w ) < c|Q(x)|% x| M w (),

By Hardy’s inequality, Lemma (3.3), this satisfies the desired estimate
provided that

(510) ( f IxI70=Dw (xjlrdx)la( [ w0 gt < ¢,

|x|>r

r>0.

|x[ <r

To obtain a bound for the first factor in (5.10), note that (x—f—1)q =

icm
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—(1/p'+1/9)q = —(g/p’)—1, and apply (3.5) with W = w¥? and s = (g/p)+1,
using the fact that w¥?e Ay (. Thus,

c
(@=p—1) 1
(h‘lj»m « qw(x)qlp dx) 1. WIFES T

( ‘( qupdx)llq,
| <

x| <r

and (5.10) follows immediately from wed,RH, This completes the
estimation of (5.7).

For (5.8) and (5.9), since x is bounded and in E,, we have |Q(x)| =~ |x
—aJ"* and u(x) ~ |x—a,[** " (x)%?. Thus, the sum of (5.8) and (5.9) is at
most

el T (f SOy {lx—al™ Wt px— a4 w(x)r? dx] .
|% <2R |y| <2R
Since w,—pB, =0 and a—f, =0, and |x—a is bounded, the part of the

a/p*

“integrand in curly brackets is bounded, and by Hélder’s inequality it is

enough to consider

e | weTrdx)ia( fRIf(y)!"IQ(y)l"W(y)dy)”"

x| <2R <2

x( j w(y)—l/(p—l)dy)llp"
Iyl <2R
This, however, is clearly at most a constant depending on R times || f]l.2. The
estimation of all parts of (3b) is now complete.
To handle (3c), note that since |x| is large, u(x) = |Q(x)|*|x| ™ w(x)¥",
and the term to be estimated is

|x|n:-— 1

q 1/
d 45|~ B4 a2 J
(|x| ;{m{lylmijl IFmew e y} 1Q ()|~ Fw(x) X>

0

<(f{

oo |yl <(3/4)]x|

1 (D Q)] dy}Ixfa=1= 22w (x)5 dx)1.

This same expression was already treated in the argument for (5.7). This
completes all parts of type (1) and (3).

Finally, consider the parts of type (2). The kernel estimates for these
involve |x—y|*~! plus some extra terms, and we will consider these extra
terms first. For (2a), there is no extra term. For (2b), the extra terms are
1Q(¥) and |Q (¥)|1:*/1Q (x){| ¥l, and the corresponding integrals can be treated
by some of the methods used for (1b): specifically, the same arguments used
for (5.3) and (5.4) apply. The only difference is that the previous restriction
[x| <2|y| is now replaced by #|y| < |x] < %||. This together with ye E,, and
|x] < 2R implies |y| is bounded and

Brnd = Biod
u(x) 2 x0T w (e,
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and the arguments can be easily adapted. For (2c), the extra term is
[Q(IIX*/1Q ()l |yl Since |x] is large,

u(x) = Q () 1x] P w ()77,
and consequently we must estimate

® X YV e " 1/q
f HIHIf(y)Q(y)rm x|@=Pay (e dx |
—oo Ulyl%]x

This can be handled in the same way as (5.6).
It remains only to consider the parts of (2a), (2b) and (2¢) which arise
from the term |[x—y*"! of the kernel estimate. Parts (2a) and (2¢) lead to

{ [ Ll 1=y dy}21Q (ol |x] ™ P4 w (x) dx)' 1,

[x1> 2R (3/4))x| < |y $(4/3) (x|
since |x| is large, and (2b) leads to

! { S )l lx—yl*~tdy}e

I51 < 2R (3/4)|x] <Y <4/3))x

X|Q () TT e~ el ™ w(x)/2 dx)t i,

In any case, |Q(x)| = |Q(y)| since veEy, and 2(x| < |yl < $|x|. Moreover, for
(2le

~gfy —ah -
[Tx—al x| o< elx|~#

since x is also bounded. Thus, both expressions above arc less than a
constant times

(f {I ]J" IIf(,V)Q(y)I =y dy}¥ x|~ v (x)702 dx) .
= |y ={x]

By Theorem 2 with f there replaced by fQ, this is bounded by ¢|| SOy
= c[|fllzz. The proof of the norm inequality in Theorem 1 is now complete.
The fact that I;f converges absolutely ae. follows by noting that the

. arguments above involve the absolute value of the integrand of I, f. Thus,
the proof of Theorem 1 is complete,

§ 6. Extensions by continuity. The first part of this section contains the
proof of Theorem 3. The second part concerns the extension problem in case

the norm on the left is a Hardy norm. We will concentrate on the case when
o is not an integer.
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Proof of Theorem 3. We start with the assumption that
Lfllzg < el flizp

for a suitably restricted class of functions which is dense in I The class of
J's is cither the set % , of Schwartz functions whose Fourier transform has
compact support not containing the origin, or the set of constant multiples of
(00, K) atoms with K sufficiently large and fixed. We always choose K > N
—1 where N is the degree of Q. The definition of I.ffor fin either class is
Lf =Mx~""(@s1,3,5,..), and its extension to I, is also denoted I,f. Fix
Jeli and let {f;} be a sequence in the dense subset such that fi—~fin I,
Thus, by definition, I/, 1I,f in I%. We have Lfi=f#x""* and,
cc:nsequently, since '(J/I):% ja~1(y) is a polynomial of degree at most N—1 and

[ (0 yrdy =0 for k =0, L., N-1,

(6.1)

o
L)) = [ fiOHIx=yl~ =22 1 (1)} dy.
-
By Theorem 1, this integral converges in I% as j—co to the analogous
integral with f; replaced by f, and Theorem 3 follows.
Extensions involving Hardy spaces. If f belongs to either of the dense
subsets above, then I,f defines a tempered distribution by

oG

LSy 0> = [ LX) @(x)dx,

-4

pe.

This is clear if the dense subset is % , since then I, fe Ho,0 t00. On the other
hand, if f is any bounded function with compact support in |y < R, then

(TS ) (o)l S_Hfllwl [ lx=yP~tdy

<R
S e I Mo (1 [l

Thus, I,f has at mosf polynomial growth and so defines a distribution as
above. This applies to any atom. We denote the “grand” maximal function
(see [2] for the definition) of I,/ by (/,f3* and use the standard notation

MafNay = I V¥llag-
Instead of beginning with assumption (6.1), let us now assume that
Haf g < IS llrp

for all fin either dense class, and ask about the form of the extension. The
extension is now a distribution in H? which we denote by .#, f and refer to as
“the distribution obtained by extending (6.2).”

(6.2)
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Before proceeding, we note several facts about (6.2). First, it implies (6.1)
since (I.f)* = I, f. Second, it does not matter whether we use || ~||,‘g or || ~||,,5
on the right because of the form of ». In fact, the main result of [10] is that
I, and H} can be identified if v = |Q|"w with we 4, and Q as usual, 1 <p
< 0. Such an identification cannot generally be made for the spaces on the
left, however. Finally, inequalities of type (6.2) are derived in [11].

THEOREM (6.3). With the same assumptions as in Theorem 3, if .%,f is the
distribution obtained by extending (6.2), then

G od= | S0 (@~ FE@}dx, e,

where @, = @x|x|**,
Proof. We will first show that (p,,—%% belongs to the dual space of I,

i€, I _1y,-y- For this, we use the simple known fact (see Leroma (3.1) of
[10]) that if a function ¥ has N bounded derivatives and ¢, = max |y,
‘ J=0,0N

then
W ()~ 28 ()] < ¢y 1Q (AL +Ix]). ‘
If ge ¥, then the function ¢, =|x*"'x¢ is infinitely differentiable and

bounded by ¢(1+|x])*". Let 6(x) be a smooth compactly supported function
equal to 1 on the support of 92, and write ¢, = 0¢,+(1—6)@,. Thus

gz:a = '%% and (P‘z—'%z = (9%_%(,7,)’*‘(1—0) P+

Since 0¢, has N bounded derivatives, [0, — B, | s at most ¢|Q (X)L +]x]),

and so by Lemma (34) (in the simplest form with g = p) belongs to
I\ p-1)- For (1—6)g,, use the bound (1+Ix])*"* x(x| > 2R) and the fact
that

_f (L+]x])@ D20 ()| % w(x)~ 1P~ 1) gx

|x| > 2R
e [ [x[ETITNE Y ()T HPD gy < o
] > 2R
for N> f by Lemma (3.4).

To prove the theorem, let felf and {f;} be a sequence in the dense
subset such that f;— fin I%. Then I, fi— Jfin H} and, consequently, in .
Thus, <Lf}, ¢> — (41, ¢) for pe .. Here, I, fj is of polynomial growth at
most, and

i @3 = [(Lf) pdx = [f; p,dx
by Fubini’s theorem. Since the first N moments of £, vanish, we obtain

Loy 0> = jfj{%—%}'dx,

and the theorem follows by passing to the limit.
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Theorem (6.3) can be used to derive a relation between 4 f and If.
Before stating this relationship, we must introduce some notation. The
integral part of x will be denoted by int(x), and x, is defined as usual by
x4 =max {x, 0}. Given « and a polynomial Q(x) =[] (x—a)", let

(6.4) 0*() =](x— a)imee s
(6.5) Q**(x) =H(x_ak)[uk—im a]+'

If « is an integer, Q* = Q**. In general, Q* and Q** are polynomials with
deg 0* < deg Q**; in fact, 0* is a factor of Q**. This implies, by repeated
use of the translation property #2(y—a) = #2(-9(y) and the formula 22

=24 9C(p)-Q (see Lemma (2.7) of [10]), that

(6.6) PL" = P24 PO*  with deg(PQ*) < deg Q**—1.

THEOREM (6.7). Let p, q, v and N be as in Theorem 3, and let Q* and Q**
be the polynomials defined by (64) and (6.5) which are associated with Q. Let
J,f be the distribution obtained by extending (6.2), and let I,f be the function
obtained by extending (6.1). Then for e & and feli,

Ah o= | L0 (o= 98" et | 1,(1-2) {028}

where y is a smooth, compactly supported function equal to 1 on an interval
containing the zeros of Q.

We shall not give the proof, which is technical and fairly long. The idea
is to first obtain both of the following representations for the term (pa—g’gz
in Theorem (6.3):

= PL() = [ {x—pF =22, (I} o (»)-PL ()} dy

-0

oo

= [ =y =22 ()} {o()- 28" (1)} dy.
- o
Once this is done, the remainder of the proof consists of using the equation
1=y+(1—yx) to divide the integral in Theorem (6.3) into two pieces,
substituting the representations above into the respective pieces, and
verifying that Fubini’s theorem can be used to interchange the order of
integration. The result then follows immediately from Theorem 3.

§ 7. Area-type integrals. Let I'(x) denote the “cone” {(y, 1): |x—y| < at}
in R? with aperture a. Fix a function y e &, let ¥,(x) =t~/ (x/t), and define

S.(Nx) =( I{I} 72 (fur) () dy de)2.

We will prove the following result about S,(f).
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TuroreM (7.1). Let o, p, g, u and v be as in Theorem 1. Then
1S, (g < ¢l Flle

for any (20, K) atom with K sufficiently large.

Proof. The idea is to show that S,(f) is an ordinary area integral of
If. Define ¢(x) by $(x) = x| (x), and note that *(fih,) (x} = ¢ (LS P, )(x)
if fis an (o0, K) atom, by checking Fourier transforms. Thus, S,(f) is a
multiple of S(I.f), where

S0 = ([ 172l gx@) (V) dydi)'>.
nx)
Since ¢(0) =0, S is an ordinary area integral, and therefore

1S (g)lleg < cllgllag

by [9]. Here, we use the fact that ue A, as was noted near the beginning of
§ 5. Therefore,

IS.(Nlles < ellaf lsg-

The theorem now follows immediately since ||1,f ||H5 <cllf ||L5’ by Theorem
(1.9) of [11].
In a similar way and with the same hypotheses, one obtains

(72) Il sup (S ()lllzg < cllfllep-

)elx)
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