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Isomorphism of regular Morse dynamical systéms
induced by arbitrary blocks

by

J. KWIATK OWSKI (Torun)

Abstract. The problem of metric isomorphism in the class of Morse dynamical systems is
investigated. The main theorem of this paper is the following: )

Let x =b°xbix ...,y =B%xf" x ... be Morse sequences such that |b] = || = 4, 1> 0,
the sequences of blocks {b%, b, ...}, {8° B', ...} satisfy a condition (R) (the relative frequencies
of the pairs 00,11 and 01, 10 in each of the blocks b and [, 1 > 0, are greater than a positive
number #) and A, > 8/n for sufficiently large . The shift dynamical systems 6(x) and 0(y)
induced by x and y are metrically isomorphic iff there exist numbers ¢, 0< q, < 4—1, and a
sequence of pairs i(ry, s}, #. & = 0.1, £ >0, such that

) Y (B, (Y6 (4 g+ 2~ 11) < 00,

=0
©
®) 2, min(b/m, 1~Ifn) < o0,
=0

where ()° =b' and (B0 =B, m o =1g ... A lo=do, | =qo+dine+ ... +4in-1, 4o =40, 4
=g if oy Sy =hoy =1, gg=g—1 (mod ) if Ly >n_~L.;~L t>1

Introduction. Generalized Morse sequences were introduced by Keane in
[4]. The construction of Morse dynamical systems gave the positive answer
to Jacobs® question whether any infinite group of roots of unity can occur as
the eigenvalue group of a strictly ergodic system having a continuous part of
the spectrum. Moreover, this class enables one to comstruct some counter-
examples in the general ergodic theory (see [1], [3], [7], [8]). It follows from
[4] that all Morse dynamical systems are Z,-extensions of ergodic dynamical
systems with discrete spectra for which the eigenvalues form a group of roots
of unity. In [5] the detailed form of such systems was described and the
problem of isomorphism was investigated. It was proved there that if x = b°
xbtx ..., y=p%x B x ... are regular Morse sequences such that |b| = |B'|
=}, and {4} is a bounded sequence then the shift dynamical systems 0(x)
and 0(y) induced by x and y are metrically isomorphic iff b' = § for all
sufficiently large z. If x is a given Morse sequence for which the sequence
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{Ib'[} is bounded then by the above result we can obtain a countable number
of Morse sequences y such that 8(x) and 6(y) are metrically isomorphic.
In this paper we study the problem of metric isomorphism in the class
of all regular Morse systems over 0 and 1 without the assumption that the
sequence of lengths is bounded. The main result of the paper is formulated in
the abstract. This theorem enables us to construct a class .#*(x) of Morse
sequences y such that @(y) is metrically isomorphic to 6(x). .#*{x) consists
of a continunm of Morse shift systems 0(y) such that the measures m,
induced by y are pairwise orthogonal. The procedure of constructing .#* (x)
is the following. Suppose that x is a regular Morse sequence of the form

x=b"xblx ...

Depending upon this representation we can construct a set of Morse
sequences having the form y = % x " x ..., where the blocks {#'} satisfy the
conditions of the theorem in the abstract. Now we can represent x in another
form by grouping the blocks {b'}, and next find a new set of Morse
sequences as above. In this way we obtain the class .#*(x).

Rojek [10] has shown that if §(x) and 0(y) arc metrically isomorphic
then there exists a Morse sequence z such that x and y can be obtained from
z as above. This enables one to construct the class .#(x) of all Morse
sequences y such that 6(x) and 8(y) are metrically isomorphic. Namely, the
above procedure of obtaining the class .#4*(x) must be completed. Suppose y
= p°xB' x ... is obtained as above. If some of the B! can be represented as
B = a' xa then we replace § by a' x&@ and obtain new forms of ¥, to which
we apply the above procedure. In this way we obtain the class M(x). We
remark that the assumptions 1, > 8/n from the abstract do not limit the
possibility of constructing .#(x) for a regular Morse sequence.

§ 1. Notation and definitions. First we introduce notions, definitions and
o .
notation used in the paper. Let X = JI1{0,1}. A finite sequence B

=(bo ... by-y), by =0,1, n2 1, is called a block, the number n is called the
length of B and denoted by |B]. If xe X and B = (bo ... b,-,) is a block then
x[i, k], B[i, k], 0< i< k < n—1, denote the blocks (x; ... %) and (b; ... by)
respectively. We will write B[i] and x[i] instead of B[i, i] and x[i, i]. Let
us denote B = (b, ... b,_;) where 5 =1—b, b=0,1. If C =(cg ... ¢, _,) is &
block then we denote by BC the block (bo ... by—yCp ... Cp—y). Further we
* define
BxC=BYBt pgr1

where B® = B and B! = B.
Assume b° b, ... are finite blocks with bl =2, t >0, starting with 0.
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Then we may define a one-sided sequence x as follows:

f)] x=b"xb'x ...

If B, C are blocks with |B| < |C| then by fr(B, C) we denote the frequency of
B in C, ie.

fr(B, C) = card {j: 0<j < |C|~|B|, C[j, j+IB|~1] = B}.

Next we set

1 1
=|b', r,=min{—fr(0, b, —fr(l, b')},
W=, r=min {10, 1),
mo=2dg .. by €=b"x ... xb, t=0,1,...

We have 4, > 2 and n, =|c]. )
DEeFniTION 1. A sequence x defined by (1) is called a Morse sequence if

i r, = oo, infinitely- many of the b' are different from 00 ... 0 and infinitely
=0 :
many are different from 01 ... 010.
DeriNiTION 2. A Morse sequence x is called continuous if either infinitely
many of the A, are even or A, are odd for t > t, and
2. min {eo (b)+ 04 (%), 00 (b') + e (b')} = o0,
t=0

where

e (V)= —;:card {i:0<j< 1,'— 1, b'[j1=k, j even},

1 . ] ,
o,‘(b‘)=—/1:card {i: 0<j<4—1,b[j]1=k, j odd},

k=01

It is known [4] that if x is a continuous Morse sequence then each
block B has the relative average frequency m, in x. The function m, is an
ergodic measure on X invariant under the shift T on X. For each block B,
m,(B) = m,(B) and in particular m,(0) = m,(1) = 3. We will say that m, is
the Morse measure defined by x and 8(x) = (x, m,, T) is the Morse dynamical
system induced by x.

Following [6] we construct a special dynamical system metrically iso-
morphic to 6(x). Set

s

Z,=10,1,.., =1}, Z=[]Z,,

t=0

I
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and let p be the product measure of the uniform measures on Z,, ¢
=0, 1,... Next let Z be the subset of Z consisting of all z = (z,, z,, ...) such
that infinitely many of the z, are different from O and infinitely many are
different from A,~1. Consider the transformation §: Z -» Z mapping Z to z
+1, that is,

S(zos 215 oy =1(0, .., 0, 24+ 1, 2,1y, ..0),

where ¢ = t(2) is the first number such that z, < 4,—1.

The dynamical system (Z, p,S) is an ergodic system with discrete
spectrum. Indeed, the set Z may be identified with the dual group of the
group A of all n-roots of unity, n, = Ay-...* A, t = 0. The addition in Z is
defined as in the set of p-adic numbers. It is easy to establish that the
element (1, 0, 0, ...)e Z corresponds to the homomorphism from A into the
circle group equal to the identity on 4. (Z, p, §) is an ergodic dynamical
system with discrete spectrum and A is its point spectrum.

It -turns out [5], [6] that the dynamical system 6(x) is metrically
isomorphic to a skew product of the automorphism S with a family !S(z)},
zeZ, of permutations of the two-point set {0, 1}, each with mass 3. In order
to describe the family {S(2)}, ze Z, we define a function p: Z — Z, = [0, 11.
Take = = (24, 2,,...)€Z and put

p(2) = b [z+1]=b' [2] =0 Ay~ 1]~ ..

where 1 = t(2) is defiped above,
If (z, i)e Z x Z, then we define S(2)(i) = i+p(2) (mod2). We obtain the
Z ,-extension

. =b%[Ae —17 (mod 2),

0*(x) =(Z xZ,, px%, Sx(S@)Y)

of the dynamical system (Z, p, S). We will define a mapping f from Z x Z, to
X which is an isomorphism between the dynamical systems *(x) and 0 (x).

For z JeZ we put

'T“(ZO’ Zya s

h=i@) =zo+znp+ ... +z,0.(, >0,

by =k (Z) =nm—j—1, t=20.

Jo :-':\:Os

It is obyious -that zeZ implies

jt+l ;3.}‘1’ kt+1>kla t>01

Ji =0, k00 asit o0,
Define a two-sided sequence y =f(Z, i) by putting

@

(%0}

y[=i kr] =G
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where
q,(2, 1) =i—b°[zo]— ... =P [z] (mod?2).

Let X (x) =f(Z xZ5). Then m,(X(x)) =1 and the mapping f is an isomor-
phism of the dynamical systems 6*(x) and 6(x).
Denote by &, t = 0, the partition of X (x) consisting of sets of the form

Co(k)= {ye X (x): y[—k, n,~k—1] = ¢, and each fragment
yln,~k, {+1)n,—k—1] of y is ¢, or &},
® C, (k)= {yeX(x): y[—k, n—k—1]=¢, and each fragment
y[in—k, (+1)n,—~k—1] of y is ¢, or &},
k=0,1,...,n—1. The sets Co(k) and C,(k), 0 <k <n~—1, are pairwise
disjoint and

1
“ m(Co(k)) = my(Cy (k) = o

In [6] we have shown that £ ~e.
1t follows from the definition of the sets Co,(k) and C, (k) that

Co®5Co) 5 ... 5 Colm—1)
and

c,oic,mE ... Ec (n-1.

Therefore the partitions &, t > 0, may be represented as towers of X (x).

» - -~ 41
0 iy eee iy g =B TR e T =Y
4 Sl
Coln=1) . Cyln-1) ™1
1
3
col2) )
Cof1) ::1(1)%
X . clo :
0 1 ees Agy- o 1 .« A1 B
Byl t) #d {)
Fig. 1 ’
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Each tower ¢, consists of two columns %, (t) and %, (t). The next tower
¢,+1 may be obtained from &, as follows: we divide each of the two columns
of ¢ into 44, equal subcolumns and mark them by 0,1, ..., 4,.,~1. We
write the block b'*! over %,(r) and (b'*")~ over %,(r). Then %,(r+1)
consists of those subcolumns that have 0 over them and %, (t+ 1) consists of
the remaining successive subcolumns.

§ 2. Codes of partitions. Regularity of Morse sequences. In this section we
describe all two-set partitions of X (x) and introduce the notion of the
regularity of a Morse sequence x = b° xb' x ...

Suppose Q =(Qo, Q;) and R =(R,, R,) are partitions of X (x). The
distance [:| between Q and R is defined by

%) 12 =R} = m.(Qo N Ry)+m.(Q; N Ry).
Fix t >0 and assume that the partition Q satisfies Q < ¢,. The partition Q
permits to define two blocks 4, and B, in the following way:
Afkl=i if Co(kycQ,
Bkl=i iff Ci(k)<=@
i=0,1,k=0,1,...,n—1 The blocks A4, and B, are called codes of Q with
respect to ¢, and we will denote them by 4,(Q) and B.(Q).

Now, if 0, R<¢, then by (4)«(6) we have
™M 10— Rl =4d(4,(Q), 4,(R)+1d(B,(Q), B,(R)),
where d(A,B)=n""card {i: 0K i n—-1, A[i] # B[i]}, and A, B are
blocks with 4] =|B| = n. :

Let Q =(Qy, Q,) be a partition of X(x). Since &7 ¢, there exists a
sequence {Q'} of partitions of X (x) such that O <& and

(©

® l2-g1-o.

The above condition is equivalent to

) sup|Q'~Q'*¥ - 0.
k21

The codesof the partitions Q* with respect to ¢, form the sequences of blocks
{A;}, {B,} such that |4, = |Bj =n,. Let us denote by A®, B® the codes of Q'
with respect to &y, k=1,2,... It is easy to see that ‘

AP = {4, B}« x ... xb'tH),

BP=1B, A} x(b'*! x ... xbtth),
where the symbol {4,, B} «E (E is a block) denotes the block obtained by

the substitution of 4,, B, in E, 4, in place of 0 and B, in place of 1.
Using (7) and (9) we conclude that the sequences of blocks {4,}, {B,}
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satisfy the conditions
(10) Al =Bl=n, 120,
and
sup d(At+k» Agk)) i 0,
k21
11
) supd (B, sy, B{"’)TO.
k=1

Conversely, any sequences of blocks {A4,}, {B,} satisfying (10) and (11) define
a partition Q =(Qo, @,) of X(x). Other such sequences {4,}, {B,} define the
same partition Q iff

d(4,A)->0 and d(B, B)-0.

Any sequences of blocks {4,}, {B,} satisfying (10) and (11) are called codes of
Q with respect to {£},1>0.

Now, we define the notion of the regularity of a Morse sequence x = b°
xb' x ... For a fixed t > 0 let .

x=bxb*tlx ... and n¥=4-... Ay, $=20.

We have b x ... xb'* =n. If B is a block with |B| =n® then we put
mg(x,, B) = —,;,%s-)fr(B, b x ... xb*s).

Further let
h, (00, 11) = fr(00, b')+fr (11, b,
h (01, 10)= fr (01, b*)+fr (10, b9,
my(x,, 00 v 11)=m,(x,, 00)+m,(x,, 11),
mg (%, 01 v 10)= m,(x,, 01)+m,(x,, 10),

t,s=0. It is easy to obtain
by 4444 (00, 11) -

1 sngﬂ_l) , se

M.y (%, 00 v 11) = my(x,, 00 v 11)+ hes s (01, 10)

htses 01, 10) - o

y
nss-f 1)

Mars (s O v 10) =m0, OL V109, - Fon, 1)

12

{s+ 1) ?

nt
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where
IL=Is20: (x ... xb'")[A¥] =01,
M= {s20: (b x ... xb""[nP] =1,

Thus (12) gives

. 00, 1 ks )
limm,(x,, 00 v 11) = h(00, 11) + ) ﬂ-(—q%il)+
2t surl‘l-]} nr
s~ 16T,

(13)
h (01,1 kad
1(01,10)

($)
)“z s=t+1 m

BOLIO) & 00, 11)

limm,(x, 01 v 10)= o]
n

From (12) it follows that
Mgyq (X, 00 v 11) = my(x,, 00 v 11),
Moy (X, 01 v 10) 2 my(x;, 01 v 10),"
s, t 2 0. Further we put '
b= m, (00)+m, (11) = limm(x,, 00 v 11),
(9 g = my (01)+m, (10) = lim my(x,, 01 v 10).

DerFiNiTION 3. We say that a sequence of blocks [b° b, ...} satisfies
condition” (R) if there exists a- positive number 5 such that

1 1
Zh:(OO, 1)z, ‘j;’hr(Ols 10) = 7,

for t=0,1,...

DerFiviTioN 4. A sequence of blocks {b° Y, ...} is said to be regular if
the numbers p,, g, t > 0, satisfy the condition -
(15) limmin (5, ) > 0.
~ Remark 1. If a sequence of blocks {b% b%, ...} is regular then there
exist numbers 0 < #o <t; < .., such that the sequence {¢° g%, ...} of blocks
satisfies. condition (R), where .

g°=h°}<...xbl°, gHi=p L xBITY 20,

, Proof. The assumption (15) implies that for infinitely many numbers r;
< < e We have By 220, 4> 2n with n >0, i =0, 1, ... It follows from
(13) and'(14) that for éach i=0, 1,... we can find a number a(t]) =1,
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t; > 1, such that

m(xg, 00 v 1) 2n  and  m(x, 0l v 10) 2y, s=t—t~1.
Now, we define 1o = a(tp) and t;,., = a(ty) for j=0,1,... It is easy to see
that the numbers ¢, t, ... satisfy the assertion of Remark 1.

DEeriNITION 5. A Morse sequence x is said to be regular if there is a
representation x = b®xb' x ... by a regular sequence of blocks {b°, b, ...}.

If x is a regular Morse sequence then it is continuous. Indeed, using
Remark 1 we can represent x by blocks {b°, b?, ...} satisfying condition (R).
Then we have the inequalities

opte, = 11—11,(00, 11).
T

§ 3. Outline of the proof of the isomorphism theorem. Now, we are in a
position to present the most important ideas of this paper. We use a coding
technique and Ornstein’s distance d between stationary processes as in [5].
However, the coding technique. is improved in this paper.

First we formulate the main theorem and give an outline of the proof,
which contains not difficult but laborious computations. The detailed proof
of Theorem 1 is given in § 4.

In this section we will write b instead of (b, i =0, 1.

THeoREM 1. Let x =b%xb* x ..., y = B° xB* x ... be Morse sequences
such that |bY = |BY = A, t > 0, the sequences of blocks (b9, b, ...}, {8°, B, .
satisfy condition (R) with a positive number n and A, > 8/n for sufficiently
large t.

Then the dynamical systems 6(x) and 6(y) are metrically isomorphic iff
there exist numbers q,, 0 < g, < 4,—1, and a sequence of pairs {(r,, S)}, 11, S
=0,1, t 20, such that

‘eo"f“;l ?%ht(oos 11),

*) ¥ (8, B, ¥, 4, g+ 4= 1D <o,
(B) io min(l/m,, 1—1/m) < o0,

where lo = qo, | =qo+qimo+ ... +qim_y, 9o = qo and
floaysm —~L -1,
fh-y>nm_y ~h~1.

4 = q,
‘h, = Qx"l (mOd '11)
Jor t= 1
Assume that h: X (y) — X(x) is an isomorphism between the dynamical
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systems 8 (y) and 6(x). Denote by P(x) = (P, P;) the time zero partition of
X (x), i.e

Po={veX(x): v[0]=0}, P;={veX(x): v[0]=1}.
Then Q = h™!(P(x)) is a partition of X(y). The partition Q defines the
stationary process (7, Q, my) on X (y). The proccss (T, @, my) determines an

* invariant measure v on the shift space n {0, 1} defined on cylinders by

- o

putting
(T ()= m, (1) T,

where B = (by ... by_ 1), bo, ...y by—y =0, 1, n> 1. We have
) m (1), 77 @) = me([) TP, )

because h is a measure-preserving transformation. At the same time, Q is a
generator for T on X (y). Conversely, if there is a generator Q = (Qq, Q) of
X (y) satisfying (17) then 6(x) and 6 (y) are metrically isomorphic. In order to
_prove the theorem it suffices to show that the existence of such a generator
implies conditions (A) and (B) and conversely that these conditions allow
to construct Q.

Necessity. Suppose Q = h™!(P(x)). Let & be the sequence of partitions
of X(y) defined in § 1. There exist sequences {4,}, {B,} of codes of Q with
respect to {£,} satisfying (11). We will prove that the codes { {4,}, {B,} may be
chosen in the following form:

4, = c:.C:: {4, l,+n,— 1],
(18) lt—ﬂ-vl =, (modn,),
B,= .Z,,

ogh<hsnm—-1,r,5=0,1,

t=0.

The main tool in proving the above is the Ornstein distance 4 [9]. We use
another definition of the Ornstein distance d [2] between invariant measures
defined by statlonary processes in the same way as in (16)

I] {0, 1} and denote
by X,, Xw the sets of all generic sequences for ¢ and v respectlvely. Define

Take two invariant ergodlc measures @, f on X =

(19) : d(o,¥) =

inf lnn

yeX,
YEX%

Z ely [l], yLiD),

icm®
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where
@ 1) 0 fu=v,
u, v) = .
e 1 fuz#v,
u,v=20, 1.
Let {Q'}, t > 0, be the sequence of partitions of X (y) corresponding to

the codes {4,, B,} (see §2). Then Q' <¢, and

| I2—g1-o.

As a simple property of the Ornstein distance d [9] we get the inequality
(T, @, m), (T, Q. m)) <10~ Q.

Let v, be the invariant measures on X determined by the processes
(T, ¢, my), t = 0; then we have

(20) d(v,, my) -0,

because m, is determined by the process (T} Q, m,) (see (17)).

Now we describe the set of all generic sequences for v,. Observe that the
dynamical systems (X, T, v,) are homomorphic images of (X, T, m). In-
deed, the partition Q* (r fixed) defines a homomorphism 9 from (X (y), T, m,)
to (X, T, v,) as follows:

@@)lI=i ff Tueg,
where ueX(y), j=0, +1,...,i=0 or 1.

Denote by f the mapping from Z x Z, to X (y) defined in § I and let u
=f(w,)eX(y), weZ, i=0 or 1. Put j =j, (W), k =k (%). Then each
fragment u[—j+kn,ki+kn), k=0, £1,..., of u is either y, = % x !
X ... xB or 9. It is not difficult to observe that g,(u) arises from u by
substituting A, in place' of y, and B, in place of 7. It is clear that
Vx( r(X (Y)))

Therefore v, is an ergodic measure on X as a homomorphlc image of my.
At the same time, each ueX (») is a generic sequence for m, [5] and it is
easy to see that g,(u) is a generic sequence for v,. .

Now, by using (20), for arbitrary small & > 0 we can find ¢, such that

d(v, m) <¢?

whenever t>t,. It follows that there exist

ue X (y), ve X (x) such that

from (19) sequences

lim= fim card {i: 0<i<n, ofi] #g,@[i]} <&
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Each fragment g, (u)[j; + kn,, ji+k+ )n], k=0, £1, ..., of g, (u) is equal to
A, or B, while each fragment v [ji+kn, ji+k+1)n], k=0, +1,.., of vis
equal to one of the four blocks
Cic{[itij"'nr”’l]:
where j, is a number from {0, 1,..., n}.
Evidently there are a lot of fragments g, (u) [j; +kn,, j;-+(k+ 1) n,] of g, ()
such that the distance d between them and the corresponding fragments of v
is smaller than & That is why the codes 4, and B, have forms (18). The

detailed considerations about them are given in Lemmas 1, 2 and 3.
As a consequence of the above we obtain codes satisfying (18) and

21 supd(d4,.y, AP) -0,
k21 t

i,j=0,1,

where AW = A, x ™l x ... xf*K ¢, k= 0.
The remaining part of the proof of the necessity may be obtained from
(21) by computations. We present them in Lemmas 4, 5 and 6.

Sufficiency. We will construct a partition Q of X(y) satisfying

(2) ' m,c(g/0 T=1P(x)) = m,(y'o T-1Q)

for infinitely many n,
(b) Q is a generator for T

To-do this we define g; and |, in the same way as in (B) and we choose
ty in such a way that

min(b/m, 1-l/n) <} for t >t,.
Further we set
r;o = r‘O’ s;() = StO’
o b L.
n=rtre (mod2), s =s+r-; (mod2) if L <1-12L
M-y Ny

if lL:_L > 1_ﬁ:.!.
M-y My

and ¢, > 0,

r=r+s_; (mod2), s =s+s_, (mod2)

Ifg =0and | /n_, >1~]_,/n_, then we set s = re+s-q, 1, arbitrary.
In the above definitions ¢ > t,.
Next we define codes {4,, B}, t > t,, by putting

A =i, b+n—1], B =A4.
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We show (Lemma 7) that {4,, B,} satisfy the conditions (11) so they define a
partition @ of X(y). Now we prove that Q satisfies (a) and (b).

Let 0,1 >0, be the partition of X (y) determined by the codes {A,, 4,}
and let v, be the invariant measure given by the process (T; ¢, my). Then (20)
implies

(22) limv, (B) = v(B)
for an arbitrary block B, where v is the invariant measure determined by the

process (T, @, my). The numbers v,(B) are equal to the average relative
frequency of B in the sequence g,(u). Since

A=, L+n—1]
it is easy to see that
limv, (B} = m,(B).
The last equality and (22) give (a).
It remains to show that Q is a generator of X(y). Let S be the
homomorphism from X (y) to X (x) defined by the partition Q and let S, ¢

2 0. be the homomorphisms defined by Q'. The properties B, = A4, t > 0,
imply S, (@) = (S,(u))~ for each ue X (y). For fixed n we have

(23) |=\'Z T"'Q‘«‘:\'Z T Q|+ 0.
It follows that for ae. ueX(y)
(24) S@ =(Sw)".

Further let 7, be the partition of X (y) into the sets of the form lu, & 1 and let
f1x be the partition of X (x) into such sets. The property (24) implies S(n,)
=1, that is, § is a homomorphism from the factor dynamical system
(X(»/ny, T) to (X (x)/n,, T). It follows from the construction of the isomor-
phism fin § 1 that the dynamical systems (X (x)/n,, T) and (X (y/n,. T) have
discrete spectra and A is their eigenvalue group. This means that § is an
isomorphism from (X (y)/n,, T) to (X (x)/n,, T), that is, S is one-to-one
mod 0.

The last property and (24) imply that S is an a.e. one-to-one mapping
from X(y) to X(x). Thus S is an isomorphism of the dynamical systems
(X, T, my) and (X(x), T, my).

We finish the considerations of this section by the following theorem
which is a consequence of Theorem 1.

THEOREM 2. If x is a regular Morse sequence then there exists a
continuum of Morse sequences y such that the measures m, are pairwise
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orthogonal and the dynamical systems 0(y) are metrically isomorphic to 0(x).
Proof. We can assume that x has the form

x=b%xblx ...
’ oG
and the sequence of blocks {b° b, ...} satisfies condition (R) and ¥ 1/4,
1=0

<o, 4 =[b'],t=0,1,... Each block b' consists of finite sequences of zeros
and unities. It follows from condition (R) that the length of the shortest
sequences is at most 1/2n. Now we define the block # by changing one
shortest sequence in b' into the mirror sequence. Then we have

A, <=3 1 <o,
’ 2n,=o A
and

Ifr (00, BY)+fr (11, b)—fr (00, B)—fr (11, f1) = 2,
Ifr (01, b)+fr (10, b)—fr (01, B)—fr (10, ) = 2.

We can construct Morse sequences y taking infinitely many blocks b* and’

infinitely many blocks B In this way we obtain a continuum of Morse
sequences. Applying Theorem 1 and the formulas (13) we conclude that the
dynamical systems 6(y) are metrically isomorphic to §(x) and the measures
m, are pairwise orthogonal. .

In [6] it was proved that there exist classes of spectrally isomorphic
Morse dynamical systems ¢onsisting of a continuum of metrically noniso-
morphic systems.

§ 4. Lemmas. We assume in Lemmas 1 to 6 that h: X (»— X(x) is an
isomorphism, @ = h™!(P(x)) and the assumptions of Theorem 1 are satisfied.
LemMma 1. The partition Q has codes {4,, B} such that

4=, L+n~1], B =1,
where 1}, s, =0 or LogL<n~1, t =0

Proof. Let {4, B,} be codes of Q and let & % 0. Choose numbers t,
<ty < ... such that

(25) d(vi,m)<ef for t>1,.

Let j, be a number such that g <% for j = j, and put to = t;. Fix t > t; and

choose j satisfying the condition j St <t;4y. Then there exist sequences
ue X (y), ve X (x) such that

(26) Eﬁxﬁ%card {i: 0i<n,v[i] ;é.g,(u) [} <e?.
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Next we define
Zy={k>0: d(g, () [kn, (k+1)m,—1], v [kn,, (k+1)n,~1]) <e;}.
(25) and (26) imply

—1
2n linm;card {k: 0<k <n, keZ;} > 1—g;.

Suppose that v =f(z, i), i=0 or 1, Z =(zq, 2y, ...)€Z. Then the blocks
vlkm, (k+1)n—1], k=0, +1,..., have the following forms:

8) L=ccll, b+n—-11, I, =c¢&[l, L+n—-1],
L =& ¢[h, L+n~1], IV,=&Z[, l+n—1],

where |, = j,(2). As before (see § 3) let u = f(W, i). We can assume that j; (W)
=0, ie. g,(u)[kn, (k+1)n,—1] is A, or B, for every k=0, +1,... Let

Z0 = lkeZ;: g,()[kn, (k+1)m—11 = 4},
ZM = (keZ;: g,(u)[kn, (k+1)m—1] = B).

Therefore the conditions

li - card (0 < k <n: g, kn. (k+1) =11 = &} =m, ., (0) =4

1 =
li,xln;card {0<k<n: g(wlkn,(k+1)n~1] =B} = m, (1)=4%,
and (27) imply

—1
B Lcard {0.< k < s keZ) > s,
"n

fi:rﬁllzcard 0k <n keZ®P)> j—s;.
Take an arbitrary ke Z{®. Then there exist ', 5’ {0, 1} depending on ¢ such
that

v[kn, (k+1)n—11=c"& [, L +m~—1].

Putting 4 = ¢ ¢ [I,, L +n—1] for telt, t;4,) we have
(29) ‘ (4}, A) <e;.
Using the equalities
(1, V) = d(1L,, IIL) = 1
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and

My (00 =my (1) =4%p4y >0, my,, (01)= My, (10) =314,
Gv1 >0, Ppr1+Gaq =1,
we come to the conclusion that there exist k; e Z{, k,eZi" satisfying
(30) d(wlk; my (ki +1)m—17, vk m, (ky+ 1) n ~ 1) =1.
Thus (29) and (30) imply

d(4,, B) > 1-2s,.

If we put Bj =4 for te[t;, t;;,—1] then
(31 d(4,, A)+»0, d(B,B)-0.
For t <1, we may take A, of the form A,’=c,';c.'fi [L,+n—1] in an

arbitrary way requiring only that L, , =1, (modn,). The sequences of blocks
{4l B}, 1 =0, satisfy the assertion of the lemma.

LemMa 2. Let B, C be blocks of lengths n,. . 1 and n,, respectively, t > 0,
k21, of the form

B =cliirt Garnt Chakets bopa s Fagay — 11,
C=clcfljfy+m—11, 1 s,p,qel0,1,
and let

COHU = Cxfin . x4+ 20,1, k,
If d(B, C**Y) < n then there exist blocks A, AL, ..
(32

CcP=.
o Al i1 of the form
Afys = C;ixlfi. Chsis haitm =11,
satisfying

d(Aly, CY) <y
i=0,1,...,k

Proof. Put 4,,,, = B. Suppose that for some i, 1 i<k, the blocks
Afvk+1s ooy Avisy are defined and have forms (32). Further we have

1 izl

and Iy =l (modn,,),

(33)  d(Aisr, €)= d(Afsiny [nerg, (14 1) m =11,

;'l+l+1 1=0

cixn Ly, 1+ 1) 1y gy~ 1]).

The inequality d(4;4;,(, C%*Y) < 5 implies that at least one component of

the sum (33) is <#. Suppose that this component corresponds to some
number [, 01 <A 10 —1.
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Then one of the two blocks
Alvi = Alvier Uy, 1+ Dmy =11 or Ay = Alviy Uy, d+)n - 1]
satisfies the condition (32). We can proceed in this way for each i=k,
k—1,...,1 so the lemma is proved.

LemMa 3. Let Q be the partition of X (y) as in Lemma 1. Then the codes
{A,, B}, 120, of Q can be improved in such a way that l,,, =, (modn,),
t=0.

Proof. Let {4;} be a sequence of codes of Q satisfying the conclusion of
Lemma 1. Take a sequence of positive numbers ¢, j > 1, with ¥, & < oo and

j=1

such that
Sl%pd(At,j+h A:.(,l)) < 81, J= la 2’ L

choose positive integers 1 <t, <t, < ...
(34
Now, for fixed j > 1 we will construct blocks A D5 A1 G)s o5 4, je1m 1)
satisfying the following conditions:

A4 () = C?;ch-ﬁ[lrlﬁ(i)a bisiG)+n 1], 0<i< L=t =~1,
bi+i)=hie10) (modm 4), i=0,1,...,8,,—t;~2,
(A1), 41TV <yt o e,

ty—ty SISty —t —1,

(33

p=12...,j.

First we apply Lemma 2 with t =t;, B = 4; -1, C= A,’j, k=t;, —t;=1,
n =¢;. As a consequence we obtain blocks A, .;(), i=0,1, ..., t;:, —t;—1,
satisfying (32). If j= 1 then the blocks A,l(i), veey Ay (1) satisfy (35). If
Jj>1 then using (32) and (34) we have

(36) d(A,0), A)<e; and  d(4;, 40797 Y) <y

This gives '

Atj—tj—1)
d(dy (), A1) S epe g

Applying Lemma 2 again with B = A,J(j), t=t;_, C= A;j_l, k=t—t;
—1, 1 =¢;+¢;-, we obtain blocks 4, +;(),i=0, 1, ..., {;~t;_, —1, satis-
fying (35). If j > 2 then (34) and (35] imply '

Atj 1= tj—2)
d(ij_l (l')s A:,'ﬂzl K 2) < 8J+sj—l +Ej—z
and we can apply Lemma 2 with B = A,!_l(i), t=t;.,, C= A;J__z, k=t;_,
—tjwz—l', n = ¢g;+8;_1+8_,. Proceeding in this manner we obtain blocks

A )y oes Ay, 1 () satisfying (35).

2 ~ ‘Studia Mathematica t. LXXXIV z. 3
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In order to prove the lemma we consider the sequences of blocks that
we have obtained above:

Al‘ (1)9 ARAE Alzvl (l)s
AU (2)9 LA A!z—l (2)! Alz (2)s sery A(3—1(2)s

Ay G)scvos Ayt O oos Ay =1 0)s Ay Gy ooy Ay =10,
We can find a subsequence of numbers {j,}, s > 1, such that
hy+il) =l v for szi+l,i=0,1,
Further we define .
Atl-H = Arl~|-i(]'i+1),

i=0,1,...
Then
byvivr =hvivs(iea) = by +iGi+2) (mod Ny i)
and
bysiGir2) =l vy 120
In this way

l|1+.'+1 =l i (modn, ), 20,
It follows by the construction of the blocks Ay +:() that

Tty i Sty C
Ay v =i v [y bivitn =11, i20.

Now we prove that {4,}, t >1t,, are codes of Q. It remains to show that
d(Ay +is A +)—0 as i tends to oo.

Suppose that ie{t,—t;, t,~t;+1, ..., t,.; —t; —1}. Then (35) implies

37 A= tptty) i
(37 a4 41 A:p )< Y g,

By (34) we have
(38) Al 4177 <8
Now, (37) and (38) give '

pe

@
Y &ytEp.

s=p

(39 d(Af 4iy A1y <

Thus we obtain

d(A;l +is A11+i) +0.
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t;~1 we take 4; of the form c ¢’ [I;, L;+n;—1] where r;, 5;
.2 ;-1 satisfy the conditions ]

t,—1. In this way we finish the proof of the

Fori=1,...,
are arbitrary from {0, 1}, and Iy, ..

=, (modmny), 1—0 1,
femma.
In the sequel we assume that the codes {4,, 4} of Q have the form

A, =i, L+n—1]
and
Lhyy =1 (modn), t20.
LemMa 4. The numbers I, t > 0, satisfy the condition

min(l/n, 1—1/n)— 0.

Proof. For convenience we put

W= B X
5l(k)= (bx+1 % th+k)r(bt+1 x XbH-k)s [lfk), lt(k)+ nf")—l],

where ¥ =7, S =Sj4p B =441 ... Ay and I satisfy the formulas ],
=1L4nI®, t,k>0. By the definition of the distance d we obtain the

following formula:
ACRAC (l_g)gs((kl:),
" n

(40) d(Aysir AY) =

where
Lky=card{i: 0<i<n®—1,9®[i]=0 and 6®[i, i+1] =15
or y[i] =1 and 8®[i, i+1] =75}
n®—1,y®[i]=0 and 60[i, i+1] =Fs,
or yP[i1=1 and 6®[i, i+1]=r5},
n®—1,y®[1=0 and 8®[i, i+1] =75
or YW[i]=1 and §®[i, i+1] =r]s]}.

ly(k) =card {i: 0 < i

Iy(k) =card {i: 0 <i <

Thus (40) implies

A4y, 40) > 20 TEE (1_ b )+11 ®

]
)T

and

h+LKk) L L) ()
d(d; 41, Af*’)zT i+ o) 1-—;’ .
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Next we obtain

A
@1 A(Ay 4y, 4©) 3 LOTEE (n‘ )

n n
The equality

lim (k)‘f’“[z(k) ‘:1:+1 %f "r:=i{,
k nx() Bvr if re =35,

condition (R), (11) and (41) imply the assertion of the lemma.

Lemma 5. There exist numbers q,, 0 < q, < 4,1, and a sequence of pairs
{r,, s} such that

2, d(p, by, b, [4 4+ 4—~1]) < 0.
=0

Proof. There exist numbers ¢, 0< ¢ <A—1,t>0, such that Iy
=qo, b =qo+qing+ ... +qim_,, t>1, because the conditions by
=], (modn,) hold. We deﬁne the numbers ¢, in the same way as in The-
orem 1.

Next we find r,, 5,. Let u(k) denote the minimum of four numbers

d(AY, iy kb hixtm=1D), 4,j=0,1.
Thus ]
U, (k) < d(A, 14, AY)
which implies

42 supu, (k) 0.

k=1
Further there exist r =r,, and s = 5, such that
v (k) = d(A®, ¢} 1 ¢ Chars hir+m—1]).
Denote
0 (k) = d(AP, ¢l i 5 v haxtnp—17),
o= prrkpyr [ﬁﬂ: Y
Then we have

(43) u(k+1) =j1_(k2'“:(k)+(1—-u,(k))-72 (k)
e Y
10 T
ulk (0) -2
ol )Ar +et1 *-s (k))-jﬁn-i
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where

Ti(k)=card {i: 0<<i < Ayper—1, B 1[i1=0 and a** Vi, i+1]=rs
or BH**1[i]1=1 and off*V[i, i+1] =73},

Lk)y=card {i: 0 <i < Aype;1—1, B[] =0 and o**V[i, i+1] =75
or B*¥* i1 =1 and oV [i,i+1] =rs},

To(k) =card {i: 0 <i < Jares—1, B[] =0 and o D[, i+1] =13
or ¥+ =1 and ot V[, i+1] =F

L(k) =card {i: 0 <i < Apyxes—1, FHH1[[] =0 and af**V[i, i+1] = F

or B[] =1 and o V[, i+1] =15).

We choose ¢, such that u, (k) <% for each k = 0. If v, (k) < § then (43)
implies

g (k+1) > u.o(k)ﬁ%i%fﬂﬂl—%(k)) ,&(21
+u () A’:f 1 +(1~0,, (k) J;(fil
= uyo(k)+ (1 — 204, (k) /l.:fkki : +(1 =1,y (k) — g (K)) !Ofle
If 1,,(k) > % then (43) implies .
g (1) > g (K)+(1— 2u,, (K)) A.szfi : + (v (k) — g (K)) 13(”2 -

Both inequalities give

LI, (R)+1, (k)

wo®32 2 i, W <4
1 k+
(44) u, (k+1) > 0 o*
2R +hL(F) .
‘O(k)+4m——_0+k+1 if v, (k) > %.

Now we denote 7 =741, 7 =V g, §=58441, S =5, It follows from the
definitions of T, (k), T;(k) and T, (k) that

L (k) +T, (k)
Atk

+ kL pebkE Lo / _
=d(B Y, B B [k 1s Gener F s —10)
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and

L (k) + 15 (k L ,
—2—%,);‘—3(*)_ =d(B B B [ ket L Gk F Ak 1))
+h+1

Finally we can define r,, s, for t > t,. Put
‘ To+krt = Trokt 1 Flhigs  Sigrkt1 = Soh+1HTigk
whenever v, (k) <% and

Tio+kt1 =Teoh+ 1t S0k Spake1 = Segh+1+5ig,0

if v, (k) > % and Grgrir1 < Ageprr—1 If Gig+k+1 = Agrer1—1 then we take
Tegtk+1 = Sigp+1H8gk and S 44y in any way. Recall that Qig+k+1 =0 in
that case.

In the above formulas the addition of the symbols 0 and 1 is taken
mod 2. It is easy to see that for sufficiently large £, Vi (k) <4iff horr S Mgk
—hyx—1. Fort =0, 1, ..., t, we may define r,, s, in an arbitrary way. Thus
(44) implies

Uy, (t=t0) 2 g (t—to—1)+3d(B, b}, b}, [4,, g+ 4 —1])

for t>t,+1. By the above inequalities and by (42) the lemma follows.
LeMMa 6. The series Y min(l/n, 1~I/n) is convergent.
t=0

Proof. We set
a 1 . ,
(k) =rcatd BHo<ig Bae—lhox=1, A []] # AP [}
+k
if 2Ly <ty
_ 1 . ,
(k) = ;;‘—;Cal‘d {i: myy— bk SES Mg —1, Ay [i] # AP [l]}
.
if 2L 44 > gy
Further we put
no=min(/n, 1=li/n), ¢30.
We will show that for sufficiently large ¢t and for k >0
45 Wy (k+1) 2 (1=t ) T (k) + i @
where ¢’ is a positive constant.
We consider the following cases:
@ lirsr <Mirsr—higey—1  and by <myp—lii—1,
Bl <Mik+1—=hsee1—1  and baie > mp =l =1,
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M hverr > trprr~hagrr—1  and by <mg—hio—1,
O hagrr >Mpprr—haer—1  and Ly >np—he— L

In case (o),

1= Frke1— k
@6)  m(k+1) = i, (k) Wl(k)+(1_ii_mt(k)\lr+k 1= Gr+ir 1~ Wi (k)
+k

A+ 1 Aot
#2289 (4 49 —m 1)
t+k+ 1
+ (Av+k+l —q;““_—l_wz(k))(l'i—k——u,(k)-f-ﬁl,(k)),
Y~ [CEYY

where

wy (k) = card {i: 0<i < Appe1—Gear1— L B [+ dianerd = 1iax

and f* 1[I =0 or bAN [i+gisies] =TFex and f1[] =1},

k1
: ; +E+L [ -
wa(k) = card {i: 0 <i < Apser—Qaner—2, DA Ot Giaie + 1] = s0uy

and R[] = 0 or AL [i+glesr+1] = Sppand fHE1 [ = 1)

THtk+ 1

Setting

Mok ®)

B0 =7 ul)  and w00 =7,
t+k

lt-Hc

we have

Atk D+t wy (k) 71 (k
Toones [ )
) k
+ <1 _A_,ﬂ(k_)___) (1 "1'+—k~ﬁh(k))J+'l—'i[(ﬁr(k)—'ﬁ:(k))w

; -
t+k+1 " Je+k+1 i Mtk Ak

+<31+k+1—‘1:+h+1 —1NWZ(k)).(l—'ﬂl(k)—*—ﬁ(k))]"

Atir 1

47 mk+1)=

!
At 1= Grr+1

Choose t, such that

Lo
(48) i, (k) < g min (E’ I_i) < g and

P
A
ool

for t >ty and k=1, 2, ... Then the equality

bviss - lr+k' 1 +‘1;+k+1

Mepkr1  Mprk Aerkr1 Aerktd
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and (46) imply

s —Garr1—=w (k) 7 Qirr+1 M

(49) <- and /<,

Atier 4 Apvper 8

Using (48) and (49) it is easy to show the inequality
w,(k 1
2(%) “fr(r:+ks:+ks bH‘kH)"’ fr (Freie Saps B'EEFY)

Arnsr Atk 1+k+1

Akt —Gient1 =Wy (k)_lIr'+k+1'___ 1 LI

Aerirt Aakrs Appxsr 20

In a similar way we obtain
A’H‘k'ﬁ‘l

—Giikr1— 1=wy (k) S 1
-
)*t+k+1

t+k+1
7 fr(rivn Sanr b )
T+k+1

+_1“fr(ﬂ+k Sk bl+k+1)_'1t+k+l ~ Qg1 Wy (k)_q,’ﬂ+1

Aag+a Apiken

}'t+k+1
1 1

‘ . j1-+~IN-1 2‘
The above inequalities and (47) give

(50) A+ 1) > ( j:+*+1>,7,,(k)+lf:3..z_

+k+1 My 2
Finally (50) implies

(k1) > (hﬁiﬂ)nﬁ,(kn’—'*—*-g.

Mikv1/ P+

This gives (45) with ¢’ = /2.
Further we examine case (f). Then

(51) 7, (k+1) = )lWI k) (H-k (k)\'q'l+k+1"“q:+k+l"‘l"'wl (k)

t+k+1 \Mrk R

p) —q; —-W

Ltk fr+k+1 W, (k) (1 ™ -—u,(k)+rﬁ,(k))
okt L By 4k .

z( )

(u: (k) —m, (k)),
where :

Wi (k) =card {i: 0<i < Appy,~

' tHk+L ‘ .
k1 =2, B [ gl + 1] =180,
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and B[] =0 or B AL [i4Giaps +1] =54, agd fH4 1] =1},
Wak) = card {i: 0 < i< ypsy—Grars1—1, B [+ Giese1] =114k
and B[] =0 or bf—:r:kill [i+dtsxs1] = Fiay and B4 0] =13,

The formula (51) may be written as
Avrta 1 l: wy (k) =
- 1, (k)
Aivkst Arkt1—Grx+1—1 (
Wy (k) )(lm _ )]
+({1 - ——(k
( Akt 1—Grke1—1 )\ (&)

(1_::'4,1‘)[( () — 17, (k));:%( ) +(1 u,(k)+m,(k)@1+k+1

!
“Girk+1—

(2 mk+1) =

q;+k+1—"_"z(k):l
Arks1

Reasoning as in case (x) we get the inequality

Grri+1+1 L \n
‘T—‘)""""*( )

(53) m(k+1) > (1
+k+1 Mtk
for t>1ty and k> 1.

In order to obtain (45) we use the equality

=Q;+k+1+1 ( lt+k) 1

L
Merk) sksr

(54) lt+k+1

Mtk 1 Atk

Putting (54) in (53) we have
hrer ) ] n_ (k)
i, (k+1) = 1——'*—*1) k+(1—41)(_—__)
i ) ( Mtket ™ ) SRS VP AV

> (1 —I—'tﬂL)m,(kH (1—51’1)-317.
M+ ‘ Mevk
Therefore (45) is obtained with ¢' = 37.

In the remaining cases the proof of the inequality (45) is similar.
As a consequence of (45) we obtain

(55)
k+1 i k+1k+1
Agk+1)20 Y [ A=ngsdMgri-i=e' Y, H(l — Mgt Mg +i-1
i=2 u=k+1 i=2 u=
for k=1

Next we put by = i+ 15 by = Mhgiis s B = r],oH and apply Lemma
8 below. If ¢, is a number such that m,o(k+1) < % for every k = 0 1,
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then we obtain
k+1

e 3 Mgri <1
i=1

o0
for arbitrary k =1, 2, ..., which means the convergence of the series }: -

=0
The lemma is proved.

In the next lemma we present a detailed proof that the codes {4,, 4,}
constructed in § 3 (sufficiency) determine a partition Q of X (y). At present we
assume that conditions (A) and (B) of Theorem 1 are satisfied.

Lemma 7. The codes {A,, A, satisfy the conditions (11).
Proof. Recall that
A, = Cl'ic:; [k, lt+nt"'l]-
Put
6, = b by[q;, g+ 4.
In order to show the lemma we use the following formula:

I}
d(AY, 4, 1)+
L

)
d(AF D, Ayiy) = 7 ! (1—d(4®, 4,.y)

+k+1

l r} 3
+-jd<A$*', R s bt M= 10)

l P s
+ l_—“‘+:+ ; d(AP, ¢\ e W v bt —1]),
't
where

Iy =card {i: 0 <i < Appsr—1,
B[] =0 and 8ypp4y [, i+1] =14y St
or B =1 and &4y q [i, i+1] = ek Sian)s
Ly=card {i: 0 <i < Asper—1,
B =0 and 8yvpy [ i+ 1] = Flay Sl
or fHY U] =1 and 4ppy [N, i+1] = riyySiei)s
Iy=card {i: 0 <i< Apper~1,
B[ =0 and & pxuy [, i+1] = 14y 54p
or =1 and Opner [, i+1] = Fap s},
ly=card {i: 0 i< Aqpe(—1,
B[] =0 and Sppes [iy i+1] = Fprsi

or ] =1 and Sy4psy [y i+1] = riy 544},
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l l
If 25 <« 1% then we have
L2 Mtk

1 1
L d(A®, A0+ T 2 [1-d(AD, A,4.)]
+k+1 +k+1

l
[1 ~d (AP, A.+k>+fi]

+k

(57 dAF™, Ay < 7

13 l: l+k 14
2 | d(AP, A )+
Aerkr1 (“: + Mk htr+1

Ltly e

S d(AP, Ari)+
<d ) VI (N
It is not difficult to see that

L+l
j1+k+ 1
The above equality and (57) imply
(58)  d(AFHY, Aypsr) SA(AP, A+ Mk

+d (g, bﬁf:::l b§,+:,,++ll [G+x+1s Grrt1tAerr+r—1D)-

thk+1 prtk+l petkd 1
=d(f s B B e [erkr 1 Devrr 1 Fhranr 1 — 1)

l .
If LE0Y > 1—-*% then we obtain
LTV Mtk

IL+1 [/
d(ARD, Apiisy) < (AP, A,+x)+£‘+ 2 +(1~ﬂ>

+k+1 Ptk
which also gives (58).
In the same manner we can show that
d(Aff,’, Axo+ 1) < min(l,o/n,o, 1_110/”10)
+d(BO, b B [ig 15 Ghg 1+ Aiger—1D)-

Therefore we have

d(AED, Agrr) S X ld(ﬂ‘» b}, b, (4> g+ 4 —11+ Y, min(i/m, 1-1/n)
t=tg+ t=tgy
for k=0,1,... '
The above inequalities, (A) and (B) imply that the sequence of codes
{4,, 4} satisfies the condition (11) which ends the proof of the lemma.
LemMma 8. Let k be a positive integer and let by, by, ..., b, be numbers
such that 0 <b; <1,j=0,1,..., k. If for each m =0, 1, ..., k the numbers

m i-1
Dy=5by, Dp=bo+Y Bijno(l -b)
i=1 =
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satisfy the condition D,, < M <1 then N

k
(59) 1=ZoE‘ gT:MT[
Proof. We have
Dyiy =Dp+(1~Dp) bps s,
This implies that D,, <1 and
Dy > Dy+(1-M)b,, 4.

m=0,1,...,k~1.

Hence
k
D,>(1-M) ¥ b,
' i=0

which gives (59).
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On metric isomorphism of Morse dynamical systems

by

TADEUSZ ROJEK (Torun)

Abstract. For each continuous Morse sequence x, the class of all continuous Morse
sequences y such that the dynamical systems induced by x and y are metrically isomorphic is
described.

Introduction. J. Kwiatkowski-in [3] gave sufficient and necessary condi-
tions for two Morse dynamical systems 6(x) and 6(y) induced by x == b° x b*
x ...and y=p%x B! x ... to be metrically isomorphic, assuming that the
lengths of the b* and p* are the same for t =0, 1, 2, ... and x and y are
regular sequences. It is also proved in [3] that for a given Morse sequence X

“there exist a continuum of Morse sequences y such that the systems 0(x) and

0(y) are metrically isomorphic but the corresponding shift invariant measures
+ o0
on the space X =[] {0, 1} are pairwise orthogonal. For a given regular

Morse sequence x Kwiatkowski defines a class .#(x) of Morse sequences y
such that the dynamical systems 6(x) and 6(y) are metrically isomorphic.

However, the procedure of obtaining the class .#(x) which is described
there can be applied to a continuous Morse sequence x (without the
assumption of regularity). In this paper we show that .#(x) is the class of all
continuous Morse sequences y such that 6(y) is metrically isomorphic to
0(x). .

To prove this, we use the same technique of coding as in [3], but we
omit the assumption that the lengths of the blocks b and f' are equal and
thus codes have different form. In order to prove the main result, for given
Morse sequences x = b®xb' x ... and y =% xf* x ... such that 8(x) is
metrically isomorphic to 6(y) we construct a Morse sequence z = aq x @, X a;
xad; X ... satisfying :

laol = IbOI s

lao % do| = |8,

3o xay) = [bY|,  |a; xay| = b2,

lay xa@y| =18, laz xa@l =1p%, ...
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