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Introduction. Perfect partitions play an important role in the ergodic
theory. In particular, they give information on mixing and spectral properties
of dynamical systems. The existence of such partitions for one-dimensional
systems has been proved by V. A. Rohlin and Y. G. Sinai [5], and for
multidimensional systems by B. Kaminski [2].

It is easy to construct a perfect partition for a one-dimensional system
with finite entropy (e.g. see [4]). The situation is more complicated for
multidimensional systems with finite entropy. It is natural to seek such a
partition in a way similar to that used in the one-dimensional case. This
procedure leads to a problem of existence of a special kind of generators —
so-called regular generators.

Let (X, #, u) be a Lebesgue space and let G be an abelian free group of
rank 2 of automorphisms of (X, #, y). We assume in the sequel that G is
aperiodic.

We denote by h(G) the entropy of G and by n(G) the Pinsker partition
of G. For the definitions the reader is referred to [1].

Let (7, S) be an ordered pair of generators of G.

LemMma 1 ([2]). If { is a measurable partition of X with
(a) S—IC <Ca T_ICS <‘:,

(b) \Z Tl =,
© & ST =T,
then

T "{s > n(G).
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Now we recall the concept of a perfect partition of X [2].
A measurable partition { of X is said to be (T, S)-perfect if

M) S7'{<{ T s <,
(i) T"(s =¢,

(i) A ST"{=T""(s,

Y,
A

(iv) A\ T "(s=n(G),

n=0

(v) H({IS™'0) = h(G).

It has been shown that for every pair (7, S) of generators of G such a
partition exists [2].

Now, let us suppose h(G) < 0.

It is known [1] that there exists a measurable partition ¢ with H(¢)
<o and {= \/ T'Sé=e

(k,nez2
Any such partition is called a generator for (X, u, G).

DEFINITION. A generator ¢ for (X, u, G) is said to be (7, S)-regular if
N\ (87"¢s v (&s)r)=(s)r-

n=0
ProPosITION. A generator & is (T, S)-regular iff { = &5 v (Eg)r is (T, S)-
perfect.
Proof. Since £ is a generator for (X, u, G) we have h(¢, G) = h(G)([1]).

Hence it is easy to see that { satisfies (i), (ii) and (v). From the regularity of ¢
we obtain (iii). It follows from [1] that

/:'\0 T-"(s = /30 T-"(¢97 < ().

Using Lemma 1 and (iii) we obtain A\ T " (s> n(G). Thus { is (T, S)-
n=0

perfect.
The converse implication is trivial.

Regular generators for dynamical systems with zero entropy. Let h1(G) =0
and let (T, S) be an ordered pair of generators of G.

THEOREM 1. A generator ¢ is (T, S)-regular iff ¢ is a strong generator for
(Xs U, T)s ie. (68); = é&.

Proof. If & is a strong generator for (X, u, T), then obviously ¢ is
(T, S)-regular.

Now, let us suppose that £ is (7, S)-regular. Since h(G) =0 we have

S™1es végr =&5 v(Edr
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and so
AB7E v E9r) =& v Cor-
From the regularity of ¢

¢s v (Csr = (S s

ie. {5 <(&s)r-
Hence &5 < (&s)r and so T7'(&s)r = (€s)r - Thus

a0

e=¢c=UCdr=\ T"CIr =7,

n=0
which completes the proof.
CoRrOLLARY. If h(T) =0 then every generator for (X, u, G) is (T, S)-
perfect.
The validity of the Corollary is an easy consequence of the fact that
h(T) = 0 implies &5 < (Ss)r -
We shall later see (Remark after Theorem 3) that there exists a

dynamical system with zero entropy and a generator of this system that is
not regular.

Regular partitions for Conze dynamical systems with positive ‘entropy. It
has been shown [2] that the independent generator for a Bernoulli
dynamical system is regular with respect to a pair of shifts defining this
system.

Our aim is to find regular generators for a class of dynamical systems
considered by Conze [1] that includes Bernoulli systems.

For this purpose we first give some results concerning decreasing
sequences of o-algebras.

Let (X, #, u) be a probability space. For every fe I (X, u) and every
c-algebra o/ = # the conditional expectation of f with respect to of is
denoted by E_ f. The conditional probability of a set Be # with respect to
of is defined as usual:

K(B| o) = E ,(1p).
For fe L' (X, u) we put
Al = 5[ |.f () u(dx).

We denote by 2 the trivial o-algebra.

For c-algebras «/,, o/, < # the symbol a(</,, o/,) means the algebra
generated by «/; and &/,, and the symbol o/, v o/, — the o-algebra
generated by ./, and .&/,.
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Let € be a fixed -a-subalgebra of # and let #,, n > 1, be o-subalgebras
of # such that #,>0#8,,, 26, n> 1.

LEmMMA 2. (\ &, = € iff for every Be %,

n=1

lim sup |lu(A N B|€)—u(A4|%) u(B|¥)l| =0.

n—wo AeB,

Proof. Let Be #,, n>1, Ae #, be arbitrary. We define

f=1,—u(4]%), g=13—u(B|%).
It is easy to check that

(1) E¢(f-9) = n(AnB|€)—pu(A|¢) u(B|6).
Since ¥ < #, and f is #,-measurable we have
(2 E¢(f9) =E¢ (E.;,, (f9) = Ee(f Ey 9).
From (1), (2) and the inequality |f] <1 we obtain
A3) lu(AN B|6)—u(A|€) u(B|€)ll = |E¢(f Eq,9)ll < |Ea,gll-
Hence
@ ig_llu(A NB|€)—p(A|6) u(BIO)l <|lEggl, n=1.

a0
If \ #,= % then the Doob convergence theorem implies

n=1

5) lim |1Eg,gll = .

n—a

Thus (4) and (5) prove the necessity.
Now, let Ce () %, and ¢ > 0 be arbitrary. Let

n=1

lim sup ||u(ANB|€)—u(A|6)- u(B|%)|| =0 for every Be #,.

n~wo Ac®,
Hence there exists n > 1 such that
(6) in(ANClE)—u(A]€6) n(B| %)l <e¢ for every AeA,.
Taking A = C in (6) we obtain
Iu(C1€)—u?(CI%)l <&, ie. u*(C|%6)=u(C|%).
This means that Ce %.
Thus we have proved the inclusion ﬁl #, < €. Since the converse

inclusion is trivial we have proved the sufficiency.
From the above lemma we obtain readily
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COROLLARY If #,, n> 1, are a-subalgebras of # such that #,> #,, ,,
n=1, and ﬂ B, = 2 then for every Be 8, we have
n=1

lim sup |u(4 N B)—u(4) u(B) =

n—+wm AeB,
THeOREM 2. If o4, n> 1, and € are o-subalgebras of # such that
(l) ’dn = An+1a n? 1’
(i) o7y and % are independent,
then

Ay=2 iff iw,v%’)w.

DY:

n=1

Proof. The fact that (i), (ii) and the equality (\ («, v ¥) = % imply
n=1

N &, =2 is trivial

n=1

Now we shall prove that (i), (ii) and ﬂ o, = 2 imply ('] (L, v 6)
=¢.

Let #,=o4,v¥é n=>1 Evidently #,>5%,,,2% n=>1Let
Bea(«,, %) be arbitrary. First we shall show that

Q) lim sup |[u(ANB|%€)—pu(A|%) n(B|9)| =

n—=w Aea(sdy €

Let n>1 and Ae(«,, ¥) be arbitrary. There exist sets A"eof, and

pairwise disjoint sets C;e¥, i =1, ..., k,, such that 4 = U A™ N C;. There
i=1

exist also sets A € o/, and pairwise disjoint sets 616(6 j=1, ..., p, such that
B = U A nC Since C;, C €¢,i=1,...,k,, j=1, ..., p, are disjoint, o,

and ‘( are independent, we have

lu(A ~ B| 6)— u(A| €)- n(B| 4

=[x Z (1A O 45| 6)— (AP 6) - p(4;1 )" 1cne | du

X:l]l

=] IZ S (kAP A ) — (AP () 1, e du

i= lJ 1
iy
<Y Z ],u(A,""hZj)—#(Ag"’)‘#(Zj)l'#(Ciﬁéj)
i=1 j=1

< max sup |u(E N Aj)—p(E)- u(4)).

1<j<p Eed,
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Hence
®) sup |lu(4 N B|€)—pu(A4|%6) u(B| ¢l
Aeca( A, €)
< max sup |u(E n A)—p(E)- n(A).
1<j<p Eedp
an
Thus using the assumption () &/, = .2 and the last corollary we get (7).
n=1
Now we want to show
) lim sup |lju(4NB|%)—pu(A|%) u(B|¥) =0.

n—+o Aed,v¥

Let £ > 0 be arbitrary. The equality (7) implies that there exists N > 1
such that for every n > N and Eea(«,, %) the inequality

(10) lu(E " B|€)—pu(E|6) u(B| 6)| <e/3
holds.
Now, let n > N and Ae &/, v % be arbitrary. There exists A, a(«,, %)
such that
(11) n(A + A,) <¢/3.

From (10) and (11) we obtain
lu(A ~B| €)—pu(A|€)- u(B| %)
< llu(4 n B| €)— p(A, 0 B 6)ll +1in(4, " B| 6)— pu(A,| 6)- u(B| €)l| +
+(1(4:1 ) n(A] ) p(B| )|
< 2u(A + A)+¢/3 <k,
ie. (9) is satisfied.

Using similar arguments as above we may prove that (9) is fulfilled for
all Be«/, v &.

Hence, in view of Lemma 2, we obtain the equality () (&, Vv ¥) =%
n=1

which completes the proof.

Now let us recall the definition of a dynamical system considered by
Conze in [1].

Let (Y, &, 4) be a Lebesgue space and let S, be an automorphlsm of Y.

We denote by (X, @, u) the product measure space l_[ (Y, #;, 4) where

Y=Y F =F, 44=1,ieZ. Let Tbe the shift transformatlon on X: (Tx)(n)
= x(n+1) and let S be the transformation on X induced by S,:

(Sx)(n) =Sox(n), nelZ.
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It is easy to see that ToS =SoT We denote by G the group of auto-
morphisms of X generated by T and S.

Conze [1] has proved that h(G) = h(S,).

Let us suppose h(G) < .

THEOREM 3. If G is a K-group, then there exists a (T, S)-regular generator
for (X, u, G).

Proof. Since G is a K-group then S, is a K-automorphism (and vice
. a0
versa [3]). We take an arbitrary generator a of (Y, 4, So). Thus A Sg "as,
n=0

=v. Let us put ¢ =ng!(x) where ny: X — Y denotes the projection on the
null axis. It is easy to see that

N\ S Es =v.
n=0

Since u is a product measure we see that the partitions {5 and (&5)r are
independent.
Let o/,(%) denote the o-algebra generated by S™"&5 ((¢s)r) Hence

01 A,=2 5, and 4, n> 1, are independent. From this and Theorem 2

a0
we infer that )} (o, v %) =4, ie.
n=0

A (57"E5 v (E9r) = o7
Since £ is a generator for (X, u, G) it follows from the above equality that ¢
is a (T, S)-regular generator.
Remark. If v # n(S,) then £ is not (7T, S)-regular.
Proof. Let a be a measurable partition of Y defined in the proof of

Theorem 3. Since /\ Sg"as, = n(So) # v, we have A S7"{g #v. The in-
n=0 n=0

dependence of & and (&5); and Theorem 2 imply /T\o (S™"¢™ v (&)r)

# (&9)r, ie. € is not (T, S)-regular.
It would be interesting to know whether for every two-dimensional
dynamical system regular generators exist. (P 1289)
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