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§ 1. Introduction

We assume that the reader is familiar with the notions and terminlogy of
inverse systems, maps between inverse systems (system maps), inverse limits
etc., as in Eilenberg and Steenrod [13].

In [14] Freudenthal proved the [ollowing:

(1.1) Any compact metric space X admits an inverse sequence X
= {X;, pij. N} such that X =limX and all X, are finite polyhedra. Here the
index set N is the set of all positive integers.

(1.1) 1s important because 1t gives us a method to investigate X by
means of a polyhedral inverse sequence X. This fruitfull idea goes back to
Alexandroff, Lefschetz and Freudenthal Naturally, a question arises if one
can apply this idea also to maps. Il one attemps to do so, one encounters
some difficulties. Most important are the following two questions: Let X and
Y be compact metric spaces, let X = {X;, p;, N} and Y=Y, g;;, N] be
inverse sequences such that X =limX, Y =1imY, and let all X; and Y, be
finite polyhedra.

(1.2) Given a map . X-— Y, is there a system map . X — Y, for some X
and Y, such that [ =lim f?

(1.3) Given a map f. X — Y, is there a system map f: X =Y for any X
and Y such that f =lim f?

We will discuss the above questions on some examples. First, let C and
I be the Cantor discontinuum and the unit interval, respectively. There is an
onto map F: C— I. Let C=1C;, p;, N} and I = [I;, q;, N| be inverse
sequences such that C = lim C, I = lim I, all C; are finite sets, all I; are copies

* The detailed version of this paper will appear in Tsukuba J. Math.
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ol 1, and all g;; coincide with the identity map 1,. Let p = {p;: ieN}: C—C
be an inverse limit and let all g;: I —1; coincide with 1,. Then ¢
=1g;: ieN}: I =1 is also an inverse limit.

We first consider question (1.3). We assume that there is a system map
f=1ffiiieN}: C—1I such that f =1lim f. Then for each ie N we have
4; f = fipsw- Since ¢; and f are onto, f; must also be onto. Then f;(C,;) = I;
is a finite set, because C,, is finite. Hovewer, this is a contradiction. Hence,
such a system map does not exist. This shows that in general the answer to
(1.3) is negative, _

Next, we will consider question (1.2). Let K be an absolute retract (AR)
which contains C and I. In general we can take for K the Hilbert cube Q.
However, we can also take I for K. Since K is an AR, there exists a map
f: K— K such that f = f|C. Take neighborhood systems {U;: ie N} and
'Vi: ie N) such that U;,, = U, Vi,, =V, and f(U) <V, for each ie N, and
N{U;: ieN! =C and N{V:ieN\ =1. Put X;=U;, Y, =V, fi=f|U;: U;
—V, for each ieN, and let p; and ¢;; be inclusions. Then f
=y, fit ieN}: X =1{X,, pj;, N} = Y= 1Y, g;;, N} has the required proper-
ties. In general, by using inverse sequences of ANRs we obtain an affirmative
answer for (1.2).

Many mathematicians have observed these phenomena. Freudenthal
[14] and Mioduszewski [26] discussed question (1.3) and tried to expand
maps into inverse sequences using some approximations. Especially, Miodu-
szewski [26] showed the existence of approximative expansions of maps into
inverse sequences. In the next section we shall describe our method to deal
with problems (1.2) and (1.3) which is natural and categorical. In order to do
so we need some ideas and notions, which were developed in shape theory.
Mardesic and Segal [22] is a good textbook for this theory.

§ 2. Approximative shape

We will now introduce an approximative shape category and state without
prool theorems. Detailed proofs can be found in Watanabe [31]

By a covering of a space X we always mean a normal open covering.
By Cov(X) we mean the set of all coverings of X. For #, %' Cov(X), %

> ' means that 4 is a refinement of #. Let f,g: X — Y be maps and Iet

“/ eCov(Y). We say that f and g are ¥ -near, in notation (f, g)<"ﬁ
provided for each xe X there is Ve ¥ such that f(x), g(x)e V. By f~1(¥)
we mean the covering [f~!'(V): Ve ¥} of X.

We say that (X, %) = {(X,, %), pys» A} Is an approximative inverse
system provided it satisfies the following three conditions:

(AIl) X = | X,., pao» A} is an inverse system in Top where the index set
A is closure finite and directed and Top is the category of all spaces and all
maps.
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(AI2) For each ac A, %, is a covering of X, such that for each a' > q,
P;.cl?(/]/a) > Wa'*

(Al3) For each ae A and for each % eCov(X,) there is an &’ = a such
that p; L (%) = X, .

A directed set (A; =) is called closure finite provided for each ae A,
laeA: a=da'l is a finite set.

Let (Y, ¥) = \(Y,, ¥%). 9»-»> B} be an approximative inverse system. We
say that f = {1, f,: beB}: (X, %) — (Y, ¥') is an approximative system map
provided f: B— A4 is a function and f,: X, — Y, are maps satisfying the
following two conditions:

(AM1) f,"'(¥7) = U, for each beB.

(AM2) For each b >=b there is an az= f(b), f(b') such that
(fr Pa.s)» o s Ty pu.f(b’)) < 7%

Let f =/, f,: beB}: (X, %) — (Y, ¥) be another approximative system
map. We say that f and f are simply approximatively equivalent, in notation
f =:f provided for each beB there is an a> f(h), f(b) such that
(fo Pa.sioys Jo Pa jiny) < ¥ Wesay that f and f are approximatively equivalent, in
notation f =: f, provided that there are finitely many approximative system
maps fi,fz, .-+ fa: (X, %) — (Y, ¥)suchthat f = f,, f = f,and f, =: f,, , for
i=1,2,...,n—1. Trivially, =: is an equivalence relation and by [ f] we
mean the equivalence class of f.

Let (Z, #)= (Z., #),r.., C} be an approximative inverse system
and let g =g, g.: ceC}: (Y, ¥)—(Z, #) be an approximative system map.
Let s: C — C be a function. We say that s is a 1-refinement of (Z, #) provided
s is an increasing function, s(c) = ¢ for ce C and rg (#,) = st( Wy, for ce C.
Here for #eCov(X), we write st(#%) = {st(U, %): Uec %) cCov(X) and
st(U, )= J{U'e¥: UnU' #@}. Any approximative inverse system has
a l-refinement function. We define the composition; [h] = [g][f] of [f] and
[g] as follows: h=|h, h: ceC}: (X, ¥ —(Z, #) is an approximative
system map defined by 1 = fgs and h, = ry) . gy fys for ce C. We can prove
that [h] is well defined, that is, h: (X, %) —(Z, #) is an approximative
system map and [h] does not depend on the l-refinement function s of
(Z, #") and on the representations of [ f] and [g]. We can show that this
composition satisfies the associative law, and [ f] = [f]1{ly ] = [y, 1[f].
Here 1y, = {14, lx,: ac A}: (X, %) — (X, %). Hence, we can define the
category of approximative pro-Top, in notation App(pro-Top), as follows:
Objects are all approximative inverse systems and morphisms are all ap-
proximatively equivalent classes of all approximative system maps with the
above composition.

We say that p={p,: aeA}: X — (X, #) is an approximative resolution
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of a space X provided p,: X — X, are maps, p, = po, P, for a > a and the
following two conditions are satisfied:

(AR1) For each #eCov(X), there is an ae A such that p; ' (#,) < .
(AR2) For each ue A there is @’ 2 a such that p, ,(X,) < st(p,(X), %4,).

By ANR spaces we mean absolute neighborhood retracts for metric
spaces (see Borsuk [2]). Polyhedra are simplicial complexes with the CW-
topology. We say that X 1s an approximative polyhedron, in notation AP,
provided for each #eCov(X) there are a polyhedron P and maps f: X
— P, g: P— X such that (gf, 15) < # (see Mardesi¢ [21]). ANRs and poly-
hedra are AP. We say that p: X — (X, %) 1s an approximative ANR-
resolution provided that it is an approximative resolution and all X, are
ANRs. Similarly we use approximative AP-resolutions and approximative
polyhedral resolutions. MardeSi¢ [21] introduced the notions of resultion of
spaces p: X — X and resolution of maps. Qur notion is related to his notions,
For an approximative inverse system (X, %) we can prove that p: X
— (X, %) is an approximative resolution if and only if p: X=X is a
resolution. MardeSi¢ [21] showed that any space admits an ANR-resolution.
From this fact we can derive the conclusion that any space admits an
approximative ANR-resolution and an approximative polyhedral resolution.

Let ¢ = |gq,: beB}: Y— (Y, ¥) be an approximative resolution and let
f: X — Y be a map. We say that an approximative system map f: (X, %)
— (Y, ¥') is an approximative resolution of [ wih respect to p and q provided
for each be B, (f, Prys 9o /) < ¥ . We can prove the following: If p and ¢
are approximative AP-resolutions, then any map f: X — Y admits an appro-
ximative resolution f: (X, %) — (Y, ") with respect to p and q. In addition,
if f: (X, %)— (Y, ¥") is another approximative resolution of f with respect to
p and ¢, then f =:f Because of this we may denote by [f],, the
approximative equivalence class containing the approximative resolution f
with respect to p and ¢. We can prove that for maps f* X - Yand ¢g: Y
- Z, [91,,[f]),,=1af]),, where r: Z—(Z, #) is any approximative AP
resolution.

Let p: X —(X, %) and q': Y — (Y, ¥) be approximative AP resolu-
tions and let f': (X, #) — (Y, ¥')" be an approximative system map. We say
that [f] and [f'] are equivalent, in notation [f]=[f"]. provided
[yl LF1=0f1[1x],, 1n App(pro-Top). It is easy to show that = is an
equivalence relation. By ([ f])> we mean the equivalence class of [ f] by =.
Let r': Z—(Z, #) be an approximative AP resolution and let ¢': (Y, ‘f"‘)’
—(Z, #) be an approximative system map. We define the composition
Ag1> <A f1> by Lg1lty],,[f]1>. We can prove that this composition is
well defined, satisfies the associative law and <[ f1>1x],,> =<Lf1]>
= {[1y),,> <[f1>- Hence, we can define the approximative shape category, in
notation AppSh, as follows: Objects are all spaces, the set of morphisms
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from X to Yis the set [<{[f]>: f: (X, %) — (Y, ¥") is an approximative system
map and p: X — (X, #), q: Y— (X, 1) are approximative AP-resolutions},
with the above composition.

~We define the approximutive shape functor AS: Top — AppSh as fol-
lows: AS(X) = X for any space X and AS(f)= {[f],,> for any map f: X
— Y. Here p and ¢ are approximative AP resolutions of X and Y, respective-
ly. Let Sh be the shape category and let S: Top — Sh be the shape functor
(see. MardeSi¢ and Segal [22]). We can define a functor ASS: AppSh — Sh
such that S = ASS AS. This means that many properties in AppSh imply
shape properties. _,

Let Para and AppSh(Para) be -full subcategories of Top and AppSh
consisting of all paracompact Hausdorff spaces, respectively. We can prove
that

(2.1) the functor AS induces an isomorphism of categories AS: Para
— AppSh(Para).

(2.1) means that any map between paracompact spaces can be represen-
ted by an approximative resolution. This shows that question (1.3) has a
positive answer, when we replace system maps by approximative system
maps. Consequently, we can investigate bad spaces and bad maps by using
the good categories Poly and ANR. Here Poly and ANR are the full
subcategories of Top consisting of all polyhedra and all ANRs, respectively.

§ 4. Applications

Approximative shape has many applications in topology. For example, we
studied generalized ANRs, fixed point theorems, shape fibrations, UV"-maps,
hereditary shape equivalences, the Vietoris theorem in shape theory, Brown’s
near homeomorphism theorem (see {6]), Cech homology, Steenrod homology
(see [29]), strong homology (see [19], [20]) and so on. In this section we
explain our treatment of some of these topics.

There are many generalizations of ANRs. Noguchi [27] and Clapp [11]
introduced approximative absolute neighborhood retracts AANR, and
AANR(, respectively. Granas [18] and Clapp [11] proved the Lefschetz—
Hopf fixed point theorem for compact metric AANR,, and AANR, respecti-
vely. Borsuk [3, 4, 5] introduced nearly extendable maps (NE-maps) and
nearly exendable sets (Ne-sets) for compact metric space and proved the
Lefschetz-Hopf fixed point theorem for NE-maps between compacta. Gaut-
hier [15] extend Borsuk’s definitions and results to compact Hausdorff
spaces. Bogatyi [1] studied many properties of spaces including generalized
ANRs. Mardesi¢ [21] introduced approximate polyhedra (AP) and showed
that AP and AANR, coincide for compacta.

Our definition of approximative shape category is formally similar to the



368 T. WATANABE

one of shape category. Therefore, we can introduce many notions in AppSh,
which are analogous to some notions in shape. As an example, we now give
the definition of approximative movability.

Let (X, %) be an approximative inversec system. We say that it is
approximatively movable provided for each ae A there exists an @, > a such
that for each @' > a there is a map r: X, — X, satisfying (p, o7, Pag.o) < %a-

We can prove that whenever (Y, ¥) is dominated by (X, %) in App(pro-Top)
and (X, %) is approximatively movable, then (Y, ¥') is also approximatively
movable. We say that a space X is approximatively movable provided it
admits an approximative AP-resolution p: X — (X, %) such that (X, %) is
approximatively movable. We can prove the following assertion: Let p: X
— (X, %) and p": X — (X, %) be approximative AP resolutions. Then (X, %)
is approximatively movable if and only if so is (X, %). Hence, this notion
does not depend on approximative AP-resolutions, and it is an invariant
property in AppSh.

In a similar way we can introduce the notions of uniformly approximati-
ve movability, strongly approximative movability, ect. Using these new notions
we can unify the various generalized ANRs in AppSh. Here we state some of
the results:

(3.1) A compact metric space X in an ANR if and only if it is strongly
approximatively movable.

(3.2) A compact Hausdorff space X is approximatively movable if and
only if it is an NE-set.

(3.3) A compact Hausdorff space X is uniformly approximatively movable
if and only if it is an AANR,.

Next, we consider fixed point theorems. We say that f: (X, %) — (X, ¥)
is nearly extendable provided for each be B there is a = f(b) such that for
any b’ > b there is a map h: X, — Y, satisfying (f, Pa s> 9o B) < SU(F7).
We can prove the following assertion: Let f: X — Y be a map, let p: X
—(X, U, p: X—(X,4, g Y—(Y,¥)and q: Y— (Y, ¥) be approxima-
tive AP resolutions and let f: (X, %) — (Y, ¥") and f': (X, %) — (Y, ¥") be
approximative resolutions of f with respect to p and g, and with respect to p’
and ¢/, respectively. Then f is nearly extendable if and only if so is f’. From
this fact, we say that f is nearly extendable provided it admits an approxima-
tive resolution of f with respect to some approximative AP-resolutions which
is nearly extendable. We can prove that our definition of near extendability
coincides with Borsuk’s original definition.

Maxwell [24] proved a fixed point theorem for finite polyhedra. Masih
[23] extended it to compact metric ANRs and Vora [30] to compact metric
AANR,. Using only Maxwell's fixed point theorem for finite polyhedra, we
can prove that
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(3.1) The Maxwell fixed point theorem holds for NE-maps on compact
Hausdorff spaces.

As corollaries we obtain:

(3.2) The Lefschetz—Hopf fixed point theorem holds for NE-maps on
compact Hausdorff spaces.

(3.3) The hyperspaces 2* and C(X) have the fixed point property for any
approximatively movable compact Hausdorf{ space X.

(3.3) gives a partial answer to 2 question raised by Rogers [28]. (3.2) was
proved by Borsuk [5] and Gauthier [15].

Morita [25] introduced the Cech homology based on all normal open
coverings, and showed that this homology 1s a shape invariant. We showed
that

(3.4) The Cech homology groups based on normal open coverings satisfy
all the axioms of Eilenberg-Steenrod except the exactness axiom, the wedge
axiom and the relative homeomorphism axiom.

Of course, the Cech cohomology based on all normal open coverings
satisfies a theorem dual to (3.4). In general, Dowker [12] showed that Cech
cohomology based on all open coverings (without assuming normality of the
coverings) does not satisfy the relative homeomorphism axiom.

Finally, we summarize our point of view. The principle of shape theory
1s to investigate bad spaces and bad maps by means of the good categories
HANR and HPoly. Here HANR and HPoly are the homotopy categories of
ANR and Poly. On the other hand, our principle of approximative shape
theory is to investigate bad spaces and bad maps by means of good categories
ANR and Poly. Cerin {7-10] takes a middle position. His principle is to
investigate bad spaces and bad maps by means of small homotopy in ANR
and Poly. Using small homotopies he introduces his notion of C,-e-
movability and some others notions. Although our method does not use any
homotopies. some of Cerins notions coincide with some of ours.
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