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This is c-onsidcred to be an analogue of the expansion of an Euler product
into an infinite product of “basic Euler products (L-functions)” used in the
method of Estermann [1] (cf. [3]).

Remark 3. Our result can be generalized to some extent by similar
method, t?ut, for example, we have no result on the analytic nature of £ (s, X)
when X is the set of all Mersenne primes.
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On well distribution modulo 1
and systems of numeration

by
Jozer Horsowicz (Lublin)

1. Introduction. A sequence (© (m), n=0,1, ..., of real numbers is said
to be well distributed modulo 1 (w.d. mod 1) if for all real numbers «, b with
0<a<b<! we have

lim (N"'card {n 2 0: k<n<k+N—1 and a< (@) <bl)=b—a .

N = : :
uniformly in k =0, 1, ..., {x} denoting the {ractional part of x. We shall say
that a sequence (a(n)), nm=0,1,..., of nonnegative integers has the substiru-
tion property with respect to w.d. mod 1 (swd-property) if for every w.d, mod 1
sequence « the sequence wow is also w.d. mod 1.

In recent years Coquet [1], [2] has constructed certain sequences having
the swd-property. In particular he showed that if g 2 2 is an integer and o(n)
denotes the sum of digits of n in the g-adic expansion {n =0, I, .. ), then the
sequence o has the swd-property. The aim of this note is to generalize this .
result and also to give some new classes of sequences with the swd-property.

Our basic tool will be the Weyl criterion for w.d. mod 1 ([5]. p. 41).
Therelore, the following notation will be convenient.

Let h+ 0 be an arbitrary integer and put e(r) = ¢*™*, te R. For any
sequence w of real numbers and for any integers u =0, vz u, and M > 1,
denote ' ‘

v

Slw:u, v) =Y. e(w(n)

n=u
and

§{w; M) = sup sup|N"*S(w; k, k+N—Di. -
NEMK2O

Clearly § and § depend -also on h, but we have no need to point out this
dependence explicitly. R

3. Two criteria for the swd-property. Let o be a sequence of nonnegalive
integers. If for all sufficiently Jarge n we have a(n) =n+K with some
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constant K, then clearly o has the swd-property, Therefore, we may suppose
that this is not the case.

Define a sequence (m,) = (m,(a)), n=0, 1, ..., in the following way. Put
my = 0. If for an integer n > 0 the number m, has been already defined, then
denote p, =a{m,+1)—wu(m,) and put

I+min {u > m,: a(u+1)—afw) % u,} if |g) =1,

1 =
Ly myy 14m, otherwise.

Clearly, for n=0, 1,..., we have af{m,+j) = a{m)+ju, j=0, 1, ..., My s 1
~m,~1. It follows that the sequence o has been partitioned into infinitely
many segments, each of them being an increasing or decreasing finite
sequence of consecutive integers, :

Tueorem 1. If

3] ©dim (i, (@) —m, (@) = o,

n—om
then o« has the swd-property.

Proof. Let @ be any w.d. mod 1 sequence of real numbers. Using the
Weyl criterion, we get

3) d(e; M) — 0 monotonically as M — .

Moreover, (1) implies that for all integers n > 0, u, and & with m,<USU
< My;, we have

4) I8 (@ 0a; u, v)) = (S (w; min (o (1), a(v)), max (x (u), « ()|
| < (v—u+1)dw; v—u+ 1),
Let & > 0 be arbitrary. By (3),_ there éxists N, =1 such that
(5) . S [N")<e for all N3 N,

Next, by (2), we may choose an integer n, = 1 such that

| (6) . 'm,,jr1—~m,,,>«N1 for all n = n,.

‘Now let an integer k > 0 be arbitrary and lct‘an ihtegcr N satisly
(N o Nz

From (1) it, follows that there exist integers r and s such that ms k< m,+.l_
and m, < k+N—1<m,,,. By (3} .and (4), we have

®8) - [Stwoa; k, k+ N—1)| Ne if

max(le S—i mnle 5—2)'

roa= g,
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Now suppose that r < 5 and put t = max{n,, »+1). Then we may write

(9') S(woxi k, k+N—=1 =S{woa; k, my—1)+S(mox;m,,, m—1)

g1
+ Y, Slwod; my, mys; —1)+S(wou; m, k+N-—-1),

R
nwhere empty sums are understood to be zeros. Since m—m.., <m,, (7)
implies '
[S{woa;m.., m—1) < Ne.
Mareover, by (4), (5), and (6), we have

18 (w0 tity, My~ D < {myy —my)e Jor all nzt.

Next we observe that for every integer T> 1 we have
To(ew: Ty < Ne+ Ti,

In fact, if T < N2, then.(’l_) implies Td(w; T) < T'< Ne, and if T2 N2,
then (3) (5%, and {7) yield Td{m; T) € Te. Now, by (9), we h_aye

(10)  |S{woa; k, k+N—1)
=1 ) .
< Ne+(My;—k) e+ Net Y (Mys1—m) s+ Net(k+N—mye < 4Ns.
n={
Combining (8) and (10) and using the Weyl criterion, we obtain that the
sequence woa is wd. mod 1 This completes the proof.
CoroLLARY 1, Ler o be a sequence of nonnegative integers satisfying
condition (2). Let n be a sequence of irrational numbers such that the set E
=In(m: n=0,1,..) is finite. Then the sequence 1, defined by

He (M (0} +J) = (e (@} 1) m (),
=001, s My, (=m0 =1, n=0,1, ..., is w.d. mod1

Proof Let an integer h # 0 be arbitrary and put C, = mip|sin thx|.
XEL

Clearly, we have C, > 0. Now, for every integer M =1, we have

1 k+N-1 Ittt ) 1 1
. sty g D - _ = 3
up sup Sy &, ¢ 120 MsinThn ()~ CoM
Next we proceed -as in the proof of Theorem 1 wi_th 8 (ew; M) replaced by
(Cu M),

Let us note that in the proof of Theorem 1 we have made no use .of the
type of monotonicity of particular segments of tl_w sequence . This fact
suggests the subsequent theorem the proof of whlch is similar to that -of

Theorem 1.
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~ Let 0=p, <p; <... be a sequence of integers and let an integer K = 2
be arbitrary. Given a sequence & of nonnegative integers let a* be any
sequence that can be obtained by the following procedure. For n =0, 1, ...,
define

Sl if Pn-l—l_pn‘<~K7

* * e, o®*(pp — 1)) = ;
(O( (Fﬂ)! a (pn+ )5 o (p -1 1)) {Sl otherWlSC,

where S, is a permutation of {(p,), 2(pa+ 1), ..., Py 1 —1)) and S, is either
(q(p"): Q(Pn+ 1)1 teey O‘(pn+l = 1)) or (a(pn+1 - 1)! o:(J!;’mk 1 "'2): Ties Gﬁ(p,,})-
THEOREM 2. The sequence o has the swd-property if and only if o has.
" To give our second criterion for the swd-property, we shall need the
following notation. ‘

Let « be a sequence of nonnegative integers. For any integers a4, u = 0,
and ¢ = u, denote

(11) Clu,v,ad=card{n=20: u < n<v and a(n) =al.

Now let u = 0 and v = u be fixed and put m(y, v) = max a(n). If a <0
wEnsy
ar g >mlu, v), then clearly C(a; u, v, a)=0. Thus there exist infegers
tiu, )21 and —~1=a; <a, <.., <dyy+r = mu, v)+1 such that for
i=1,2, ..., tu, v we have

Clag +1) < Clayy),

(12) . C(a)éC(a_-{—l),_ A= dzi—g, az;—1+1=---=021;11
and
(13} Cla)z Cla+ 1), a=ay, au+l, ..., dy.—1,

where Cla) = C{a; u, v, a}, aeZ. Denote

. {1,
14 o C Vs, o) =), Closu, v, ay).

i=1
With the above notation we have the foliowing

Levma 1. Let - hé a sequence of real numbers. For any integers u 2 0,
rzu lz0, and M =1, we have

(15) IS{wctetD; u, o)) < (e—u+ 1) diw; M)+2MV(a; u, v),

where (o +D{n) =a(n}+1, n= 0,1,
Proof. Using (11),- we may write

miu,vy

- (16) | S{wol+;u, 0= 3 Cla)e(w(@+1).
a a=0

icm
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Let- an integer i, 1 <1< f(u, v), be fixed. Denote

@ =max(ay. ,—1, up—M), Clay-~1)=0 and C'(a=C(a
for @ = dg— 1 Uagm1+ 1, ..., dp;—1. Using Abel summation formula and (12),
we get

=g
an | X Cla)e(a(a+h)
(lzl‘ “;muzlu]
< Y (Cla—Cla= IS (w: a1, ay+I1=1)
[ ﬂzl' l .
q' ‘ a3; ]
<o M) Y (C@—Cla—D)ay—a+ 3 (Cla-Cla—D){az—a)
a=dgg.. a=a + 1
112,-2‘“11
< 6w My- Y, Cla)+MC(ay).
A=a07) |
In a similar way, using (13), we obtain _
agiay =l agigql
(18) | Y Claelw@+)) ;M) Cl@+MClaz).
a=uaaj .u=u2i .
Now we observe that (11) implies Y C(a) = v—u+1. Thus, (16}, (17),
agZ
(18), and (14) yield (15).
THeorEM 3. If
(19) lm (N~ sup V(w: k, k+N—1)) =0,

N kz0

then o has the swd-property.
Proof. Let @ be a w.d. mod1 sequence of real numbers and denote

Ly = N~ lsup|S(woas; k, k+N=-1), N=1,2,...
k20 _

By Lemma 1 and (19), we have

lim Ly <d8(w: M), M=12,..
Novim

An application of the Weyl criterion completes the prooﬂ
It is clear that criteria (2) and (19) are only sufficient ones for o to have

the swd-property. 1t can be shown that they agree whenever
' (41 (a)—~m,,(oc))/n‘—> o as  h— o0,

ExavpLe 1. Let 1=%, <¥, <...<¥, be a finite sequence of inte-.
gers. Given an integer n = 0, denote d,, =n and, for i =m. m—1, ..., 1, put
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ciln) = [dy/¥] and d,_, = di—c,(m ¥,. Clearly, we have n=c,(n) ¥, +...
M P,. For n=0,1, ..., denote

m

a(n) =Y ¢in.

i=1

Let integers k> 0 and N =1 be arbitrary and denote
Cla=Clo;k,k+N~—1,a), aeZ.

For every integer a, we have

(20 Cla < 3. Clo; i¥,, i+ 1) ¥,—1, a)
i=0 .
=Y Clo;0, W1, ami) < ¥,,.
Now put H= max o(n) and suppose that N > ZHY,. There exist
L :

integers r and s such that
W<k <(r+1)¥,

¢

SV Sk+N—1 <(s+1)¥,,.

We have C(@) =0 if «<r or «>s+H and Clay=¥%, if r+H <u<s.
Thus, using (20), we obtain V(s &, kt+N—1)<(H+1)¥,. By Theorem 3,
o has the swd-property.
We end this section with an application of Lemma 1 to sequences of the
form (x(n)6), @ being an irrational number.
~ Let « be a nondecreasing sequence of nonnegative integers such that
af{n) — o as n—co. For i =0, I, ... denote ‘

L =card {n > 0: a(n) =i}

and

&Ild Li=lo+ll+"'+[|"
Using Lemma 1, we may prove the following

CoroLrary 2. If

2n lim (Ly* V(x; 0, L,~—1) =0,

m—=m .
then for every irrational 0 rhe sequence (x(n) 6), n=0, L, ..., is uniformly
distributed mod 1.
If the sequence (1) is nondecreasing, then V{x; 0, L, —1) =/, and so in
this case condition (21) has the form given by Dress [3],

3. Sequences connected with mixed radix systems of numeration. Let (¢,),

n=1,12,..., be a sequence of integers such that @y =1and ¢, = 2 for all
nz2 For n=1,2,..,, denote :

(22) _ o : P, = H ®;.

icm
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Then every integer n3>0 has the following unique representation in the
system @ (see Fraenkel [4]):

o

Z i (n) (pi:

i=1

(23) "=

where ¢;{n} are integers satisfying 0 < c{np <4, i=1,2, ...
Define sequences o, and y, by

(24) Ggln) = T ain)
(=1
and
(25) Yo(n) = card {i > 1: ¢,(n) # 0}.

Lemma 2. Let o be one of the sequences o4 and yy. If
lim (@' V{x; 0, #,~1)) =0,

e
then o has the swd-property.

Proof Let «w be any w.d. mod1 sequence of real numbers and let
integers m = 2 and M =1 be arbitrary. o .

Given any integers k = 0 and N > 3¢,,, there exist integers r and 5 such
that r&, <k <{r+ 1)@, and sb, < k+N—1<(s+1)d,. Clearly, we have
Nz@E—r-1)9, >0 o

/By (24) and (25), for all integers + >0 and v, 0 <v <&, we have
A (1P, +1) = o (tP)+0 ().
Thus, Lemma 1 yields

(26)

[S{wou; k, k+N-1)
s—1 _
<[S(weas ky (r+ DB~ 1)+ T [Slwoa; nd,, (n+1) B, —1)

n=rt+1
+(S(woa; @, k+N—-1)
s 1
< 2P+ . |S(wo(oc+m(n¢ﬁ,,,)); 0, ¢m-1)’

nepdl
€20, + NS (w; M)+2MND V(; 0, &, —1).
Now, by the hypothesis, we may choose a sequence {m;) such that

¢, Vi; 0, &, —1)—0 as i—co.

To complete the proof, it suffices to divide both sides of (26) by N, and then

let N— 20, m- oo through the values-my, m;, ..., and M- co. By the Weyl
criterion woa is w,d. mod1 and so o has the swd-property.
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In order to use Lemma 2, we shall need. the following lemma from
probability theory. :

LemMa 3. Ler (X)), n=1,2,..., be a sequence of uniformly bounded
independent random variables. For n=1,2, .., denote ¥, = X; + Xo +.. .+ X,
and let st be the variance of Y,. If s,— % as i «, then Jor every sequence
(v} of real numbers we have P(Y,=y)—0 as n—oc, P denoting the
probability measure.

Proof. The sequence (X)) satisfies Lindeberg condition, so that the
lemma follows immediately from the central limit theorem.

TueorEM 4. The. sequence a4, has the swd-property,

Proof. Let an integer m > 2 be arbitrary and denote

27 . - Th= Z (p;—1).

J .
Denoting C(m, a) = C(04; 0, ®,,— 1, a), ac Z, and using (23) and (24), we get

(28) Cm,a)=0 if a<0ora>T,

© (29} C(m, a) =C(m, T,,—a) for all aeZ,
and o _ ' _ ’ -
(30) C Cma—N<Cma) i a<[Ty2,

icm

the above inequality being proved by induction on m (cf. Coquet [17). Now., .

(28), (29), and (30) imply
(31) Viog: 0, @, — 1) = C(m, [T,/2]).

We shall complete the proof by considering two cases. First suppose
that lim ¢, =o0. As in Example 1 it can be shown that Cl{m, a) s &,,_, for

m= oo
all agZ. Thus, using (31), we get &' V(cy; 0, &, — 1)< ¢, By Lemma 2,
6q has the swd-property. _

Next suppose that the sequence {¢,,) is bounded. Let (X).m=23,..,

be a sequence of independent random variables with the distribution
P(Xw=i)=e@,',i=0,1,.., ¢,— 1. Denoting Y, = Xo+...+ X,. we obtain

that the variance of %, is equal 1o 127' Y (pZ—1). Since P(Y, =a)
: n= 2

=®,'Cim, a), geZ, Lemma 3 yields &7!C(m, [T/2) =0 as m— .
_Thus, by (31) and Lemma 2, g, has the swd-property.

CoroLLARY 3. The sequence (o4(m)6), n=0,1,.... is wd. mod 1 (ud.
mod 1) if and only if 0 is irrational, ' .
- -The g-adic version of Theorem 4 was proved by Coquet [1]. For a
weaker version. of Corollary 3 we refer to [6].
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Tueorem 5. The sequence o has the swd-property if and o_nly if the

X
series Y. @7 ' Is divergent.

P:zolof. Let an integer m = 2 be arbitrary. Denoting
Cim, a) = C{ye; 0, ®,,~1,0), aeZ,
and using (23) and (25), we get
(32) | Cm,ay=0 if a<Oorazm
and
(3% Cim+1,a)=Cim, +{@nse;— DCim, a~—1) for all acZ.

Nexi, using induction on m, we shall construct a sequence {T,) such that

{(34) - Cm,a-1)<Clm, a0y if a<g T,
and ' _
(35) Cim,a)zC(m,a+1) if az=T,.

Singe C(2,0)=1 and €2, 1) =¢,—1, we may put T, = 1. Now_sup-
pose that for an integer m 2 2 the number T, has been already defined. I_f
a< T, then (33), (34), and (35) imply’

Cim+1,a-1=Clm, a—1)+(@u; —1DCim, a-2)
K Cm, (@~ DC{m, a—1) = Cim-+1, a).

In the same way (33) and (35) yield C(m+ 1, @) = C(m+1, a+ 1) whenever
a = T,+ 1. Putting

T if Cim+1, T)>Cm+1, T,+1),
Tny = {I,,—{- 1 otherwise, '

we obtain that {34) and (35) hold with m+1 substitued for m. _
To prove the sufficiency part of the theorem suppose that the series

f o; ' is divergent. Let (X,), m=2,3,..., be a sequence of independent

= | . . )

?andom variables with the distribution P(X,, =0) = ¢,' and P(_X = 12)

=1-¢qg!. Denoting Y, = X,+...+ X, it can be shown that the variance s;,
] .

of ¥, is si= i o7 (1=@y"). Since ¢, =2 for all nz2, we have

m
ne=ll
m

2227 Y o', so that s, — % as m— . We observe that P(¥, =a)

=2 : . _
=&-1C(m, @), acZ. Thus, (34) and (35) imply &' V(ye: 0, @p—1)

= P(Y, = T,). By Lemmas 3 and 2, y¢ h.as the swd-property.
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To prove the necessity of the condition suppose that 3ot < o0, Let

n=1

w be any sequence of real numbers. For m=2, 3, ..., denote
F,=card {n < &, 0(ye(n)=o(m—1).
Since
Clrg: 0. =1, m=1) = ] (s 1),
we have i

Li g ]

im_(Fu/0,) > [] (1-07) > 0.
n=2

It follows that the sequence w oy, can not be w.d. mod 1, and so y, has not
swd-property. This completes the proof of the theorem.

of
CoroLLary 4. If 3 ;' <o, then for no sequence w of reals the

=1

sequence ©oOvy is ud. modl.
CoroLrary 5. The sequence (yo(m) @), n=0,1, ..., is wd. mod1 (ud.

. [ce]
mod 1) if and only if @ is irrational and the series Y o7t is divergent,
i n=1 -
We remark that if « and £ are sequences having the swd-property, then
the sequence z o has it also. Using this fact and Theorems 1, 2, 3, 4, and 5,
we may construct other sequences with the swd-property. '

. Acknowledgement. The author is grateful to Professor W. Narkiewicz for
his comments on the early version of this paper. ’
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Zeros of p-adic L-functions
by

Nancy Crinpress (Austin, Tex.) and Rosert Gorp {Columbus, Ohio)

Introduction. In this paper, we study the zeros of the Kubota—Leopoldt
p-adic L-functions. These functions are known to be related to certain formal
power series over Z, defined by Iwasawa, and it is this relationship which
will be exploited to analyze the occurrence of zeros for the L-functions. The
zeros of these power series are better understood (via the Main Conjecture),
and are more readily computed. The assumption that a zero of the Iwasawa
series f,(T) for a Dirichlet character y will yield a corresponding zero of the
L-function L, (s, x} is in general false, however. For instance, in [8], Wagstail
has computed zeros of the Iwasawa series for various fields and has used the
relationship with L,(s, x) to compute values for s which in many cases are
not within the domain of convergence of the L-function, so clearly cannot be
zeros of it. The relationship between zeros of the series f,(T) and those of
L, (s, y) will be given. We then will consider the more general case of p-adic

'L-functions defined over the fields @, constituting the layers of the basic Z,- '

extension of @, and the relationship of their zeros to those of the series f,(T).

The results presented here are based upon material from the first-named
author’s Ph. D, dissertation. The authors would like to thank Warren Sinnott
for many useful conversations and suggestions.

1. p-adic L-functions. Let p be an odd prime. Let Z,, Q, and €, denote
the p-adic integers, the p-adic rationals, and the completion of the algebraic
closure of @, respectively, We use the normalization |p| = p~! for the p-adic
absolute value, Let w be the p-adic Teichmiiller character, defined as follows:
for ae Z3, let w(a) be the unique (p—1)st root of unity in Z, satisfying w(a)
ma(mod p). {Then @ is a Dirichlet character on Z of order p~1 and
conductor p.] Let {a)> = w(a)"'a o

Let 4 be a positive integer prime to p. Assume d 3 2(mod4). Let
gn=p"""d, K,=Q(,), and K, = UOQ(C%), where {, is a g,-th root

n

P2 . .
of unity. Then Gal(K./Q) =G xI, where G=Gal(Ko/@ and I

=Gal(K ,/Ko) = 1+g,Z, =(1 +qo)zf’.. Let x be the isomorphism between I’
and 14¢oZ,. [So 1+4g, is the image, under x, of a topolqgical generator for



