This is considered to be an analogue of the expansion of an Euler product into an infinite product of "basic Euler products (*L*-functions)" used in the method of Estermann [1] (cf. [3]).

Remark 3. Our result can be generalized to some extent by similar method, but, for example, we have no result on the analytic nature of $\zeta(s, X)$ when X is the set of all Mersenne primes.

References

- [1] T. Estermann, On certain functions represented by Dirichlet series, Proc. London Math. Soc. 27 (1928), pp. 435-448.
- [2] A. Fujii, On the zeros of Dirichlet L-functions (V), Acta Arith. 28 (1976), pp. 395-403.
- [3] N. Kurokawa, On the meromorphy of Euler products, Proc. Japan Acad. 54 A (1978), pp. 163-166.
- [4] H. L. Montgomery, Zeros of L-functions, Invent. Math. 8 (1969), pp. 346-354.
- [5] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford 1951.

DEPARTMENT OF MATHEMATICS TOKYO INSTITUTE OF TECHNOLOGY Oh-okayama, Meguro, Tokyo, 152 Japan

Received on 20, 2, 1985 and in revised form on 11, 9, 1985

(1496)

On well distribution modulo 1 and systems of numeration

þ

JÓZEF HORBOWICZ (Lublin)

1. Introduction. A sequence $(\omega(n))$, n = 0, 1, ..., of real numbers is said to be well distributed modulo 1 (w.d. mod 1) if for all real numbers a, b with $0 \le a < b \le 1$ we have

$$\lim_{N \to a} (N^{-1} \operatorname{card} \{ n \ge 0 \colon k \le n \le k + N - 1 \text{ and } a \le \{\omega(n)\} < b \}) = b - a$$

uniformly in $k = 0, 1, ..., \{x\}$ denoting the fractional part of x. We shall say that a sequence $(\alpha(n))$, n = 0, 1, ..., of nonnegative integers has the substitution property with respect to w.d. mod 1 (swd-property) if for every w.d. mod 1 sequence ω the sequence $\omega \circ \alpha$ is also w.d. mod 1.

In recent years Coquet [1], [2] has constructed certain sequences having the swd-property. In particular he showed that if $q \ge 2$ is an integer and $\sigma(n)$ denotes the sum of digits of n in the q-adic expansion (n = 0, 1, ...), then the sequence σ has the swd-property. The aim of this note is to generalize this result and also to give some new classes of sequences with the swd-property.

Our basic tool will be the Weyl criterion for w.d. mod 1 ([5], p. 41). Therefore, the following notation will be convenient.

Let $h \neq 0$ be an arbitrary integer and put $e(t) = e^{2\pi i h t}$, $t \in R$. For any sequence ω of real numbers and for any integers $u \geq 0$, $v \geq u$, and $M \geq 1$, denote

$$S(\omega; u, v) = \sum_{n=u}^{v} e(\omega(n))$$

and

$$\delta(\omega; M) = \sup_{N \ge M} \sup_{k \ge 0} |N^{-1} S(\omega; k, k+N-1)|.$$

Clearly S and δ depend also on h, but we have no need to point out this dependence explicitly.

2. Two criteria for the swd-property. Let α be a sequence of nonnegative integers. If for all sufficiently large n we have $\alpha(n) = n + K$ with some

constant K, then clearly α has the swd-property. Therefore, we may suppose that this is not the case.

Define a sequence $(m_n) = (m_n(\alpha))$, n = 0, 1, ..., in the following way. Put $m_0 = 0$. If for an integer $n \ge 0$ the number m_n has been already defined, then denote $\mu_n = \alpha(m_n + 1) - \alpha(m_n)$ and put

(1)
$$m_{n+1} = \begin{cases} 1 + \min \left\{ u > m_n : \alpha(u+1) - \alpha(u) \neq \mu_n \right\} & \text{if } |\mu_n| = 1, \\ 1 + m_n & \text{otherwise.} \end{cases}$$

Clearly, for n = 0, 1, ..., we have $\alpha(m_n + j) = \alpha(m_n) + j\mu_n$, $j = 0, 1, ..., m_{n+1} - m_n - 1$. It follows that the sequence α has been partitioned into infinitely many segments, each of them being an increasing or decreasing finite sequence of consecutive integers.

THEOREM 1. If

(2)
$$\lim_{n\to\infty} (m_{n+1}(\alpha)-m_n(\alpha))=\infty,$$

then α has the swd-property.

Proof. Let ω be any w.d. mod 1 sequence of real numbers. Using the Weyl criterion, we get

(3)
$$\delta(\omega; M) \to 0$$
 monotonically as $M \to \infty$.

Moreover, (1) implies that for all integers $n \ge 0$, u, and v with $m_n \le u \le v < m_{n+1}$, we have

(4)
$$|S(\omega \circ \alpha; u, v)| = |S(\omega; \min(\alpha(u), \alpha(v)), \max(\alpha(u), \alpha(v)))|$$

$$\leq (v - u + 1) \delta(\omega; v - u + 1).$$

Let $\varepsilon > 0$ be arbitrary. By (3), there exists $N_1 \ge 1$ such that

(5)
$$\delta(\omega; [N^{1/2}]) \leq \varepsilon$$
 for all $N \geq N_1$.

Next, by (2), we may choose an integer $n_1 \ge 1$ such that

(6)
$$m_{n+1} - m_n \geqslant N_1 \quad \text{for all } n \geqslant n_1,$$

Now let an integer $k \ge 0$ be arbitrary and let an integer N satisfy

(7)
$$N \geqslant \max(N_1, \varepsilon^{-1} m_{n_1}, \varepsilon^{-2}).$$

From (1) it, follows that there exist integers r and s such that $m_r \le k < m_{r+1}$ and $m_s \le k + N - 1 < m_{s+1}$. By (3) and (4), we have

$$|S(\omega \circ \alpha; k, k+N-1)| \leq N\varepsilon \quad \text{if} \quad r=s.$$

Now suppose that r < s and put $t = \max(n_1, r+1)$. Then we may write

(9)
$$S(\omega \circ \alpha; k, k+N-1) = S(\omega \circ \alpha; k, m_{r+1}-1) + S(\omega \circ \alpha; m_{r+1}, m_r-1) + \sum_{n=1}^{s-1} S(\omega \circ \alpha; m_n, m_{n+1}-1) + S(\omega \circ \alpha; m_s, k+N-1),$$

where empty sums are understood to be zeros. Since $m_t - m_{r+1} \le m_{n_1}$, (7) implies

$$|S(\omega \circ \alpha; m_{r+1}, m_r - 1)| \leq N\varepsilon.$$

Moreover, by (4), (5), and (6), we have

$$|S(\omega \circ \alpha; m_n, m_{n+1} - 1)| \leq (m_{n+1} - m_n) \varepsilon$$
 for all $n \geq t$.

Next we observe that for every integer $T \ge 1$ we have

$$T\delta(\omega; T) \leq N\varepsilon + T\varepsilon$$
.

In fact, if $T < N^{1/2}$, then (7) implies $T\delta(\omega; T) \le T \le N\varepsilon$, and if $T \ge N^{1/2}$, then (3), (5), and (7) yield $T\delta(\omega; T) \le T\varepsilon$. Now, by (9), we have

(10)
$$|S(\omega \circ \alpha; k, k+N-1)|$$

$$\leq N\varepsilon + (m_{r+1} - k)\varepsilon + N\varepsilon + \sum_{n=1}^{s-1} (m_{n+1} - m_n)\varepsilon + N\varepsilon + (k+N-m_s)\varepsilon \leq 4N\varepsilon.$$

Combining (8) and (10) and using the Weyl criterion, we obtain that the sequence $\omega \circ \alpha$ is w.d. mod 1. This completes the proof.

Corollary 1. Let α be a sequence of nonnegative integers satisfying condition (2). Let η be a sequence of irrational numbers such that the set $E = \{\eta(n): n = 0, 1, \ldots\}$ is finite. Then the sequence η_{α} defined by

$$\eta_{\alpha}(m_n(\alpha)+j)=(m_n(\alpha)+j)\eta(n),$$

$$j = 0, 1, ..., m_{n+1}(\alpha) - m_n(\alpha) - 1, n = 0, 1, ..., is w.d. mod 1.$$

Proof. Let an integer $h \neq 0$ be arbitrary and put $C_h = \min_{x \in E} |\sin \pi hx|$. Clearly, we have $C_h > 0$. Now, for every integer $M \geqslant 1$, we have

$$\sup_{l \geqslant 0} \sup_{N \geqslant M} \sup_{k \geqslant 0} \left| \frac{1}{N} \sum_{n=k}^{k+N-1} e^{2\pi i h n \eta(l)} \right| \leqslant \sup_{l \geqslant 0} \frac{1}{M \left| \sin \pi h \eta(l) \right|} = \frac{1}{C_h M}.$$

Next we proceed as in the proof of Theorem 1 with $\delta(\omega; M)$ replaced by $(C_h M)^{-1}$.

Let us note that in the proof of Theorem 1 we have made no use of the type of monotonicity of particular segments of the sequence α . This fact suggests the subsequent theorem the proof of which is similar to that of Theorem 1.

Let $0 = p_0 < p_1 < \dots$ be a sequence of integers and let an integer $K \ge 2$ be arbitrary. Given a sequence α of nonnegative integers let α^* be any sequence that can be obtained by the following procedure. For $n = 0, 1, \dots$, define

$$(\alpha^*(p_n), \alpha^*(p_n+1), \ldots, \alpha^*(p_{n+1}-1)) = \begin{cases} S_1 & \text{if } p_{n+1}-p_n \leq K, \\ S_2 & \text{otherwise,} \end{cases}$$

where S_1 is a permutation of $(\alpha(p_n), \alpha(p_n+1), \ldots, \alpha(p_{n+1}-1))$ and S_2 is either $(\alpha(p_n), \alpha(p_n+1), \ldots, \alpha(p_{n+1}-1))$ or $(\alpha(p_{n+1}-1), \alpha(p_{n+1}-2), \ldots, \alpha(p_n))$.

Theorem 2. The sequence α has the swd-property if and only if α^* has.

To give our second criterion for the swd-property, we shall need the following notation.

Let α be a sequence of nonnegative integers. For any integers a, $u \ge 0$, and $v \ge u$, denote

(11)
$$C(\alpha; u, v, a) = \operatorname{card} \{n \ge 0: u \le n \le v \text{ and } \alpha(n) = a\}.$$

Now let $u \ge 0$ and $v \ge u$ be fixed and put $m(u, v) = \max_{u \le n \le v} \alpha(n)$. If a < 0 or a > m(u, v), then clearly $C(\alpha; u, v, a) = 0$. Thus there exist integers $t(u, v) \ge 1$ and $-1 = a_1 < a_2 < ... < a_{2t(u,v)+1} = m(u, v) + 1$ such that for i = 1, 2, ..., t(u, v) we have

$$C(a_{2i\pm 1}) < C(a_{2i}),$$

(12)
$$C(a) \leq C(a+1), \quad a = a_{2i-1}, a_{2i-1}+1, \ldots, a_{2i}-1,$$

and

(13)
$$C(a) \ge C(a+1), \quad a = a_{2i}, a_{2i}+1, \dots, a_{2i+1}-1,$$

where $C(a) = C(\alpha; u, v, a), a \in \mathbb{Z}$. Denote

(14)
$$V(\alpha; u, v) = \sum_{i=1}^{t(u,v)} C(\alpha; u, v, a_{2i}).$$

With the above notation we have the following

Lemma 1. Let ω be a sequence of real numbers. For any integers $u \ge 0$, $v \ge u$, $l \ge 0$, and $M \ge 1$, we have

(15)
$$|S(\omega \circ (\alpha + l); u, v)| \leq (v - u + 1) \delta(\omega; M) + 2MV(\alpha; u, v),$$

where $(\alpha + l)(n) = \alpha(n) + l$, n = 0, 1, ...

Proof. Using (11), we may write

(16)
$$S(\omega \circ (\alpha + l); u, v) = \sum_{a=0}^{m(u,v)} C(a) e(\omega (a + l)).$$

Let an integer i, $1 \le i \le t(u, v)$, be fixed. Denote

$$a' = \max(a_{2i-1} - 1, a_{2i} - M), \quad C'(a_{2i-1} - 1) = 0 \quad \text{and} \quad C'(a) = C(a)$$

for $a = a_{2i-1}$, $a_{2i-1} + 1$, ..., $a_{2i} - 1$. Using Abel summation formula and (12), we get

(17)
$$\left| \sum_{a=a_{2i-1}}^{a_{2i-1}} C(a) e(\omega(a+l)) \right|$$

$$\leq \sum_{a=a_{2i}-1}^{a_{2i}-1} \left(C'(a)-C'(a-1)\right) |S(\omega;a+l,a_{2i}+l-1)|$$

$$\leq \delta(\omega; M) \sum_{\substack{a=a_{2i-1}\\a_{2i}-1\\a=a_{2i-1}}}^{a'} (C'(a) - C'(a-1))(a_{2i}-a) + \sum_{\substack{a=a'+1\\a=a'+1}}^{a_{2i}-1} (C'(a) - C'(a-1))(a_{2i}-a)$$

$$\leq \delta(\omega; M) - \sum_{\substack{a=a_{2i-1}\\a=a_{2i-1}}}^{a} C(a) + MC(a_{2i}).$$

In a similar way, using (13), we obtain

(18)
$$\left| \sum_{a=a_{2i}}^{a_{2i+1}-1} C(a) e(\omega(a+l)) \right| \leq \delta(\omega; M) \sum_{a=a_{2i}}^{a_{2i+1}-1} C(a) + MC(a_{2i}).$$

Now we observe that (11) implies $\sum_{a \in Z} C(a) = v - u + 1$. Thus, (16), (17),

(18), and (14) yield (15).

THEOREM 3. If

(19)
$$\lim_{N \to \infty} (N^{-1} \sup_{k \ge 0} V(\alpha; k, k+N-1)) = 0,$$

then α has the swd-property.

Proof. Let ω be a w.d. mod 1 sequence of real numbers and denote

$$L_N = N^{-1} \sup_{k \ge 0} |S(\omega \circ \alpha; k, k+N-1)|, \quad N = 1, 2, ...$$

By Lemma 1 and (19), we have

$$\overline{\lim}_{N\to\infty}L_N\leqslant\delta(\omega;M),\quad M=1,\,2,\,\ldots$$

An application of the Weyl criterion completes the proof.

It is clear that criteria (2) and (19) are only sufficient ones for α to have the swd-property. It can be shown that they agree whenever

$$(m_{n+1}(\alpha)-m_n(\alpha))/n\to\infty$$
 as $n\to\infty$.

Example 1. Let $1 = \Psi_1 < \Psi_2 < ... < \Psi_m$ be a finite sequence of integers. Given an integer $n \ge 0$, denote $d_m = n$ and, for i = m, m-1, ..., 1, put

 $c_i(n) = [d_i/\Psi_i]$ and $d_{i-1} = d_i - c_i(n) \Psi_i$. Clearly, we have $n = c_1(n) \Psi_1 + ... + c_m(n) \Psi_m$. For n = 0, 1, ..., denote

$$\sigma(n) = \sum_{i=1}^{m} c_i(n).$$

Let integers $k \ge 0$ and $N \ge 1$ be arbitrary and denote

$$C(a) = C(\sigma; k, k+N-1, a), \quad a \in \mathbb{Z}.$$

For every integer a, we have

(20)
$$C(a) \leqslant \sum_{i=0}^{\infty} C(\sigma; i\Psi_m, (i+1)\Psi_m - 1, a)$$
$$= \sum_{i=0}^{\infty} C(\sigma; 0, \Psi_m - 1, a - i) \leqslant \Psi_m.$$

Now put $H=\max_{0\leqslant n\leqslant \Psi_m}\sigma(n)$ and suppose that $N>2H\Psi_m$. There exist integers r and s such that

$$r\Psi_m \le k < (r+1)\Psi_m$$
 and $s\Psi_m \le k + N - 1 < (s+1)\Psi_m$

We have C(a) = 0 if a < r or a > s + H and $C(a) = \Psi_m$ if $r + H < a \le s$. Thus, using (20), we obtain $V(\sigma; k, k + N - 1) \le (H + 1) \Psi_m$. By Theorem 3, σ has the swd-property.

We end this section with an application of Lemma 1 to sequences of the form $(\alpha(n)\theta)$, θ being an irrational number.

Let α be a nondecreasing sequence of nonnegative integers such that $\alpha(n) \to \infty$ as $n \to \infty$. For i = 0, 1, ... denote

$$l_i = \text{card} \{ n \ge 0; \ \alpha(n) = i \}$$
 and $l_i = l_0 + l_1 + ... + l_i$.

Using Lemma 1, we may prove the following

COROLLARY 2. If

(21)
$$\lim_{m\to\infty} (L_m^{-1} V(\alpha; 0, L_m-1)) = 0,$$

then for every irrational θ the sequence $(\alpha(n)\theta)$, $n=0,1,\ldots$, is uniformly distributed mod 1.

If the sequence (l_n) is nondecreasing, then $V(\alpha; 0, L_m - 1) = l_m$ and so in this case condition (21) has the form given by Dress [3].

3. Sequences connected with mixed radix systems of numeration. Let (φ_n) , $n=1, 2, \ldots$, be a sequence of integers such that $\varphi_1=1$ and $\varphi_n \ge 2$ for all $n \ge 2$. For $n=1, 2, \ldots$, denote

(22)
$$\Phi_n = \prod_{i=1}^n \varphi_i.$$

(23)
$$n = \sum_{i=1}^{\infty} c_i(n) \Phi_i,$$

where $c_i(n)$ are integers satisfying $0 \le c_i(n) < \varphi_{i+1}$, i = 1, 2, ...Define sequences σ_{φ} and γ_{φ} by

(24)
$$\sigma_{\phi}(n) = \sum_{i=1}^{\infty} c_i(n)$$

and

(25)
$$\gamma_{\Phi}(n) = \operatorname{card} \{i \geq 1: c_i(n) \neq 0\}.$$

LEMMA 2. Let α be one of the sequences σ_{Φ} and γ_{Φ} . If

$$\underline{\lim}_{m\to\infty} \left(\Phi_m^{-1} V(\alpha; 0, \Phi_m - 1) \right) = 0,$$

then α has the swd-property.

system Φ (see Fraenkel [4]):

Proof. Let ω be any w.d. mod 1 sequence of real numbers and let integers $m \ge 2$ and $M \ge 1$ be arbitrary.

Given any integers $k \ge 0$ and $N \ge 3\Phi_m$, there exist integers r and s such that $r\Phi_m \le k < (r+1)\Phi_m$ and $s\Phi_m \le k + N - 1 < (s+1)\Phi_m$. Clearly, we have $N \ge (s-r-1)\Phi_m > 0$.

By (24) and (25), for all integers $t \ge 0$ and v, $0 \le v < \Phi_m$, we have

$$\alpha(t\Phi_m+v)=\alpha(t\Phi_m)+\alpha(v).$$

Thus, Lemma 1 yields

(26) $|S(\omega \circ \alpha; k, k+N-1)|$

$$\leq |S(\omega \circ \alpha; k, (r+1) \Phi_{m} - 1)| + \sum_{n=r+1}^{s-1} |S(\omega \circ \alpha; n\Phi_{m}, (n+1) \Phi_{m} - 1)|$$

$$+ |S(\omega \circ \alpha; s\Phi_{m}, k+N-1)|$$

$$\leq 2\Phi_{m} + \sum_{n=r+1}^{s-1} |S(\omega \circ (\alpha + \alpha (n\Phi_{m})); 0, \Phi_{m} - 1)|$$

$$\leq 2\Phi_{m} + N\delta(\omega; M) + 2MN\Phi_{m}^{-1} V(\alpha; 0, \Phi_{m} - 1).$$

Now, by the hypothesis, we may choose a sequence (m_i) such that

$$\Phi_{m_i}^{-1} V(\alpha; 0, \Phi_{m_i} - 1) \to 0$$
 as $i \to \infty$.

To complete the proof, it suffices to divide both sides of (26) by N, and then let $N \to \infty$, $m \to \infty$ through the values m_1, m_2, \ldots , and $M \to \infty$. By the Weyl criterion $\omega \circ \alpha$ is w.d. mod 1 and so α has the swd-property.

In order to use Lemma 2, we shall need the following lemma from probability theory.

LEMMA 3. Let (X_n) , $n=1,2,\ldots$, be a sequence of uniformly bounded independent random variables. For $n=1,2,\ldots$, denote $Y_n=X_1+X_2+\ldots+X_n$ and let s_n^2 be the variance of Y_n . If $s_n\to\infty$ as $n\to\infty$, then for every sequence (y_n) of real numbers we have $P(Y_n=y_n)\to 0$ as $n\to\infty$, P denoting the probability measure.

Proof. The sequence (X_n) satisfies Lindeberg condition, so that the lemma follows immediately from the central limit theorem.

Theorem 4. The sequence σ_{ϕ} has the swd-property.

Proof. Let an integer $m \ge 2$ be arbitrary and denote

(27)
$$T_m = \sum_{j=2}^{m} (\varphi_j - 1).$$

Denoting $C(m, a) = C(\sigma_{\phi}; 0, \Phi_m - 1, a), a \in \mathbb{Z}$, and using (23) and (24), we get

(28)
$$C(m, a) = 0$$
 if $a < 0$ or $a > T_m$

(29)
$$C(m, a) = C(m, T_m - a) \quad \text{for all } a \in \mathbb{Z},$$

and

(30)
$$C(m, a-1) \le C(m, a)$$
 if $a \le [T_m/2]$,

the above inequality being proved by induction on m (cf. Coquet [1]). Now, (28), (29), and (30) imply

(31)
$$V(\sigma_{\phi}; 0, \Phi_{m} - 1) = C(m, \lceil T_{m}/2 \rceil).$$

We shall complete the proof by considering two cases. First suppose that $\overline{\lim}_{m\to\infty} \varphi_m = \infty$. As in Example 1 it can be shown that $C(m, a) \leq \Phi_{m-1}$ for all $a \in \mathbb{Z}$. Thus, using (31), we get $\Phi_m^{-1} V(\sigma_{\Phi}; 0, \Phi_m - 1) \leq \varphi_m^{-1}$. By Lemma 2, σ_{Φ} has the swd-property.

Next suppose that the sequence (φ_m) is bounded. Let (X_m) , $m=2,3,\ldots$, be a sequence of independent random variables with the distribution $P(X_m=i)=\varphi_m^{-1},\ i=0,1,\ldots,\varphi_m-1$. Denoting $Y_m=X_2+\ldots+X_m$, we obtain that the variance of Y_m is equal to $12^{-1}\sum_{n=2}^m (\varphi_n^2-1)$. Since $P(Y_m=a)=\Phi_m^{-1}C(m,a),\ a\in Z$, Lemma 3 yields $\Phi_m^{-1}C(m,[T_m/2])\to 0$ as $m\to\infty$. Thus, by (31) and Lemma 2, σ_Φ has the swd-property.

Corollary 3. The sequence $(\sigma_{\phi}(n)\theta)$, $n=0,1,\ldots$, is w.d. mod 1 (u.d. mod 1) if and only if θ is irrational.

The q-adic version of Theorem 4 was proved by Coquet [1]. For a weaker version of Corollary 3 we refer to [6].

Theorem 5. The sequence γ_Φ has the swd-property if and only if the series $\sum_{n=1}^\infty \phi_n^{-1}$ is divergent.

Proof. Let an integer $m \ge 2$ be arbitrary. Denoting

$$C(m, a) = C(\gamma_{\Phi}; 0, \Phi_m - 1, a), \quad a \in \mathbb{Z},$$

and using (23) and (25), we get

(32)
$$C(m, a) = 0 \quad \text{if} \quad a < 0 \text{ or } a \ge m$$

and

(33)
$$C(m+1, a) = C(m, a) + (\varphi_{m+1} - 1) C(m, a-1)$$
 for all $a \in \mathbb{Z}$.

Next, using induction on m, we shall construct a sequence (T_m) such that

(34)
$$C(m, a-1) \leqslant C(m, a) \quad \text{if} \quad a \leqslant T_m$$

and

(35)
$$C(m, a) \ge C(m, a+1)$$
 if $a \ge T_m$

Since C(2, 0) = 1 and $C(2, 1) = \varphi_2 - 1$, we may put $T_2 = 1$. Now suppose that for an integer $m \ge 2$ the number T_m has been already defined. If $a \le T_m$, then (33), (34), and (35) imply

$$C(m+1, a-1) = C(m, a-1) + (\varphi_{m+1}-1)C(m, a-2)$$

$$\leq C(m, a) + (\varphi_{m+1}-1)C(m, a-1) = C(m+1, a).$$

In the same way (33) and (35) yield $C(m+1, a) \ge C(m+1, a+1)$ whenever $a \ge T_m + 1$. Putting

$$T_{m+1} = \begin{cases} T_m & \text{if } C(m+1, T_m) > C(m+1, T_m+1), \\ T_m+1 & \text{otherwise,} \end{cases}$$

we obtain that (34) and (35) hold with m+1 substitued for m.

To prove the sufficiency part of the theorem suppose that the series $\sum_{n=1}^{\infty} \varphi_n^{-1}$ is divergent. Let (X_m) , $m=2,3,\ldots$, be a sequence of independent random variables with the distribution $P(X_m=0)=\varphi_m^{-1}$ and $P(X_m=1)=1-\varphi_m^{-1}$. Denoting $Y_m=X_2+\ldots+X_m$, it can be shown that the variance s_m^2 of Y_m is $s_m^2=\sum_{n=2}^m \varphi_n^{-1}(1-\varphi_n^{-1})$. Since $\varphi_n\geq 2$ for all $n\geq 2$, we have $s_m^2\geq 2^{-1}\sum_{n=2}^m \varphi_n^{-1}$, so that $s_m\to\infty$ as $m\to\infty$. We observe that $P(Y_m=a)=\varphi_m^{-1}C(m,a)$, $a\in Z$. Thus, (34) and (35) imply $\varphi_m^{-1}V(\gamma_{\Phi};0,\varphi_m-1)=P(Y_m=T_m)$. By Lemmas 3 and 2, γ_{Φ} has the swd-property.

To prove the necessity of the condition suppose that $\sum_{n=0}^{\infty} \varphi_n^{-1} < \infty$. Let ω be any sequence of real numbers. For $m = 2, 3, \dots$ denote

$$F_m = \operatorname{card} \left\{ n < \Phi_m : \ \omega \left(\gamma_{\Phi}(n) \right) = \omega (m-1) \right\}.$$

Since

$$C(\gamma_{\phi}; 0, \Phi_m-1, m-1) = \prod_{n=2}^{m} (\varphi_n-1),$$

we have

$$\lim_{m\to\infty} (F_m/\Phi_m) \geqslant \prod_{n=2}^{\infty} (1-\varphi_n^{-1}) > 0.$$

It follows that the sequence $\omega \circ \gamma_{\phi}$ can not be w.d. mod 1, and so γ_{ϕ} has not swd-property. This completes the proof of the theorem.

Corollary 4. If $\sum_{n=0}^{\infty} \varphi_n^{-1} < \infty$, then for no sequence ω of reals the sequence $\omega \circ \gamma_{\phi}$ is u.d. mod 1.

Corollary 5. The sequence $(\gamma_{\Phi}(n)\theta)$, $n = 0, 1, ..., is w.d. \mod 1$ (u.d. mod 1) if and only if θ is irrational and the series $\sum_{n=1}^{\infty} \varphi_n^{-1}$ is divergent.

We remark that if α and β are sequences having the swd-property, then the sequence $\alpha \circ \beta$ has it also. Using this fact and Theorems 1, 2, 3, 4, and 5, we may construct other sequences with the swd-property.

Acknowledgement. The author is grateful to Professor W. Narkiewicz for his comments on the early version of this paper.

References

- [1] J. Coquet, Sur certaines suites uniformément équiréparties modulo 1, Acta Arith. 36 (1980), pp. 157-162.
- [2] Sur certaines suites uniformément équiréparties modulo un (II), Bull. Soc. R. Sci. Liège 48 (1979), pp. 426-431.
- F. Dress, Sur l'équirépartition de certaines suites (χλ_n), Acta Arith, 14 (1968), pp. 169-175,
- A. S. Fraenkel, Systems of numeration, Amer. Math. Monthly 92 (1985), pp. 105-114.
- [5] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York 1974.
- M. Mendès-France, Nombres normaux. Applications aux fonctions pseudoaléatoires. J. Analyse Math. 20 (1967), pp. 1-56.

ZAKLAD METOD NUMERYCZNYCH UNIWERSYTET M. CURIE-SKLODOWSKIEJ pl. M. Curie-Skłodowskiej 1 20-031 Lublin

> Received on 14. 6, 1985 and in revised form on 27, 9, 1985

(1518)

Zeros of p-adic L-functions

NANCY CHILDRESS (Austin, Tex.) and ROBERT GOLD (Columbus, Ohio)

Introduction. In this paper, we study the zeros of the Kubota-Leopoldt p-adic L-functions. These functions are known to be related to certain formal power series over Z_n defined by Iwasawa, and it is this relationship which will be exploited to analyze the occurrence of zeros for the L-functions. The zeros of these power series are better understood (via the Main Conjecture), and are more readily computed. The assumption that a zero of the Iwasawa series $f_{\nu}(T)$ for a Dirichlet character χ will yield a corresponding zero of the L-function $L_n(s, \gamma)$ is in general false, however. For instance, in [8], Wagstaff has computed zeros of the Iwasawa series for various fields and has used the relationship with $L_n(s,\chi)$ to compute values for s which in many cases are not within the domain of convergence of the L-function, so clearly cannot be zeros of it. The relationship between zeros of the series $f_{x}(T)$ and those of $L_n(s, \gamma)$ will be given. We then will consider the more general case of p-adic L-functions defined over the fields Q_n constituting the layers of the basic Z_{n-1} extension of Q, and the relationship of their zeros to those of the series $f_{\nu}(T)$.

The results presented here are based upon material from the first-named author's Ph. D. dissertation. The authors would like to thank Warren Sinnott for many useful conversations and suggestions.

1. p-adic L-functions. Let p be an odd prime. Let Z_p , Q_p and C_p denote the p-adic integers, the p-adic rationals, and the completion of the algebraic closure of Q_p , respectively. We use the normalization $|p| = p^{-1}$ for the p-adic absolute value. Let ω be the p-adic Teichmüller character, defined as follows: for $a \in \mathbb{Z}_p^x$, let $\omega(a)$ be the unique (p-1)st root of unity in \mathbb{Z}_p satisfying $\omega(a)$ $\equiv a \pmod{p}$. [Then ω is a Dirichlet character on Z of order p-1 and conductor p.] Let $\langle a \rangle = \omega(a)^{-1} a$.

Let d be a positive integer prime to p. Assume $d \not\equiv 2 \pmod{4}$. Let $q_n = p^{n+1} d$, $K_n = Q(\zeta_{q_n})$, and $K_\infty = \bigcup_{n \ge 0} Q(\zeta_{q_n})$, where ζ_{q_n} is a q_n -th root of unity. Then $Gal(K_o/Q) \cong G \times \Gamma$, where $G = Gal(K_o/Q)$ and Γ $= \operatorname{Gal}(K_{\infty}/K_0) \cong 1 + q_0 Z_p = (1 + q_0)^{Z_p}$. Let κ be the isomorphism between Γ and $1+q_0 Z_p$. [So $1+q_0$ is the image, under κ , of a topological generator for