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Introduction, It is well known that if o is any irrational number then the
sequence (no);=, is dense (and even uniformly distributed) modulo 1. It was
further established by Hardy and Littlewood [5] that the same holds for the
sequence (n o)y, r being any positive integer. The ultimate result in this
direction, for multiplicative semigroups of integers, is as follows. Calling such
a semigroup X lacunary if all the elements of {oeX: ¢ >0} form integer
powers of a single integer a, and non-lacunary otherwise, F urstenberg [2, Th.
IV.1] obtained

TheoreM A. If Z is non-lacunary and o is an irrational, then o is dense
modulo 1. '

It is easy to see that lacunary semigroups Z admit irrationals o for
which Za is not dense modulo 1.

The dynamical aspects of the foregoing result are discussed in [2]. The
approach to be taken in this paper is of a more number-theoretical nature.
As is noted in [3], the theorem provides a partial answer to the following
question: Which subgroups I of @ have the property that, given any-
irrational & and & > 0, we have

(1 o —m/n| < efn

for some m/nel? Supposc I' is a group of an idempotent type, ie.
(isomorphic to) a group composed of all those rationals whose denominators
are divisible only by primes belonging to a certain set of primes. Employing
Theorem A it can be inferred that I” admits approximations as in (1) iff this
set of primes consists of at least two elements.

Now let I' be any subgroup of . We may assume that I' 2 Z. Let P
= {p, Psr-..] be the set of all primes. For some sequence (r;) in
(0,1,2,...,00), I' is the group of all rationals m/n, for which in the
decomposition n = pi' p3* ... pi* we have 0 < ¢ < r; for each i. Denote by 4
the set of all positive integers forming permissible denominators for elements

of I'. Such a set 4 may be called, using the terminology of [4, Ch. 8], a

multiplicative IP-system (the generators of which are in this case primes.) I’



276 D. Berend

possesses the aforementioned property iff A4 has the property that 0 is an
accumulation point modulo 1 of the set da for every irrational o

The main problem to be studied in this paper is more direcily related to
Theorem A. Let (4,52, be a sequence of integers. Form the multiplicative IP-
system (or * approx1mate semigroup™) 4 consisting of all integers of the form
a4 Gy .. Gy with i, <i; < ... <i,. Under what conditions on (a;) is A dense

modulo 1 for every irrational «?

In Chapter I we approach the problem in its full generality employing
clementary tools. Roughly speaking, we show that, under some restrictions
on the rate of growth of (a), the only reason which may prevent A4 from
having the property sought for is that («;) is “approximately” a sequence of
powers of a single real number (see Theorem L.1). This implies, for the
problem of approximations of irrationals by rationals lying in a group I,
that if in the sequence (#;) corresponding to [" one of the terms is infinite and
the sequence comprised of all others is unbounded above, then I' admits
approximations as in (1) {see Theorem 14).

In Chapier II the case, where some integer a appears mﬁmtely often in
the sequence (a), is investigated more carefully. We view (¢;) as a sequence of
a-adic numbers and, using analysis on the ring of g-adic numbers, arrive at
analogues of results established in Chapter 1 while viewing (g,) as a sequence
of real numbers (compare Theorem 1.3 and Theorem 1I.1). Roughly speaking,
we show that, unless (g;) is "approximately” a sequence ol rational powers of
a in the ring of b-adic numbers for some divisor b of a, 4 has the property in
question.

Chapter III deals with some sequences (a;) of special forms. Topological
dynamics machinery is employed to show that some sequences, to which the
results of the former two chapters are inapplicable, still possess the desired
property.

Negative results, i.e, conditions on (g) guaranteeing that 4 does not
have the property in question, are presented in Section 1.2 and in Section
IL.2.

The problems described above were proposed to me by H. Furstenberg.
I wish to express my deepest gratitude to him for many long discussions
related to this topic. The paper has been written while I spent 4 summer at
the Mathematical Sciences Research Institute, Berkeley. I thank the Institute
for its hospitality,

Chapter 1. Elementary technigues

i. Definitions; the main theorems. Let 4 be a set of integers.

Dermvurion L1, 4 is a DD set if da is dense modulo 1 for ‘every irrational
a. (DD — Dense Dllatatlons)
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it will be convenient, instead of considering the set da modulo 1, to
view A and & as a set of endomorphisms and as an element, respectively, of
the circle group T = R/Z. Thus dua is the “A-orbit” of a. 4 is a DD set if the
A-orbit of every non-torsion element of T is dense in T We shall usually not
distinguish between a point of T and real numbers lying above it. When
distinction is necessary, we shall write {x} for the projection in T of an ae R.
Given two sets of integers 4, and 4,, we put:

AIAZ =z {ab: ﬂEAl, hEAzE.

N
The product [] 4, of finitely many sets is similarly defined. If (4,),%; is a
oon=1
sequence of sets, with 1e4, for each n, we denote

3} o N
H 4, = U I__[ An'
=1 N=1p=g
The 2-element set {1, a) will be denoted by {a}. Thus {1, a,..., 4"} may be
written as (a) ind the semigroup {1, a, o, ...] generated by a as {a}>*.
The main question dealt with in this paper is under what conditions on

o

a sequence (a,)%, of integers is 4 = n {a,> a DD set, We usually assume
n=1 .

that all the a,’s are positive, but the modifications of our results fo the

general case are straightforward. We shall also be interested in the property
to be defined now.

Derintrion 1.2, 4 is a WA set if given any irrational ¢ and & > 0 there
exist meZ and ned with |¢—m/n <g/n. (WA-~Well Approximating)

Denote by BA (4) the set of all non-torsion ae T for which O¢da. 4 is a
WA set iff BA{4) = Q. .

We obviously have

LeMMa 1.1 A DD set is a WA set. ‘

The converse is false in general. For example, let 4 be a difference set,
ie, a set of the form {a,—a,: n > m) for some sequence {a,) [4, p. 176]. It is
evident that 4 is a WA set, but not necessarily a DD set.

DerNimioN 13, A group I' = @ is a WA group if for any irrational o
and ¢ > 0 there exists an m/nel” with |x—m/n| <e/n.

LemMa 1.2, The WA property is an isomorphism-invariant.

The proof is straightforward. In view of the lemma we may confine our
attention to groups I’ with lerl.

Before we state the main theorems of this chapter, it will be convenient
to introduce some more definitions and notations.

Dernrion 14. (1) Let g be a prime. 4 1s a PR, set if all its elements are

relatively pnme to g.
(2} 4 is a PR set if it is a PR, set for some g..
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The notion of a PR, (or a PR) sequence is analogously defined. Of
course, 4 = [] <a,» is a PR, (resp. PR) set iff (4, is a PR, (resp. PR)

a=1
sequence.
Dernmion LS. (a,) is an SM sequence if given any positive integers d
and s there exists a constant C = C(d, 5) such that

O 1ya-+s S COlgay oo Gpps  fOU every neN.

(SM — Sub-Multiplicative.)
Remark L1. In the definition it is implicitly assumed that (a,) is a non-

43
decreasing sequence. When studying sets of the form 4 = [T <@, this may
n=1
be always assumed to be the case; for, if a certain integer a appears infinitely
often in (a,), then we obtain the same set 4 by letting each of ithe powers g,
a®, a3,... appear just once in (a,). It is clear thdt in this case we always get
an SM sequence.
Denote by 4 the sequence (a,)w, and by &/d the double sequence
{@/a)%q-1. Let Lima/d be the set of limit points of &d.
Dermnvmion L6, (1) Let (x,) be a sequence of positive numbers converging
to 0. (x,) converges rapidly to 0, and we denote x, 3£z 0, if there exists a
constant C such that for every ¢ >0 we hdve &< x, <2 for at most C
indices n. (2) Let (X, g) be a metric space and (x,) a sequence in X with
x, 7= X. (x,) converges rapidly to x, and we denote x, 725 x, if ¢ (x,, x) 75z 0.

T
Otherwise we denote x, ;25> x.

Dermation 1.7, Let G be a group and x, yeG. x and y are rationally
dependent if there exist integers m and n, not both of which are 0, such that
x™ = y¥", and rationally independent otherwise. Now let G be a metric group,
(x,) a sequence in G and ye G, (x,) is rationally dependent of y if there exist
an 1nteger d and a sequence (k,), with either d s O or k, % 0 for each n, such
that x4y ™" 25 1, and rationally independent otherwme

For a ring R, denote by R* the muitiplicative group of units of R.

THEOREM L1 Let 4 = n {day Y. Assume that:

(1) (a,) is a PR sequence

(2) (a,) is an SM sequence,

{3) There exists a ielima/dn(l, o).

(4) (a,) is rationally independent of A in R*.

Then 4 is a DD ser.

[[x|| denotes the distance from x to the nearest integer.

Remark L2. Condition (4) is equwalent to there not existing a positive
integer d such that

loge a,/| 72 0,  where 6 = A4,
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Let P =1p,, pss-..] be the set of all primes. Given a group I' < @ with
1eT, set

r=supim Uptellefl, 1,..., w0}
The sequence (ry, p,...) is called the rype of I' and denoted by 1(I) (see
[1, Ch.XII] for more details). Note that I' is a WA group iff 4 = [] <{p,>™ is

n=1
a WA set. :
Let I' be a subgroup of . Set D ={ieN: r,>0}. Suppose D
=iy, iy, ... [ 1s of a frequently non-zero type if i, 1/ly 7=zr 1. A special case
of Theorem L1 s

THEOREM 12. If (a) is a PR sequence and a,.,/G, == 1, then 4

= H a,> is a DD set. In particular, a group of a frequently non-zero type is
n=1
a WA group.
Of particular importance for us will be the case where a certain integer a
appears infinitely often in (a,). We shall refer to this as the homogeneous case.

We then rewrite 4 in the form A = {a)™ H a,>. It will be convenient to
n=1
put ay = a. Theorem L1 gives in particular

e .
TueoreM 13. Let 4 = (ay® [ <an), where {a,}i%q is @ PR sequence. If

=1

(a)=, Is rationally independent of a, then 4 is a DD set.

Remark 13. The theorem can be interpreted as stating that if 4 is not
a DD set then the base a expansions of the a,’s look as follows. There exists
a positive integer- d such that a large initial block of the expansion of a,
coincides with the initial block of the expansion of one of the numbers I,
a g¥ . g'~14 (whére both 10...0 and a—1, a—1, .., a—1 may be
considered as the initial blocks of the expansion of 1). In Example II.2
we shall see an analogue concerning the terminating block of the expansion
of a,.

CoroLLary L1, Theorem A.

In fact, if £ is a non-lacunary semigroup we can find a, be X with log, b
irrational. The subsemigroup of Z generated by a and b, which can be

written as {a)® [] (bs), is thep easily seen to be a DD set.
n=1

ExampLe L1 A = )= (3-2"+1) is a DD set for any infinite set S.
nes
(Note that (3-2"+1) is a PR;, sequence)

Let I' be a subgroup of Q with t(I") = (ry, r2,...). I' is of an infinite type
if r;, =00 for some i, of an unbounded type — if the sequence {(r;) is

unbounded above, of an infinite unbounded type ~— if r;; = oo for some iy and
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()i »io is unbounded above, and of a doubly infinite type — if r; = oo for at
least two indices i. As noted earlier, Theorem A implies that a group of a
doubly infinite type is a WA group. By Lemmas I.1 and 1.2, a special case of
Theorem 1.3 is

TueOREM 14. A group of an infinite unbounded type is a WA group.

In Section 2 we introduce a class of multiplicative IP-systems, which are
not DD sets due to a too rapid rate of growth of the sequence of generators,
The basic tool employed in the proof of Theorem 1.l is presented in Section
3. Section 4 is devoted to the proof of Theorem L1, In Section 5 we deal with

two examples, 4, = H "y and 4, = ]_[ ¢n!), and show that these form

n= |
DD sets even though Theorem I.1 cannot be applied (at least not directly.)
The techniques employed there may well be useful in other cases not falling
within the framework of Theorem I.1.

2. A counter-example: lacunarity. In this section we show that if
condition (2) in Theorem L1 is “severely violated”, then the conclusion of
that theorem is false:

The Hausdorff dimension of a set. B will be denoted by dim B.

THEOREM L5, Let 4 = H {a,>'". Suppose that

oy 1 ?;(Sal ay ... a;", n=1,2,.
Jor a certain 6 > 0. Then dimBA(4) = 1, and in particular 4 is not a DD ser.
Lemma 13, Let A =N and d,.4d;....,djeN. Then BA(4} is (1) non-
I
empty, (2) uncountable, (3) of Hausdorff dimension 1, iff BA( ) d,-A) is such.
. =1

The lemma follows easily from the inclusions ~

A)/H d; gBA(U d; 4) < BA(4).

i=1
A sequence (x,) in R, is lacunary if
xn+1>/’{xa, n=1,2,...

for some 2 > 1, (For multiplicative semigroups this definition coincides with
the one given in the Introduction.)

Pmof of Theorem 1.5. Select k such that dat* a7 ... ajf > 1, and set

= H ¢a,d™ Tt is easy to see that 44 18 lacunary, whence by [7] or [8]

n=k+ L
we have dimBA(4;) = 1. Since 4 is a union of finitely many dilatations
of 4,, Lemma 13 completes the proof
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Remark L[4 It follows from the last theorem that neither of the
assumptions of Theorem 1.4 is redundant. In fact, if t(I') = (0,..., 0, o, O,.. J
then I' is a non-WA group of an infinite type, whereas if £(I)
=(0,...,0,1,0,...,0,2,0,...,0,3,0,...) with the lengths of the O’s blocks
increasing sufficiently fast then I is a non-WA group of an unbounded type.

3. The basic tool. The set of accumulation points of a set E = T will be
denoted by E'. The set-theoretical difference of two sets E, and E, will be
denoted by E,\E, and their algebraic difference {x;—x,: x,¢E,, x,eE,}
by E,—E;.

DerINTION 1.8, 4 is a DDy set if 0cE = AE = T,
Provosimion 1.1, Let (4,)%, be a sequence bf DDy sets with 1e4, for

each n. Assume that U A, is a PR set. Then ]_[ A, 15 a DD set.

L =1
Proof. Let o be a non-torsion element of T Define an ascending
sequence (E,) of subsets of T by:

E():{a}’ E,,=A"E,,_1, nzl.

We have to show that U E, =T

Assume first that some E, contains a torsion element, say r/seE,‘ Then
clearly r/se Ey, and so OesE;. Since 4,4, is a DD, set we obtain sE,,,
= Ak+1(sEk) = T It fDHOWS that

B q B+ 1)U Uy +H(s—1)fs) =

Since the sets in the union on thé left-hand side are all closed, one of them
has a non-empty interior. Hence E, ., itself has a non-empty interior. This _
implies that /E,,, = T for all sufficiently large /, and so we certainly have
Eiis —Ak+2Eh+1 =T We may assume therefore that U E, contains no

n=1

rational points,

Select a prime ¢ for which ) 4, is a PR, set. Denote

=1
T[s]= 10, 1/s, 2/s,..., (s—1)/s} for seN.

It suffices to show that if [ is any positive integer and 0 < k < ¢', then there
exist xeT and integers (m)f with 0 <m; <my < ... < my_, <¢' such
that

) x, x+m/g,..., x+m,‘_1/ql'eE2,‘.

In fact, this is trivial for k = 1. Let us show that if k' < ¢’ and E,, contains a
k-point configuration as in (1), then Ej., contains "a (k+1)-point
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configuration of that form. Since A,y 18 a PR, set, its elements are
invertible modulo ¢. Consequently any element of A,.; maps the
conﬁguratlon appearing in (1) into another configuration of the same general
form, ie, into a translate of a k-element subset of T[4']. There exist
therefore integers

(D]

0<ml < ... <ml; <g,

for which the set

F=ixeT: x,x+mPg" ..., x+m® /g e Eypi} S Eogin

is infinite. Since A4, i1s a DD, set we have AZHZ(F—F) = T, and in

particular 1/g'e A5 2 (F—F). Put:

0<j<g,(ja)=1

Pick j such that 1/g' em._ Let (m(®)i={ be the residues modulo q'
of (jm{™¥= 1, ordered so that 0 < m{® < ... <m®, < ¢" If yedYl,, F, then
@ Vo y+mPlg . y+m® g e A%y 2 Exe .

Choose x with x, x+1/g'€ 44, , F. Then (2) holds both for y = x and for
y =x+1/g". The set {x, x+1/g,..., x+m2 /g", x +(m2, + 1)/q'} contains
at least k+1 elements. There exist therefore (MM, 0<mP < ... <md®
< ¢, such that

A9 2 = nedy,y: n=j (mod ql)};

x, x+mPg, ..., mP '€ By

This completes the proof.

4. Proof of Theorem I.1. The main part of the proof consists of showing
that the iast three conditions of Theorem 1.1 imply that A is a DD, set. After
establishing this we shall explain why (a,) can be splitted into infinitely many
sequences, each satisfving again the same conditions, whereby Proposition L.1
will conclude the proof. Several definiticns are needed first.

DerinitioN 18, 4 is a set of bounded ratios if for every d« A there exists
aded withd <d' < Cd, where C is a certain constant. Such a C is a ratio
bound for A

Dermvmion 19. 4 is an AG, ser if given any leN there exist an
arbitrarily small ¢ >0 and dy, d,,..., d;+1 €4 such that

3) _  lte<dpay/d; < 14 2,

{AG, —contains Almost Geometric progressions of ratio close to 1.)
Note that the term 2¢ on the right-hand side of (3) can be replaced by
Ce, where C is any constant greater than 1.

Lemma L4, The product of a set of bounded ratios by an AG, set forms a
DD, set.

1<j<!

icm
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Proofl. Let A, be a set of bounded ratios with a ratio bound C, 4, an
AG, set and 4 = 4, A,. Let E be a subset of T with OeE'. Replacing E by
—E if necessary, we may assume that E contains arbitrarily smali positive
numbers. Let [ be any positive integer. Choose £ < 1/2] and
d,dy....,dip €4, for which (3) holds. Take hed, and wecE with 0 <u
< Cfelbdy. Increasing b we may assume that 1/el < abd; < C/sl. Then for
every 1 <j </ we have on the one hand

O(bdj.{,] ——othdJ = othd (d‘,+1/dj”“i)
and on the other hand
“hdjw-l "—Oﬁbdj =

abd, e = 1]

abd, (14267126 < 6C/1

The set {abd; | €j < I+1] & AE forms therefore a 6C/l-net in T Since ! is
arbitrary, this means thal AE = 7, which proves the lemma.

Dervimion 110, Let A > 1. 4 is an AG, set if given any le N and >0
there exist dy, dy,..., d1+ €4 such that

Ao Sy /d; < Ate,

Notice that the last definition would make no sense for 4 =1; the
definition of an AG, set is not analogous to that of an AG, set.

Lemma 15, Let A, be a set of bounded ratios, 4, an AG, set and 4
=d,4,. Given a set E < T with 0e E', there exists a non-zero o such that
ailc AE for every jeZ.

Proof We may assume E to contain arbitrarily small positive numbers.
Let C be a ratio bound for 4, and [ and m any positive integers. Pick
deyroyds ..., died, with A=1/m < djfd; < i+ 1/m for —1<j <l Take
bed, and a,,cE such that 0 <u, < C/bd,. Replacing b by a greater
number in 4,, we may assume that 1 < ay,bdop < C. Let ¢ be a limit point
of the sequence (o), . Obviously, 1 <o < C and a; HedE for —1<j<l
Taking now any limit point of {a)i% . we obtain an « satisfying the required

condlitions. This proves the lemma.
Let (g0, be a sequence in T Denote by L1m@ the set of all limit

1<j<l.

points of the sequence, Consider the set B = Z 0, g,! consisting of all sums
n= 1
k

of the form Z gy With iy < iy < 0 <y

LEMMA lfs If' B is properly contained in
keN. _

Proof Let H be the closed subgroup of T generated by Limg. It is
clear that H < B, whence H is a proper subgroup of T, say H = T[k]. Thus
Limg = T[k]. which proves the lemma.

T, then LimJ < T[k] for some
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Dermnrrion 111, A set § © N is syndetic il there exists an se N such that
at least one out of any s consecutive positive integers belongs to S.

Lemma 1.7. If (a,) is an SM sequence and S is syndetic, then (a,),.s is an
SM sequence as well,

Lemma L8 If (a,) is an SM sequence, then A = 1_[ {a,y is a set of
=1
bounded ratios.

Lemma 1.9, If AeLimdjdan(l, ), then 4 = [] {a,> is an AG, set.
r=1

The proofs of all three lemmas are routine,

Lemma 1,10, Suppose (a,) satisfies conditions (2) and (3) of Theorem 1.1
and also:

{“) Lim({logaa, )2y £ T[K], keN.

Then A = [] <a,>is a DDy set.
wol

Proof. Choose sequences (4} and (m;) such that A/, == 4. Set S
= iy, my, 1y, m,,...]. Denote by b and by b’ the sequences (u,),.s and (dplngs»
respectively. Passing to subsequences_of (/) and (m;) we may assume that S¢
is syndetic. whence by Lemma 1.7 b 1s an SM sequence. Tt may also be
assumed that every limit point moduloe 1 of the sequence (log, a,),., is also
a limit point modulo 1 of (log, b))Z ;. Similarly, we can split b into two
sequences & and d such that

Lim({log; ¢, Dy = Lim({log, by

and d is an SM sequence. Put

o el ox
= ]__[ <bn>! Al = H <C,,,> and 'A3 = n <dn>'
n=1 n=1 n=1
Let E be a subset of T with Oe E'. By Lemmas 1.5, 1.8 and 1.9 the set
A 43 E contains a set of the form E, = [al/; je Z} for some, say, 2 > (. We

want to show that 4, E, = R.. In fact, take any x > 0. Given ¢ > 0 we can
find, in view of Lemma L6, elements Cnys Cngoeees Oy in ¢ such that

k
logi (x/e)~ 3. log; ¢, —1| <&
e

I+ﬂl

for an appropriate le Z. It follows that x = ol Cny --- C, Where lg;| <s.

Since & is° arbitrary, this means that xeAd; Ey, and so 4,E, = R, or,
modulo 1, 4, E, = T This proves the lemma, :
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Lemma L11. If {a,) satisfies conditions (2}-{4} of Theorem 1.1, then 4
= |1 <a,y is a DDy set.

n=1

Proof According to Lemma 1.10 it may be assumed that

llogg aJl 5 where 0 = AY¢ for some ee N.

Similarly to the proof of Lemma 1.10, the sequence a ccm be Sphtted into
three sequences b, ¢ and d such that 2eLimb/b, |llogye,|| %+ 0 and d is an
SM sequence. Set

o an €
4, = ﬂ GO P 1_[ (epy and A3 =[] >
= n= n=1
Let I; =[(j—1)/2e. j/2¢] for 1 £j< 2e. Split ¢ mto 2e sequences gy
AR O ‘2”’ where ¢! consists of those terms ¢, with {log; c,}e/;. At least

one of these sequences, say ¢®, still has the property that |llog, c“"i{ AR, 0.
Replacing 7 by ¢ we may assume that {log, c,} ], for each n. The sequence
(log; ¢,)) is convergent, all its elements lying to the same side of its limit.
Reordering ¢ we may assume therefore that ({log;c,})i2, is a monotone
sequence. Definc a sequence ¢ by:

n=1,2...

I, e . g
Cy = Lo 1yp+1 o= 14+ 2 o+ Com

We readily see that ‘logl o) ARy O where the sequence on the lelt-hand side

is monotonous. Since ]_] Y= ﬂ {¢,> we may assume, substituting & ' for
n=1 n=1

¢, that, say, ({log;c,!)= | is monotone decreasing and converges non-rapidly
te G

We claim that 4, 4, is an AG, set. In fact, let | be a positive integer and
¢ > 0. Dropping finitely many terms from & we may assume that

@) A G AR =12,

ni+45/'3 S

i
for suitably chosen positive integers (m)i=,, where 0 <d <¢. Set N = Y om

{=1
Pick b, b@, b, b, ..., b, B in b such that

(5) AN BP < QTN j =1, 2,0, N .
i .
Let my = 3. m for, 0 < i< Consider the following !+1 elements of 4, 45:
k=1

1} K(2]
e; = b(il) b(zl) ren hgni}b(m‘) +1 -

We have

b(]‘%)cif:z van Gy i imo,'l,...,ll.

"t

€y 4 1/6 = ‘"1+1/ H (b(z)/bsl))

J=mit1

i=0,1,..,1-1
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so that by (4) and (5)

B e je<i®, =01, 1-1L

A, 4, is therefore an AG, set, which implies by Lemmas 1.4 and L8 that
A, 4,45 is a DDy set. This proves the lemma.

Lemma 112, Suppose that (a,) satisfies either one of the following
conditions:

(1) Aelimadja.

(2} (a,) is rationally independent of A in R*.

(3) (a,) is an SM sequence.

Then (a,) can be splitted into infinitely many subsequences, each satisfving
the same condition.

The proof is straightforward.

It is now easy to conclude the proof of Theorem I.1. As in the proofs of
Lemmas 1.10 and [.11, we can split & into three sequences b, ¢ and d such
that:

(1) AeLimby/b.

(2) {¢, is rationally independent of A in R*.

{3 (d,) is an SM sequence.

By Lemma 1.12 we can split b, & and d into infinitely many sequences
(59), {9 and (dY), respectively, each having the same property as the
original sequence. Define:

4= T 49> T1 0> T .

i=1,2,3,....

By Lemmas 1.10 and L.11 each 4; is a DD, set. Condition (1) of the theorem

enables us to employ Proposition L1 to get that 4 = H 4; is a DD set, This
. i=1
completes the proof.

5. Examples. We shall give in this section two examples of sequences (_d,,),
for which the conditions of Theorem I.1 are not satisfied, and show that A

=[] <@,y is still a DD set.

n=1

x
ExamreLe 1.2, H n™y is a DD set. Since (n") 1s not a PR sequence, we

n=1
)

ghall consider 1_[ {2n4+1P2""1Y, which is a PR, set, and show that even the
n=

latter is a DD set. Let a, = (2n+1)*>""1, It is easy to verify that (a,) is an SM

sequence. Define (4,) by b, = a,:,/a,. We have b, #.cc, so that condition (3)

of Theorem I.1 is violated. We proceed therefore as follows. Since 5,. /b,

icm

Actions of sets of integers on irrationals 287

-1, if (4) is any .sequence we can find a sequence (m,) such that
“mk+1/a11¢ . S == 2. Now replace for each k the two terms ay, and a,

in d by the single term g, 4, . Denote the resulting sequence by ¢

Obviously, 2eLimé/¢ and, if () is chosen so as to be increasing fast
oo o

enough, ¢ forms an SM sequence. Since [] <e,> = ] ¢a,), it suffices to

n=1 n=1

show that [] <¢,>

=l

leads us to an SM sequence d with ﬂ dy = n <epd and 2, 3eLimd/d.

n=1 n=1
s]

is an SM sequence. A similar modification of ¢

Since log, 3 is irrational, Theorem 1.1 implies that [] {d,) is a DD set, whence

n=1

ol
so is J[ ¢n"y as well,

r=1

L
ExampeLe 1.3. [] <n!> is a DD set. In this case for any prime p only
a1
finitely many a,s are relatively prime to p, so that Theorem 1.1 is
mdpphcablc Set

4= n {nl>,

29} o

4y =TT «100m!t>  and 4, = [] (100n+1)!>.

=1 n=1
Similarly to the preceding example we show, using this time Lemma L10
instead of Theorem 1.1, that 4, is a DD, set. Let a be an irrational. Consider
the sequence (x;) given by

k

ﬂ ((100n-+2)! (200n+3}! (100n+ 6)! (300n+ 17)!)o e, keN.
Assume ‘nrst that (xk) has some rational limit point. Since 4, is a DI, set,
we get that A1 X ETVT has a non-empty interior, which implies
4o 24 2 A ;_;Sc;mfce N! = 7 We may consequently assume that () has no
rational limit point, so thdt for a certain sequence (k;) we have X, r==> %, where x
is an irrational. Given any non-negative integers r and s we have

&

-+ TL {100+ 1)1 2000+41) TT ( ((100n+5)! (300n+18)1)

r=1 e
ky
X ]‘[ ((100n+2)! (200n+3)1) [ ((100n+ 6)! (300n+ 17)!)e
’ n=5+1

u=rf1 .
=23 x, = 23 x. _
By Theorem A we obtain Ax =T Thus 4 is a DD set.
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Chapter Fl. g-adic techniques

1. Definitions; the main theorem. In this chapter we shall deal only witt
the homogeneous case, that is with sets 4 of the form

8 = (ay® ﬁ @

This case is often more convenient. Denote by T, the endomorphism of ¢
given by:

T.(x) =ax, xeT

If E=Ada then E is T-invariant (or, more briefly, a-invariant), that i
xc k= T,(x)eE. This implies, for example,

o

Lemma ILL If A is a DD set, then so is {a)>™[] <a,> for any seN.

R=S

oo
Proof. Let a be an irrational. Set E = (a)>*[] <a,>a. Since 4 is a DL

n=s
se-1

set H {a,,E = T which implies that E has a non-empty interior. It follow:

that a’ E =T for sufficiently large r, and so E = T This proves the lemma
The lemma shows in particular that we may assume @ not to be a non

trivial power of some other integer. For, if a = b" and ¢b>* [] <a,> is a DD

n=1

’ o
set, then so is <ad>* [] <a,> as well.
n= 1
Our results in the preceding chapter were obtained with the a,'s being
viewed as real numbers, In this chapter they will be considered as elements

of the ring @, of g-adic numbers. Decompose a into a product of primes
- 81 Ez (?h
a=pep oo py.
Denote H = {1, 2,..., h}. A typical non-empty subset of H will be denotec
by J. where for simplicity we shall usually deal with G = (1,2, 4. If b
= |1 p’ then we denote the ring Q, of b-adic numbers and its subring Z, ol
Jet
b-adic integers by €@, and by Z, respectively. Let us recall a few Facts
concerning the rings @, and Z, (see, for example, [6]). We may assume

J = G. The topological rings Q, and Z, can be viewed as H Q and H Z

respectively. Considered as a subset of Z,, Zp} is the sct of all numbert

divisible by p! for every neN and ie{l,...,j—1, j+1,...,9}. The b-adic
norm on @, is deﬁn_ed as follows. Given xe @, take the least integer k fot
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WhiCh b xeZ, and put |x}, =b* (and |0}, = 0). Writing x = (x;, X3,..., X,)
e H Qp, and letting k; be the least integer for which p}J JxJeZP ., we pet
k = max k;. The b-adic metric is given by

IENEY ]

Qb(x'n y)mly—--x[b for X, yEQb

a - -
Ife=[] p‘}ri for some positive integers fj, then @, and @, are isomorphic as

i=1 _
topological rings, but they differ with respect to questions involving rapid
convergence. It may also happen that a sequence of integers converges non-
rapidly to some integer in each Q and converges to it rapidly in .

Exampig T1.1. Define (u,) by

an 522", 221:-—1 <n< 22k,
4,
n 222k+1 gn 2% <y < DL

L)

It is easy to check that g, ;¥ 0 in Q,, in @, in @y and in Qs but

Ay v 0 in QIO
The following lemma will be useful later,

Lemma 112, Suppose x, 7=z x in @y, and let ke N. Then
x" n—,*{w x Uf 'x!l H_}Em x

The proof is routine.
Our main result in thlS chapter 18

Tuaeorem ILL. Let 4= <a>°° H {a,>. Assume that:

ne 1
(1) (@)% is a PR sequence (where ag = a).
(2) (a,) is rationally independent of a in QF for every non-empty J<H.
Then 4 is a DD set.
Cororrary 1.1, Theorem A.
Cororrary 112, Theorem 1.4,
§t will be helpful to provide equwa]ent formulations of the second

condition in the theorem. Fix a non-empty J < H, say J=G. For any
1<j<g, the set D;(a) of those elements of QF, which are rationally

dependent of a (or, for that matter, of any fixed elcment of ) forms a
subgroup of Q* Denote by J, the least positive integer ! for which
Dy(d) O p} z, (D Since aeD,(a)mpﬂZ* we have lj|e;. For £e @ let n, (<)
be the ma)uma] k for which e p* Z,,. Evidently, if xe D; (@) and n,, (x) = npj( ),

& — Actn Arvithmatics XIVIEL]
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then yeD;(a)iff x/y is a root of unity. Pick any e D;{a) with n,,(§) = ;, and let
wy=1,0,= Wp;-1 (il p; = 2) bethe roots of unity in ij. Denote
by &, the set of roots of unity in Q,,j. We have

—1,(.03,...,

Diay= 8w seZ, wel;).

In particular, if xe D,(a) then "™~ " (x™7 if p, = 2) is an integer power of a.
Consider the subgroup DG( ) of QF consisting of those elements of O
which are rationally dependent of a. Let x = (x,, X,,..., x,Je OF. It is easily
verified that xeDg(a) iff x;eDj(a) for 1< j<g and n, (x;)/e; = n,, (x2)/ea
=, == npg(xg)/eg. Set e =gcd.(es, e3,...,¢) and r=lem.(2, p,—1,...
< pp—1). If xeDg(a) then x™ is a power of a.

2

Lemma IL3. The following conditions are equivalent:

(1) {a,) is ranonaﬂv dependent of a in QF.

(2) ,’f/a L1 in Qg for some sequence (k,).

(3) There exists a sequence (1,) in Dg(a) with a/n,75%z1 in Qg.

Proof. (2)=(1) follows from the definition of rational dependence,
while (3) =(2) follows from the discussion preceding the lemma and from

Lemma II.2. Let us show that (1) = (3). Take d and (k,) such that a‘,‘,/a iEer 1
in Qg. Write k, =dl +s,, with 0 €5, <d. We have

(anfamfa" Em 1 in Qg

so that the sequence (a,,/a[ ) has only finitely many limit points in @, each of
which 1s rationally dependent of «. There. exnsts therefore a sequence (n,) in
D¢ (a) such that a,,/ry,, +== 1. Obviously, #* = a" for all sufﬁc:lently large n,
and so (a/n,) 7% 1 in Qg. By Lemma I1.2 we now get a/n, +E8> 1. This
proves the lemma.

The lemma shows by the way that it is easier, in principle at least, to
determine whether or not (a,) is rationally dependent of a in QF than to
determine whether or not this is the case in R*. In the former case we easily
find an mteger d such that if (a,,] is rationally dependent of « then
a"n/a 2 1 for some (k,), whereas in the latter case no such d exists. This is
due to the fact that, denoting by a? the multiplicative group generated by a,
Dg{a)a® is a finite group. of an effectively computable order, while the
analogous quotient group for R% is Q/Z.

To find out whether or not (a,) is rationally dependent of a in Q%, one
procceds as follows. Taking d as before, there exists for each n at most one

non-negative integer k, such that a‘,{/ak"eQZ;". If for infinitely many indices n
- no such k, exists, then (a,) is certainly rationally independent of a. QOtherwise,
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let g_—a‘,,/ak —1. We have to check if ¢, 7250 in Qg. Put s,

= mm M (£,)/e; for each n. It is easy to see that &, 7= 0iff 5, 7=z o0, and

H
that rf,, 5 O1ff there exists a constant C such that the sequence {s,) attains no
value more than C times.

ExampLE 1.2, Suppose thal a = p is a prime, (a,, p) =1 for every ne N
and (a,);%, is a PR sequence. For each n, let w, be that root of unity for
which a /o, 1+ pZ,. (u/w,e 1+4Z, il p=2) Set 5, = max {k: p¥i(a,—w,)}.

It follows from Theorem IL1 that, if 4 = (p>* H a,> is not a DD set, then

n=1

Sy —* 00 and moreover, (s,) assumes each value at most C times for a certain
constant C. This condition is particularly easy to visualize if p =2 or p = 3,
because in these cases the only roots of unity in @, are 1 and —1. In any
case we can make a similar statement regarding the sequence (s}) given by
s, =max (k: ptlal™'—1). (s, =max {k: 2|aZ—1} if p=2) Combining this
with Remark 1.3 we see that, if 4 is not a DD set, then there exists a de N such
that the base p expansion of &f is either of the form 10 .., 0% 0...01 or
of the form p—1,..., p—1, * ... * 0 ... Gl. Here the lengths of the initial and
terminal blocks go (o infinity with r {each length being realized at most C
times for a certain constant ().

Similarly to the real case, rational dependence can also be characterized
in terms of p-adic logarithms. Namely, let Log, be the p-adic logarithmic
function, which constitutes an isomorphism between the multiplicative group
14+ pZ, (14+4Z, if p=2) and the additive group pZ, (4Z, if p = 2), Extend
Log, to a function on Z} by

——l——LogI,x"'l,
Log, x = p—1
& 3Log, x4,

pP#E2, -

p=2.

A routine verification shows that x, 72% x iff Log, x, 7%z Log, x. Hence in
our case (a,) is rationally dependent of p iff Log,a, 55z 0.

Examprg I11.3, 4 = <2>mﬂ (2"+35 is a DD set for any infinite set S.

Note that this does not follow from Theorem 1.3 even if § = N.
ExampLr 1L4. Consider the set 4= (103°]] (2"+1>. Employing

nas
Theorem 1.3, one can show that if § = ¢k>* for some k = 2 then 4 is a DD
set. However, since 2"+ 1 78z 1in Q,, Theorem IL1 does not imply the same
result even for S =M. ' B
In Section 2 we give a general example of non-DD sets in the
homogeneous case. Section 3 establishes an analogue of Proposition 1.1, and
in Section 4 we prove Theorem 111
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2. A coumter-example; homogeneous case. In view of Theorem I3 and
Theorem I1.1 it is nataral, when looking for a non-DD set 4 of the form
given in (1), to try for (a,) a sequence of the form (a”+ 1),.s. It will follow
from Theorem IIL.1 that if § = N, for example, then 4 is a DD set. We shall
now show that, for sufficiently thin sets §, non-DD sets are in fact obtained.

Tueorem IL2. Let 4 = (a>*® [] <a™*+1). Denote
=1

;
Ny=mo— 2 m for keN.
i=1

Assume that (Ny) is bounded below and that Tim Ny = 0. Then BA(d) is

) k—ao
uncountable, and in particular A is not a DD set.
Note that if m ;> 2m; for each k, then both conditions of the theorem
are satisfied.

Remark T1.1. We do not know whether or not there exist non-WA
groups of an infinite non-idempotent type. However, it follows from the
theorem that if there are infinitely many Fermat primes then such groups do
exist. Similarly, one can show that if there are infinitely many Mersenne
primes then such groups exist.

Lemma 114, There exists a prime g such that (a, ) = 1 and (a"+1, g)
=1 for every nel. '

In fact, it is easy to verify that if g is any prime divisor of a®+a+1 then
it satisfies the required conditions.

Proof of Theorem I1.2. Choose g as in Lemma 11.4. Consider the
following two subsets of T:

A=T[q]\{0}, B={l/a" neN}.
Set 6 = g (A, B), where g is the metric on T Evidently é >0, and if xc4+B
then (||| = 6. Take an integer r with Y a ™ < /2.

n=1

According to Lemma 1.3 we may assume, omitting 'ﬁnitely many terms
&

from the sequence (n), that m., > Y, m-+r for each k. Define a sequence
i=1

(m);2 ¢ inductively as follows. Let mg =0. Suppose m,, my,..., m, have

. k
already been defined. Choose k for which ., > Y n+m+r. Set my,,
) i=1

o

=4 — L. Consider the point x = ¥ a . Given any x'e Ax we can write

s= 1

o o :
, - . : .
x'= ) a J, with () non-decreaging. W= ¢ -'m that Liyy > ;47 for each j.
j=1 : :

icm
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u
In fact, any I is a positive integer of the form m,— 3 n —e. It has to be
t=1
proved that any two such non-identical expressions differ by at least r. If the
expressions correspond to the same s, then this follows from the properties of
(n), whereas otherwise the construction of (m,} implies it.
' 0

Consequently, if x'edx then ¢(x', B)< ), a™ "™ < /2, and so the same

n=1
holds for every x'edx. Setting y = x-+1/g we readily observe then that || ¥
> 8/2 for any y'edy, which implies that yeBA(4). It is casy to see that,
substituting for (m,) any subsegquence thereof, we obtain another point of
BA(4). Hence BA(4) is uncountable, which completes the proof.

3. The basic tool. Analyzing the proof of Proposition 1.1, we observe that
its main part consists of a sequence of steps, each having two parts. After
each step we obtain a set, known to contain a certain finite configuration.
The first part of the next step is to get from our set another one, containing
infinitely many copies of the same, or of a similar, configuration. The second
part consists of obtaining a set which contains a “better” configuration than
the one with which we started. The key to the analogue of the first part is
given by

Proposition IL1. Let E be an infinite closed a-invariant subset of T. Then
for each le N there exist xV, xX?cE with x® —xMe T[4\ T[a''].
Proof. Given any yekE, consider its base @ expansion y = 0.y;y,....
An ntuple (cy, ¢3,..-, €,), With 0= ¢; < a for each i, is an n-block appearing
in E if there exists a yeE with
Yi+n—1 7 Cn

2 Ye=C1s Yrt1 =C25 -

for some k. {1 C3,-.., C,) is an n-block appearing in arbitrarily distant places
in E if for every ke N there exists a ye E satisfying (2). Let B;(n) denote the
number of n-blocks appearing in arbitrarily distant places in E. It is easy to
see that, since E is infinite, B4(n) is strictly increasing as a function of n. For
any meN we can find therefore two points x!» x*eE such that
xbm s xdm and x}im = x}n for 1<) < m. Take a sequence (m)2, such that

2ymg » (2

1, '
X e x and x5

It is readily seen that x(* and x‘® satisfy the required properties. This proves
the propositicn,
o0
Denote Z(a*) = {J T[a"].
k=1

Dermvrrion TL1 A s a DD, set if AE = T for every infinite T,-invariant
EcZ(a™).
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Derinmion I1.2. A closed T -invariant set E < T is T-minimal (or, more
briefty, a-minimal) if it contains no proper closed T -invariant subset.

Prorosmion 112, Ler (4,);2, be a sequence of DD, sets with 14, for
Lol

a0
each n. Assume that |) 4, la} is a PR set. Then {a>> || 4, is a DD set.

n=1 a=1
Proof. Let o be an irrational. Set:
EO = <a>xa)
E,=4,E,_,, nxzl.

We shall show that |J E, =T

n=1

Assume first that 0cE;, This means that the base g expansion of «
contains arbitrarily long blocks consisting of (s or arbitrarily long blocks
consisting of (a—1)’s. From this we infer that E, contains an infinite subset
of Z{a®), whence E, = T If E, is known to contain a torsion element, then
we similarly get that E; has a non-empty interior, so that E, = 7. We may
assume therefore that E, contains no torsion elements and, passing to a
subset of E;, that E, is an infinite a-minimal set.

R
Now assume that Og E, for some ». Fix me NN, and take be [] 4; and
=1
x®e B, with [|bx®)j < I/m. Since E, is a-minimal, the restriction of T, to E,

is onto, Find a sequence {x™);%, in E such that ax® = x4~V for each ie N. If
bx® —5> 0, then, taking a limit point of (x*), we see that E, ~ T[b] # O,
which 1is a contradiction. Hence for every I the set E, contains a point y'"
with o(y*", T[a'1\T[a'"']) < 1/m. Taking a limit point of (y*™., we see
that E, n(T[a"]\T[a""']) # @, and thercfore E, contains an infinite subset
of Z(a®). This implies that E,.; =T If E, is assumed to contain an
arbitrary torsion element, then, similarly to the first part of the proof, we get

O

E,., =T We may thus assume that {J E, contains no torsion elements,
: : n=1

Take a prime g for which our set is 2 PR, set. We proceed to show that

for each ! the set Eq, contains a translate of T[4']. Suppose that for some

0<k < g we have
X, x+mfg' .., x+m_,/q'cE,.

Take s with a° = { (mod g). E, is a-invariant, and hence &*-invariant as well.
It follows that

F=ixeT: x, x+m/q,... x+m_ /q'c Ey}
is an infinite closed a*-invariant set. By Proposition 1.1, and since diyqisa
DD, set, we have (a)* " 'd,(F—F) =T The set d,.,(F—F) is a-
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invariant, and so we easily obtain 4,,; (F—F) = T Similarly to the last part
of the proof of Proposition I.1 we now show that E,,, contains a translate
of a (k+ 1)-element subset of T[¢']. This completes the proof.

4. Proof of Theorem IL1. Given a (e Q,, say £ = Y, &, the fractional

=~k
-1
part of & is defined by {{} = .Zkéf,- d.
s
Lemma 115, Let E be an infinite a-invariant subset of Z(a™). Then there
exists 0 fe Z,\aZ, such thar {Efa"} e E for every ne N,
Proof. Select a sequence (x™) in £ with x™e T[a"]\T[a"~'] for each
n. Consider (x™) as a sequence of real numbers, and define a sequence ( y"i’)
by ™ = a"x™. Evidently, (y™) is a sequence of integers, none of whlc_h is
divisible by a. Let ¢ be a limit point of (™) in Z,. It is clear that { satisfies
the required properties, and thereby the lemma is proved.
For ¢« Z, we shall denote

&la® = {{&la"): neN} = Z(a™).

Obviously «*&fu* = Ela™, whence if E = /o™ for some £ 5 (¢ then there
exists a ;-)ositive integer s such that sE = &'fa™, where ¢'e ZF for some non-
empty J = H. Hence, given an infinite a-invariant E ¢ Z{a™), we shall
usually be able to assume that E = &/a®, where e ZF.

Lemma 11.6. If condition (2) of Theorem 111 is satisfied, then 4 is a DD,

set.
Proof. We have to show that, if E is an infinite a-invariant subset of

Z(a™), then AE = T. It may be assumed that E = &/a™, where (e Z7 gfor a

certain J < H, say J = G. Suppose that  =({y,..., &), and put g = ,-1:—[1 o
We may assume that

3) 1, (aafer = my, (@dfes = ... =1, (/e

for all n. In fact, suppose that (3) is violated for infinitely many indices n.
Split (a,) into two sequences {(b,) and (c,) such that, say,

n,,l(bn)/el = ,,., = npf(b,,)/ef < npf+1(bn)/ef+1 < ... < npg(b,,)/eg, n= 1
and (¢,) is rationally independent of @ in QF for every J< H. Put
S
a=[lr’
J=1

n=1

Setting E, = Z{g™) ﬁ ¢bo> E, we easily see that E, is infinite. It certainly
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suffices to show that H {cypE; = T, and so we may assume, replacing E by
n=

E,, that E = Z(a™). Repeatlng the process we arrive, within a finite number
of steps, at a situation where (3) holds for all but finitely many indices n.
Disposing of the exceptional n’s, we may assume that (3) holds for all n

From now on we shall use only the fact that (a,) is rationally
independent of a in Q%. Let ¢ = g.cd.(eq, €5,..., ¢). By (3) we see that the
sequence (n, (ay)/e;)ix, takes on at most e distinct valies modulo 1.
Splitting (a,) into e sequences, and replacing it by one of these, which is stiil
rationally independent of a in QF, we may assume that

4) ny (@) =rotdje,  1<j<g.neN

where (r,) is a sequence of non-negative integers and 0< d < e.

Let us now show that it may be assumed that d =0 in (4). Set 1,
=a,/d" For each 1 <j<g the sequence (1) lies in p; i Z* Assume first
that there exists a j for which D;{a)n dg’fel*,. =0Q. Passing to a
subsequence, we may assume that ¢, ;wzr ! in Z'pj. Define (a;} by a,

en

= I1 & Obviously, np.(a;,}/ej 1s an integer for each n, and we have
i=e(n~1)+1

A AL A— t°/a’. Since t%/a" lies in Z7, and is not a root of unity, (a,) is

rationally independent of a in QF. Substltuting (a;) for (a,}) we may assume
thercfore in this case that d = 0. Now suppose that

D;(a) n e Zy #O for each j.
Let Uj = 1+p,Z (U;=1+4Z, if p;=2) Define sequences (r,,);2  in D;(a),
1 i < ¢, by the condition
afmyel; n=1,23,...
Put
tnjzan/??nj_ls . n=1=21 3;“‘: 1<J.~<~Q',
LT [ ST Lg), n=1,23,,..
Since (a,) is rationally independent of # in Q%, we do not have ¢, +% 0 in
Q.. For each n take a number k =k(n), 1 <k <y, for which
npk (tnk)/ek “<'~ npj(rru)/eja 1 S] 5;- g'

For 1<k <yg denote by (1) the subsequence of (r,) consisting of those
terms 7, with k(n) = k. One of the sequences (1Y), 1 <k < g, say (1), still
does not converge rapidly to 0 in Q. Replacing (1,) by (") we may thus
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assume that
(5) npl (tﬂl)/el \<‘- npj(tnj)/ej1 1 :E:-‘J "'<-.. g-

Write ¢ = pj ¢, with (&', p;) =1, and
!
(6) tw = tao U+ ta PP L +t,,1,p11"+r+y,,pll"+r+], neN

where 1 <105 p—L 0t p~1for 1<i<r and g, eZ,, . Spiit {(a,)

into (p; —1) pi sequences, for each of which (t,;0, fhys,-. s Lay,) 18 mdependent
of n. Replace (a,) by one of these sequences, which is still rationally
independent of a in QF. For each / denote by N, the number (perhaps
infinite) of #’s for which we have /, = I in (6). Our assumptions imply that the
sequence (N}) is unbounded above. Reordering (a,) and passing to a
subsequence thereof, we may assume that (1) is non- decreasmg and that N, is

en

a multiple of e for each I Replace (a,) by (), where a, = [] a.1Itis
imefn—1)+1
evident that (a) is rationally independent of a in %, so that we may again

assume that d = 0.

Since d =0 the sequence (a,/a" lies in Z%. For each j we have
Dj{a)nZ7, = 2;, and therefore the notations introduced in the preceding

paragraph are still applicable. Write #,, = a"w,;, where w,€8; for neN,
1 €j < g. Passing to a suitable subsequence of (a,), we may assume that each
of the sequences (w,):% 1, 1 <j € g, is constant. Replacing (a,} as before by a
sequence (a,), each term in the latter of which being a product of several
terms from the former, we may assume that w,; =1 for every n and j. We
note that, due to all the modifications performed in {g,), it is possible that (5)
is not valid any more. Yet it is easy to see that there exists a constant C

such that
n,, (tale, <y (t,,J Ve, +C,  1<j<g.

Now let m be an arbitrary fixed positive integer. Write

dipit 1
nj—tj()pjj"j "-’+ij“" #i + ..
eyt tem—1 23l it S, it em
-+"njejm-117j”J M iy pyt Y
with 1<t 0<p~1, 0Kty <py~1 for 1<i<em—1 and Hoj€ Zp).

Additional modifications of {a,), similar to those perfm med earlier, enable us
to assume that:

(1} s,;=0for neN, 1 <j<y.

(2 lyzly+mfor neN. 1£j<y.

(3) The sequence (tuio, tur1s - tur,e,m—1n=1 1S CcOnStant, say

(E_-IO’ Flla“'a Fl.elm— 1)-
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Reordering («,) we may assume that in Z,, we have

eql+1

¥ - eyl | - ey {l+m—1
ay=a"(I+tigpy +t11 Py

+ .. +F1,e1m_1P1

e {!+m)

~+ Hn1 Px )s n=1,2,.., p‘;l"‘

while in ij, j =2, we have

e;(I+ m)

an:'_"'ar"(l”l'#nfpjj )’ n=1,2,.,., p‘ilm

where peZ, for 1<n <pit", 1<j<g For every 1 <n<pi!” consider

n . 1+m+‘:£' r
the action of [] @;ed on [é/a FleR:

i=1

[+m+rq{+...+r n
ayay ... gy (ga I =ttt
" .
— eyl - 2¢(l+m—1 gy (1+m) !
+{[H (L+iops™ + ... tlieym—1 P Tt Py )“‘“1]"51/a+m}
i=1

g n .
+ 3 AL Qb py ™ = 1] -8 fat ).
j=2 i=1

The first term on the right-hand side does not depend on n. Since

1< 1, < py—1, as n varies from 1 to p;t" the second term assumes all the
le

values kfpi!™, 0 <k < p;'"—1. The third term obviously vanishes.

It has thus beén proved that, for each m, AE contains a translate of
T[p:'™]. Consequently AE = T. which proves the lemma.

Lemuma I17. If (a,) is rationally independent of a in QF for every non-
empty J < H, then it splits into infinitely many sequences, each having the same
property. )

The proof is routine,

Theorem IL.1 follows immediately from Proposition I1.2, Lemma IL.6
and Lemma IL7. N

. Chapter III. Topological dynamics techniques

1. The main theorems; IP-systems. In Theorem II.2 we saw that if §is a
sufficiently thin subset of N then 4 = <{a)®[[<a"+1) is not a DD set. In
5

this chapter we shall deal with sets 4 of similar forms, and show that if S is
_ sufficiently large then the ensuing sets are DD sets.

Tueorem ML1. Let u and v be non-zero rationals, a = 2 an integer and
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S = N a syndetic set. Suppose that ua"-+v is an integer for every neS. Then

e 4 =[] (ua"+v)
neS
is a DD set.
TueoreM ITL2. Let a = 2, le N, (d)j- integers with do # 0 and d, = +1,
and S = N a syndetic set. Then

(2) A= dod"+dy a4+ . +d)
nel

is'a DD set.

In the course of the proofs we shall repeatedly meke use of some
terminology and results related to IP-sets, which we now review (for a
comprehensive exposition see [4. Ch. 8]). Given a sequence of positive
integers (n), the set of all numbers of the formn; +m,+ ... +my with iy, < i,

w .
< ... <i, will be depoted by Y {0, n). A set SN is an IP-set if §
=1

[} d
= ¥ {0, n;} for a certain sequence (n;}. If N = iU1 S;, then at least one of the
set; g‘, contains an IP-set [4, Th. 8.11], whence any syndetic set contains a
transiate of an IP-set. Denote by & the set of all finite non-empty subsets of
N. A homomorphism @:F — F is a map such that ¢ (f; Ufo) =e{(fi)v o(fs)
and f, ~f, = O = p(f) N (f2) = O. Such a homomorphism ¢ is determined
by @li} for zll i, which can be any disjoint finite sets f;. Then

@ ligs sy i) = fiy Uiy s U Sy

An IP-subset of % is the image @(F) of a homomorphism @: F — F. An
F-sequence of elements in an arbitrary space X is a sequence (X ) er.
indexed by elements of #. If X is 4 semigroup, we say that an #-sequence
defines an [P-system if Xg i, .00 = X Xiy 0 X0 for i; <iy < ... <i,. For
fi. f26 F we denote f; < f, if all the elements of f; are smaller-than all those
of f5. An F-subsequence of an F-sequence (x);, 15 an F-sequence of the
form (x ) jess Where @2 F — F is a homomorphism. Given an #-sequence
(x;) and a point x in a topological space X, we say that x; - x as an F-
sequence if for every neighborhood V of x there is some fye‘f such that
xceV for all f > fy. For any #-sequence (x;), taking values in a compact
metric space, there exists an F-subsequence (X,p) which converges as an F-
sequence [4, Th. 8.14]. Now let (T¥),., be an IP-system of continuous
transformations of a compact metric space X, ie, a system of maps 7¥:
X —+ X indexed by fe#, with 12 A2 for f) < f,. -For any
xe X there exist a subsequence (T?Y)) and a ye X such that TP x — y and
Ty y as Fsequences [4, Lemma 8.15). :



300 D. Berend

2. Proof of Theorem IL1. Throughout this section 4 will be as in (1),
but the assumptions regarding u, v and S will vary. Notice that a may be
assumed not to be a non-trivial power of another integer.

LemMa IIL1. Suppose that w and a are rationally independent and that §
is syndetic. Then 4 is a DD set. ‘

Proof. Assume first that u > 0. Let S = {n,, n,,...}, with (n,) monotone
increasing, and write o, = ua™+v for ke N. Fix a prime p for which a, u,
veZy. The set R, = {n: plua"+v] forms an arithmetic progression, whose
density can be made arbitrarily small by taking p sufficiently large. We may
assume therefore that S\ R, is syndetic and, substituting § \R, for S, that (q,)
is a PR sequence. It is clear that () is an SM sequence and that ¢" e Lim dfd
for an appropriately chosen me N. Since ¢ and u are rationally independent
and log, (ua"+1v) 555 log,u(mod 1), (4,) is rationally independent of g™ In
view of Theorem L1, 4 is a DD set.

If y <0, write § =5, US,, with §, syndetic and S, infinite. Set

4 =[] wa"+v> for i=1,2,
neS;

Let aeT be an irrational. By the preceding part of the proof we have
Zi_ocu —d;a =T so that Z}; has a non-empty interior, Hence
Ao 2dy4,0 =T This completes the proof.

Prorosmion TIL1. Let r. s and t be nown-zero integers with r and s
rationally independent, o an irrational and f arbitrary. Then TR S LAY B
m, n =0} is dense moduylo 1.

Proof. It suffices to show that for any ¢ > 0 there exists a positive
integer M such that the set (s "y 0 < m< M} forms an g-net modulo 1,
We may assume that r > 5 > 2. Choose a real number x for which {rfsy'x: n
= 0] is dense modulo 1. We can find a positive integer N and a
neighborhood I of x such that {(#/s)"y: 0<n < N } is an e-net modulo 1 for
every yel. Put I, =J/s" Pick k and | such that risiq = d+8 with
deZ, 6el{. We claim that {#+igtN=iy. ¢ €j < N} forms an g-net modulo
L. In fact, modulo 1 this set is just {(r/s¥s¥0: 0<j < N 1, which is an g-net
since s"@el. Thus, putting M = k+1+N, we see that [rmgM-my.
0'<m< M} forms an g-net modulo 1. This proves the proposition.

Prorosimion L2, Assume that u and v are non-zero integers and S forms

a translate of an IP-set. If ay®w containg no torsion elements of T, then da
=T _

. Proof. We may assume that § = k+S,, where k is a positive integer
with [ua*+9 > 2 and S, is an IP-set. From [5, Th. 3] we infer that there
exists an [e S, such that ue*+v and ua** '+ are rationally independent. We

oo

may assume thal’ Sl = {0: II}"‘Sz, th.‘rre SZ = Z {0, m‘}_ Let (Tf-)fe.‘r be the *

=1
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. . EL s goely -
[P-system of endomorphisms of 7 given by T'V2™" = Tm where m

= Er: m;.. Passing to an IP-subset of $, we may assume that TV a — o as an
J

=1 , . S
F-sequence for some ay. Our assumptions guarantee that g is an irrational.

For arbitrary fixed non-negative integers r and s we now have

1+r—1 tthrts—1

1—-[ (uak-fmf_l_v) ["[ (uak+l+m‘-+u)a

=t i=tr

= (ud + o) (ua o ag+ o (e —ay).

1t follows that (ua®+ o) (ue*™ '+ v ag+ v (e —ag) e da for every r, s 2 0. By
Proposition ITL.1, this implies that Adw = T This proves the proposition.

Lemma 1IL2. Suppose that a and v are rationally in_t_i_e_pendent and that S
is syndetic. If ~(ﬂa)%c contains a torsion element, then da =T

Proof. By Lemma III.1 we may assume that u = +a** for some k.
Replacing S by a translate thereof, we may therefore assume Fhat u=+1.
Write S =S, US, U S5, with 5; and S, syndetic and S, infinite, and put

4; =[] Cua"+vy for 1<i<3.
HES,'

e "
Assume first that Oe {ad>™®«. Select a sequence (n;) such tl:lat a 'a:x e O .
Since S, is syndetic we may assume that neS, kfor each i. Passing to a

subsequence we may assume that, putting N, = 3 m, we have

=1
a™[la™ Vot gm0

For every fixed r we then get

t+r—1 i
[T wa"+v)2 =z va.
i=t

It follows that 4, dsa = <w>* 4, «. Similarly to the proof of L'cmn}a IIL.1,
we may assume that {v>®d, is a PR set. Theorem [.3 now implies that

wy¥d, is a DD set, so that 4y 4, =T

In the general case the foregoing considerations show that Id, 4,0 =T
for some [ eIN, and consequently A, 4.« has a non-empty interior. It follows
that da = 4, Z;'E;EZ = T which proves the lemma.

Lemma IIL3. Suppose thar S is syndetic. If {a3®a confains a torsion
element, then Ao = T :

Proof. As in the preceding lemma, we may assume that O¢ <a>°“2. _1351(
Lemmas I11.1 and II1.2 we have to deal only with the case where u = &
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and p = 4 for a certain nori-negative integer . Let E = {a>®u. It is easily
seen that, since Oe {a)*u, E contains an infinite subset of Z(a*). Let fel,
be as in Lemma IL5 and d an arbitrary fixed positive integer.
Assume first that r = 0. Since § is syndetic we can choose a sequence (m,)
_ k
in § such that a" o =%~ {§/a°}, where e >d. Put N, = ¥ n. Passing to a
) i=1
subsequence, we may assume that a *{ja"t ¥+ 1 ol| 7= 0. For each k we then
have

t+2k—1
[T @a"+v)o e o™ at 20 u {807 = atk {2wE/ac)
i=t

where w == +1. Thus, «+k [2¢/a°) & Ao for each k. Since the order of 12¢/a")
Is at !east p%/2, p being the smallest prime divisor of 4, this means that dg
contains translates of finite subgroups of T having arbitrarily high orders.
This implies da == T

Now to the case r > 0. As in the proof of Lemma III.2, we can show
that

Az 2 (o)™ T ¢ua"+vde

L=

It suffices therefore to show that

for a certain syndetic §,.

(a)‘;”H ua+odu =T

nes

Let k be any positive integer. We cdn find a sequence (1) in S such that

n: -
4o =g (@RI for some e > d.

Passing 1o a subsequence we get, similarly to the former part,
t+2k—1
N .
. H (ua ‘+U)tl et v2*a+21;v2*“1u {é/ae-%(Zk—-l)r} - az’“'cx+k IZWf/ﬂ"}

i=t

w:;th w= £l Inasmuch as & can be replaced by any element of the form
@"a, we may assume that a™ o is arbitrarily close to 0. It follows that

k {2wé/a®) e (a)“’ﬂ-(ua"+v>a, and hence the subgroup of T generated by
ney

\&/d"} is contained in {ad™|] ua"+v>«. This shows that the latter set is T
. nes
itself, and thereby the proof is complete.

Theorem 1.1 follows directly from Lemma IIl.1, Pfdposition IN.2 and
Lemma II1.3. o ' : '
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3. Proof of Theerem IIL2. In the course of the proof we shall distinguish
between two types of irrationals as T those for which {a)®a contains an
infinite a~-minimal set and those for which it does not. It will turn out that, if
we deal only with points of one of these types, then the assumptions of
Theorem [I1.2 can be relaxed.

Prorosition 1.3, Suppose that A is as in (2), where § is a translate of an
[P-set and {(d). o are integers, at least two of which are non-zero. If (a)>™uo

contuins an infinite a-minimal set, then do = T.
Proof. Let E =@S;;. We may assume E to be g-minimal. Let

S mk‘l‘Sl, Whel‘c S1= Z {O, n]l}_
i=1

l .
If n is sufficiently large then a and Y, d;a!~" are rationally independent, so
i=0

l .

that a and b = 3. d,a"~"* may be assumed to be rationally independent. For
i=0 . .

1 €< ! we denote by (T/);, ; the IP-system of endomorphisms of T given

by pvizeotbl _pim - where m= Y. m . We claim that there exist a
=1 .

homemorphism @: # — # and a point o, € E such that TeU i, — oy as an
F-sequence for every 1 <j <1 En fact, this would follow at once from the
multiple recurrence theorem for LP-systems [4, Th. 8.19] if a_111 t.‘r.le
transformations T/~ were invertible. Now, since all the transformations in
question are powers of T, we can pass, as in the proof ofmTheorem 2.6 in
[4], from the system (E, (T9),e5,1<j<1) tO @ system (E, (T9 N ep 1 5<1) I
which all transformations are invertible. By [4, Th. 8.197 we can find a
homomorphism ¢ and a point & &£ such that T""m'-’o”clwéil as an F-
sequence for every 1<j</ The image &, of & in E has the required
properties. Replacing Sy and o by a suitable IP-subset of §; and by anotl'ﬁr
point of E, respectively, we may therefore assume that T/ o —2 as an -
sequence for each j. For f), for e Foowith f <fo < ... < f., denote

fl!JL Spodr ‘“
0f ity =HT P T o

Passing to an IP-subset of §,, we may assume that glfl,jl,‘,,,f”jr—vo as
minf; — oo, Given any non-negative integers » and s we then have

-1 | :
ar”ﬁ (Y djau-mmﬂk)){x —Y
i=mp  J= 0

Consequently a b oaede for every r and s, whence Ao = T This proves the
proposition. :
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Prapostrion I1E4, Suppose that {a>* o contains no infinite a~-minimal set.
Then for every positive integer | there exists a sequence (m;) and torsion
elements (x)i., in T such that

Jm;
a & am X,

1<j<l

Proof. Employ induction on I The case [ =1 is clear. Assume the
proposition to be true for /—1. Take (m)Z  such that each of the sequences

( i @2, 1 £j<I—1, converges to a torsion element of T Replacing « by a

suitable integer multiple thereof, we may assume that @™« = O 1K)
€ /—-1. Passing to a subsequence of (m;) we may assume that the sequence

(almf x)Z, is convergent, say aimiﬂtr-?ﬁ- Take a sequence (») such that

ain‘ﬁ %> X, where x is a torsion element. Substituting for (m,) a sufficiently
rapidly growing subsequence thereof, we may assume that

Jr; ;)
4 Va0,

l<j<I-1,

H{m; + ;)
a o e x.

This proves the proposition.
Proposrmion IIL5. Let

A= l—_[ <dgalﬂ+d1 a”””"+ s +d;_>
nes

where do # 0, d, = +1 and § is syndetic. Suppose thar there exists u sequence
{m;) such that for every j witﬂl; # 0 the sequence (au_ﬂm" @)%, converges to a
torsion element of T Then Ao = T.

Proof. Set D= {j: 0<j<I—1,4d;#0]. It is easy to see that we may
assume that
(3 a7 e 0, jeD.

Write D = {j,, jz,....J;} with 0=j, <j, < ... <j, <I~1. Put
d™h 0

T

and &:(aag!‘”,m) ,

0 aIHJ’

Consider A and & as an endomorphism of 7' and as a point of 7T,
respegtively. Set E={4"a: nz0). From (3) it is easy to conclude that E
contains an infinite subset of Z{a™). Similarly to Lemma IL5, this implies
the existence of a-adic integers (£ j}iep, mot all of which are 0, such that

(Efa® P NTpeE  for évery nelN.
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Take a prime divisor p of ¢ such that the p-adic component of one Qf the &;'s
is non-zero. Let D, be the subset of D consisting of those j's for which the p-
adic component of &; is non-zero, Select § such that at least one out of any s
consecutive positive integers belongs to S. Let d be an arbitrary fixed positive
integer. _
We can find a sequence (n) in S such that

-y

e )

jeD

where M = d-t—(l)s-i- max n,(d;&). Passing to a subsequence of {n;), we may
2 feDy

L !
_ ) . )
assume that there exist integers (rk)ig,) 0s With 0 < ryy —1 S8 for0gk < (2),

I gl
such that m+r.eS for every ielN and 0k < (2) For each 0k < (2)

d=dM=rdy o b Obviously, an’ equality of

consider the numbers n,(d; /o
the form

(1= 1M =rg) U“.fz)(M_rk))

np(djl é_h/a )'::np(d_,th/a

for some fixed j,, jo&D;, j, #J,, can hold for at most a single k. Hence for

" an appropriately chosen k there exists a jeD; such that

nyd; &fa ™) 5o, (d 2 eI, jeD )
Replace the sequence (n)%; by (m+r)=2, for that k. We have then
a“".i)nf (xT‘_‘,—Oa”?{ﬁj/au—ﬂN}, jED
k

where N > d+maxn,{d;&;). Putting N, = Y m we may assume, passing to a
Jebyq =1
subsequence of (m), that

amk”anlwﬁ)nkuaH == 0 for every jeD..

Then for each k

te2k~1 | N
(i~ Jyrg B + 2ked?* d f/aﬂ )] }
H' (J;deﬂ Yo g di o+ 2k {,};a 51

i=

=tk {2d Y, d;¢;a" "]
' JeD

It follows that dx contains a translate of a subgroup of T whose order is at
least p?/2. Since d is arbitrary, this means that do = T This completes the

proaof. -
Theorem II12 follows from Propositions IIL3-IIL5.
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