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“if each 4; is 1 or —1, and the 2, (1 €
-of K, not all zero. Write

‘ A =(.A1: “res
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XLVIIL (1987)

Bounds for solutions of additive equations
in an algebraic number field II

by
Wanag Yuan* (Beijing, China)

L. Introduction. We use the conventions and notation introduced in [4]

throughout this paper. Let oy, ..., a, be a set of integers in K. Consider the
additive form ' :

(1) Ala, Y=a a, M+ ...

where a ={a,, ..., a) and i=(4,, ..., 4,) are vectors. A set of numbers a, i
is called a nontrivial solution of the equation

2 Afa, H =0

+ oy ag A%,

< §) are totally nonnegative integers

|4l = maxl,ll, ..., IAJ) and  |4] oo Mgl

In this paper, we shall prove the following theorem by the combination
of the methods of Schmidt [1] and Siegel [3].

THEOREM. Suppose s 2 ¢, (k, n, §). Then the equation (2) has a nontrwml
solution with

(3) A <14

This gives a generalization of a theorem due to Schmidt [1]. He first
established the estimation (3) for the case of rational field.

If @, 4is a nontrivial solution of (2) with (3) for the case of k = 2, then a,
Ay, with A; = A} (1 €i<s), is a nontrivial solution of the
linear ‘equation

= max(1, [l

a_l 4 Al + ... +asa.tAs = 0:
having
1Al <1A4]2.

. * Supported by the Institute for Advanced Study, Princetbn, NJ 08540,
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Therefore we may suppose k > 1 throughout this paper.
K A is not identically zero, put

where o is a nonzero element in the integral ideal («y, ..., &) with the least

‘norm in absolute value and ¢, = ¢, (K) is a rational integer such that a|c, a;
(1 <i<s). (See, eg, Lemma 3 in [4]) We may suppose without loss of
generality that

IN (@) < loll < |N{(o)[*",

because we can choose a unit 7 of K such that no satisfies the above relation,
and use no instead of o. (See, eg, Lemama 1 in [4]) If A =0, then we put
A=A, ‘

2. Reductions. One can prove by Siegel’s method that if s > ¢, (k, n), then
{2) has a nontrivial solution with :

@ | 1A < Af**",

Let X be the set of x such that if s> es(k, n, x), then (2) has
a nontrivial solution with : )

Al < 4],

(4} shows that X is not empty. Let x be the greatest lower bound of X. The
conclusion of the theorem is x =0. We will suppose that x > 0 and we will
reach a contradiction. .

We may choose y such that

(5} o 0<y<x and  x+kx?—kxy—k*x?y <.
(See Schmidt [1], p. 222) Take z so small that
(6) y4+12xz <x, z<y/10, z<1/10.

_Theﬁ pick X with
)] max(y+12xz, x—xz/(2n)) < x' < x,

" We proceed to prove that x'e X. It will suffice to prove the assertion when
- |4l 1s large, say |4} = ce(k, K, X). (See Wang Yuan [4]) And we may
“suppose clearly that o; # 0 (1 <i<s). Finally, pick x” with

(8) max (y+12xz, x—xz/(2n)) < x", < ¥’
and choose ¢; such that

SO (e X ek <.
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Since

1< [Ny = |ocf,-1) . .af,-")] < ]ac},“| jA|"t
we have
min e = (4],
L
Divide the interval [—n+1, 1] into a finite number of intervals {I} of length
< &;. One of these intervals I, will be such that there are not less than s
numbers among o,'s satisfying '

|f13-1)| = |A|e1; = Ilr

n , . '
where s, = s/ ([8——‘+1) We may suppose without loss of generality that
! 1

gy vems Oy satisfy the above relation. Similarly, there exists I, e {I} such that

there are at least s, numbers in e, ..., ) satisfying

I“S’z)J = 4|2, eel,,

‘where

soaf(fe)>fll )

We may suppose that ay, ..., &, have the above property. Continuing this
process, we obtain ¢ numbers among &’s which we may suppose to be
%y, ..., 0 Such that :

(10) P/l < |4,

W

1<j,l<t,1<i<n,

where ¢t = § / ([—n—:'+ 1) .
. &y

Suppose that if «,, ..., satisfy (10) and t = ¢, (k, n, X'), the equation
o o @ . Al AF =0
has a nontrivial solution satisfying
oax |40 < AP,
+J '

" . .
Take cs(k, n, x) = (]:—5{‘—}-1) ¢y (k, n, x) and set @y =a, =4 (1 <i<1)
) .

a =1, ;=0 (t <i<s). We have a nontrivial solution of (2) with
Al <1417
Hence we may suppose that the coefficients of (2) satisfy

ay  WPePl<i4t 1<ii<s, 1<isn
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Let o; (1 €i<3s) be a set of totally nonnegative units such that
(12) IN (@)1 < o o <N (o m,

(See, e.g, Lemma 1 in [4]) Let a" = |A|"" max |N {x}| and let P; be the largest
rational integer such that

IN () P" < a”,

Since A} > ¢ and a"/|N ()} = |A|™*, we may suppose

a 1/(kn)
P122””"‘”’(|~"——-—) ., 1<gi<gs.

1<j<s, 1<ign.

1<igs.

N (o)l
Hence
IN ()| Pf* = % a.
Set
(13) a =06 PY and A =o7'e,PA, 1<i<s.
Then

Ay{a, X) = oy a AT+ ... +aa, A = ok A(a, 2,
where 4 =(1},..., ). By (11) and (12), we have

a<fefi<a, 1<j<s,1<ign

and

BV (0} (i} — 1
(14) o0 gl = (5
P a1
- eqlk 2eq/k
N () ME N () HE AT 4T,

1<jgs, 1<<ign.

17k

Since
IN (o) =A™ |N ()] mjax [N (@)l)4r™ mftx |N (at))]
=a"|N (o) 14" ™ /max N ()| > a" | 4]~ 2™,
we have
N a" 2ne
(15) Pt SMW(O#:)I giAl 1

Suppose that the equation A, (a, 4) = 0 has a nontrivial solution such that
1] < lAl_l"" < g @_MF\“H)#”’

Then it follows by (9), (13), (14) and (15) that (2) has a nontrivial solution
satisfying S ’ :

M <At g gy

icm
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Thus it will suffice to prove that if s ¢y and if o (1 <i< 8) satisfy

(16) coa <[af <cjpa, 1<j<s, 1<ign

¥

where cq = cy(k, K), ¢14 =100k, K) and a> cglk, K, x'), then (2) has a
nontrivial solution with

(17 1Al <™.

Of course ¢z depends on k, n, x”, but since k, n, x, Y, 7, X, x are fixed,
we will not indicate thé dependency of ¢4 (and of subsequent constants) on
these parameters.

We shall first prove that this assertion can be derived by the following
Proposition 1, and then give the proof of the proposition. _

ProrosiTioN 1. Suppose that o; (1 <i<s) satisfy (16). If s = ¢y, then

either (2) has a nontrivial solution with (17) or there is a nonzero integer y such
that

(18) VA(a, H=yx xeP@™), AieP@), 1<i<s,

where each a; is 1 or —1 and ; (1 <j < s} are totally nonnegative integers of
K, not all zero.

We may suppose that cs(k, », 2x) and ¢,, are integers. Denote v = ¢5,
u =cyy and s = uv. Replace the indices 1 < ! < s by double indices 1< i < v,
1 <j<u Then (1) becomes

A B =¥ 4a, 1),

thrc L :(ail: sy ﬂm), ;'i =(1I1, -.--, j-m) and
Afe, k)= 3 ayaydl,  1<i<o.

=1
If there is an equation, say 4,(a;, 4;) =0, which has a nontrivial solution
having

4l <a*,

then we have directly a nontrivial solution of (2) with (17). Otherwise it
follows by Proposition 1 that there are nonzero integers xy, ..., ¥, satisfying

A, 4} =y, Zeep(aﬁz)a ' qu. P(a),

where each a4; is'1 or —1. Since the equation

i<y lgjsy,

B(bs ”) = xxbl .uli“}' vin +vavluﬁ =0
has a nontrivial solution with '

el < max |[g)>* < a2,
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the equation (2) has a nontrivial solution b; a;, ¥ 4y I<ig
satisfying

v, 1 <j<u)

max [|w Ayl € |lal| max || 4] € @13 <o
%) i .

b

by (8). Hence it remains only to prove Proposition 1.
3. The circle method. Let
(19) f=g and =gt

Let I'(f) be the set comsisting of y=2x;0,+.. . +X,0, Satisfying
(X1 ..oy %) € Gy, % (1 <i< 1) rational numbers, y— a and N(a) <. For
any 'yel"(t) subject to y— o, we define the basic domain B, by

{E TP ST
such that A[[¢ —y,| < 1 for some y, = y(mod 6™ 1)}. .

xn)EGm f =X Ql+ tr +ann

We may prove that if y; % y,, then B,, N B,, = @. In fact, suppose there
is a {eB, NB,,, ie, hll{— voll < 1, where Yoi _yi(mod 671, i=1,2 For
simplicity, we set yy =¥ (i = 1, 2). Denote

max (h)E® —y®, ) =0, 1gjg21€isn
I J

TN

Then

[]af <1, j=12,

max Pl g,
and thus - |
[0 =1 <169 =39 +180 1 < b 6 +08)
= h 1 g g (Gm 1 a“’ g ke ot
Suppose y; — & (1 =1, 2). We have
| N(oy a)IN(y=ya)l <(@h71ey < D72,
Cs- On the other hand, o, 0, (7, — yz)é is an integral 1deal and thus
N(aag) [N(y—y i 2 N(@ =D

This gives a contradiction, and therefore the assertion follows.
" 'We define the supplementary domain E by

20y C - E=G,~ |) B)l!
) . el ’

since a =

We use the notations

5mx191+...4_x,,g,,, _ dx'=dx1...d'x,,, B=a”, H—a

(21 5.8 = Y Elgéad), 1<igs S@)= HS (5)

ieP(B} - = o i=1

icm
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and

F@= ) SOE(-&w,

2eP(H)

where a; (1 <i< s are defined by

)] |l
L I e — o 2F 1 < ,
(22) Qap-1 “%—1 Q1p a(ing)) ( 2P% rl)
a=1 @@r+l<j<s).

Let Z denote the number of solutions of the equation
ayoy i+ e A=y

in totally monnegative integers A, ..., 4;, x satisfying '

veP(H), MeP(B), 1<ix<s.
Then
23) =y [F(&di+ jF(f)dé
yell)) B,

We shall,show that under the assumption made in Proposition 1, either (2)
has a nontrivial solution with (17) or Z is > 1.

4. Supplementary domain. In this section ¢, = +1 (1 <i <
not restricted by (22).

LemMA 1 (Schmidt). Suppose that

< 5) which are

1R gnd | Y E@EAM =C

AigP(Ty

TchZ(k’ K: 52)1 C2T

where G = 2*"1. Then there exist a totally nonnegatwe integer o« and an
integer B such that

Jee& — ﬁ||<( ) T *

and
< o] < <( ) T2
See, e.g, Wang Yuan [3].
Lemma 2. Suppose that 5= ¢y3 and EcE. Then either
(24 |F (&) < H" Brs~R g2

or there is a nontrivial sclution of (2) with (17).
Proof. Take &, such that

(25) 0<gy <Crg < 1/(20)
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where ¢,, is a constant to be determined later. Set

{26) =cs(k, n, x+e;) and h=m?
Choose ¢, (> 8 kn) sufficiently large such that if s > ¢;5, then
n(k+2/y)
—=L g
s—h+1 b2,
and by (21), we have
:; (B&aZ)nj(s h+1) _ Bn(k+ 2/p)(s— k1) <B"2
If (24) fa11s to hold, then
B"(8,(5)...

5. » F(&) = H" B~ M a7
We may suppose without loss of generality that
IS0 = ... 215, ).

Hence we have :
|Sy(§)F~HF LB 5 pris=hl g=2a,
and thus by (25), _

MG Bn(s-h;—k+1),'(s—~h+1)a-2n/(s-.ﬁ+1)

> Bn(BkaZ)—n,‘(s—-h+1) > B %2 - B" 1/G+52,

I<igh,

Take C=B"""? in Lemma 1. Then it follows that there are totally
nonnegative integers g, (1 <i <) and integers 8; (1 <j<s) such that

on 62 0y~ Bill < B,
0<llofl €B*'2, 1<i<h y
Denote 7, = 0¥ (1 <i<h). Then -

““e”k ey —pll < B2, 1gigh,
Therefore by (16), we have

_ Hé%“i -1l <

llo; o £ — oy o wilt < 8oy 0§ — ) oy ol + W oty of — 1)ty

.<<aB""k+4kG£2’ . lsi’jgh:’
= (a0, 7) (1 <i<h) satisly

Let B be a nonzero element in the mtegral idea (x; 0%, 7)) with the least
norm in absolute value. Then B[cza,a* and Rlcaty. (See §1) Set -

ey 0f =fg, 1y = pr and f (0' 7).

ie, the vectors f

<i,j<h
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Then
cafy = Bf.
We may choose B such that
@ ' IN ()" < |lol| <IN (@)™
(See, e.g, Lemma 1 in [4]) We have also two integers ¢’ and 7’ such that

B=ua, 0{7’*11 o',

therefore
_ ¢, B = Bot' — pro’,
ie.,
(30 ¢c; =0t —10".
Set ‘g = (¢’, 7). Then by (30),
fi= ezt of ezt g,

where.

o 0f o o oot .

" d o= , 1<i<h
@ " and ¥, _— sIs

are integers. By (27), we have

. N(o']) < |0‘m| Bz(n- 1)662
ie.,
(31) |o®] = B2 <j<h1<ig

= Bo, we have by (16), (27), (29) and (31) that

- 2k(n— 1)Gay
»

Since ¢, afat
32 alol" B2 » |89 » allol ™' B
Therefore it follows by (28) that

33) kel = lldet(f, Al < c2 maxlﬂ")l‘l ildet(fn il

—k+ 6knGsg

1gi<gn

=M, 1<i<h.

< ||| B :
h by double indices’

1. Suppose M > 1. Replace the indices 1<i<

1 <i, j < m. Define

m
Aiay, &)=Y Yyaafh, l<sism,
. =1

where @; = (@1, ..., @) and A =(dy, .. LA (I1€i€<m It fo]lows by (26),
(33) and the deﬁmtlon of the set X that the equation

l( &, _i)""’
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has a nontrivial solution having
(34) Al €M™,
Let

1<i<m.

. " m ‘
g= 2 aydify=ci (L adfon)f, 1<i<m.
=1 i=1

The first coordinate of g, is
m
ﬂ‘-=(,‘;10'2aijlqu)u, lé_fém.
. =1

Therefore ¢, /o (1 € i € m) are integers. If ﬁl, .-+s Bm are not all zero, then
let x be a nonzero element in the integral ideal (B,, ..., B,) with least norm
in absolute value and satisfying :

IN (1" < i) < [N (ot
Then o|c,y and by (29),

llolt <zl
Consider the form

L
B(b= #) = Z ﬁibiu:‘:,
i=1
where b=(by,..., b,) and u=(y;, ..., W,). Since -

m

Bi= Y, ayijoye,  1<i<m,
j=1
we have by (16), (27) and (34),
IBIl € aB™*2 M™%, 1<igm, ,

and therefore the equation Bk, y) =0 has a noﬁtrivial solution satisfying
s DY LA AL
| ol )
Consequently {2) has a nontrivial solution
biay, moydy

I} < max (1,

(l<i,j<m),

_ q=1, A4=0 (h<l<s)
satisfying
. - ’ . aBZkGez M(Jc+zzik)x+zz:

1AL < B2 "2 max (1,
Ale? - ol

icm
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2kGegy y JAx+eg)k+ 1y x+eg
26 aB M
< B"""? max (M, :

llel

2Gey pxte
=BT, say.

Since ¢; ey 0% = fo, by (27), (29) and (33), we have
llol] < aB™? (max |p7) " < aB™2,
i

~k-+8knGgy
Ty

M <€ aB
and therefore

[ « qBY®ea pylereacht liol|~*

' 2kGe x+eatk+1 - —k+ 6knGz
= B Oz YR -1 g 2

< aB

—k+ 8knGeg (aB"H BknGaz)(x+ o)k
Since a > cg, We have
l4ll < a

Hence if ¢;4 is sufficiently small, then by (5) and (8), we have the desired (17).

2. Suppose M < 1. We revert to the indices 1 £ i < h. By (33), we have
Y, =0 (1 <i<h), ie, cfi (1 <1< Hh) are integral multiples of the integral
vector f. Let : ‘

Xt kx® —kxy-kzxzy +eq 5ik,men

h

B(b, = Y o ofbt,

i=1l

where b = (b,, ..., by) and g =(, ..., ps)- Let ¥ be a nonzero element in the
integral ideal (x;o%, ..., a,0%) with least norm in absolute value and
satisfying |N (01"  |lxl} & [N (0" Then ¢|c, x, and thus [o|] <]lx||. Hence
the equation B(b, ) =0 has a nontrivial solution satisfying

el < max (le; o) ol =42 < (@B™ % |afi =472
i

It derives a nontrivial solution of (2):
al=bi1 A‘i=a_hu’i (1‘§-l$h)s
a=1, AL=0 (h<j<s).

If ¢,, is sufficiently small, then
IIJLH & BZG&Q (aBZkGuzlgo_”_._l)x-Hz

- ax+az+ 2Gyay + 2kGy(x+£2).n2 ”au—r—az

< 'a'x-‘!-:xz,'(Zn) ”ﬂ.!lH:c .
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If |jo]| = a*", then by (8), we have

”An é ax*xzf(ln) é-a"",
ie. (17) is true. Now we suppose that [|af| < a*". Then by (27) and (31), we
have

=0~ bell = g =ai o7 ol < max el 3 il
< ~1Bz(n—1)G=z k+wsz< —-1- ky+z/n = p~!
if ¢;4 is sufficiently small. Let cr“lré = b/a, (a, b) = 1. Then a|o, and thus
N(0) < IN(@)| < a* ="

This means that {eB,, where y = ¢~ '1(mod §~!). The lemma is proved.
5. Basic domain. We use the notations
(35) E-y=1{,

Gy =

M=yt o Y0y, dy:dJ’1---dJ7m

Y E(@upty (<i<y,

plnoda)

6() = H G0,

N(o™?!

L, B = [ E(@an*ddy (1<i<y)
FiB)
and -

[1 L. B),

i=1
where a; (1 <i<s) are defined by (22).
Lemma 3. Suppose that {eB,. Then

I(, By =

519 = Ga(v)la(C, B)+0(a™" B 1),
See, e.g., Lemma 12 in Wang Yuan [4].
LeMma 4.
L, B) < [T min(B, a~ %[~ 1 gi<s.
i=1
See Siegel [3], p. 335.

Lemma 5.

§ SQE(—18)dx = GO)E(— 1) [ 1, B)dx+0 (B a=m9,
B'}‘. ; Ey ’ ‘

icm
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Proof Let

(=u, (<p<ry) [@=ue™

The Jacobian of xy, ...,

q 5 ¥y +r2)-_

x, with respect to u,, u,, @, is
D222 T 4,
9
Suppose £eB,. Then by Lemmas 3 and 4, we have
S() =6, B+0(B**a*).

(T1+1 -<..

Since by (19),
[dx <h "= a7t
B

and by (6),
S {(1+2m)z—y < ~Tz,
we have

(36)  [SEE(—xDdx

=GO E(—x) [ I, BE(~x{)dx+ 0 (B a™""7).
By,

In the integral on the right-hand side of (36) we replace E(—x{) by 1. The
error is '

B™ J‘ ”xC”dx Q,BM'Hh—"‘_l < Bn(s-—k) a»—n—‘.'z
By
by (19) and (21). Hence
—x8)dx = GG E(—xy) [ 1, B)dx+0 (B¢ ¥ a™"" 7).
BT
Xf (xy, ..., X, is a point of E,—B,, then the inequality h|IW] = 1 is true for at
least one index i. Since s 3 ¢;3, it follows by Lemma 4 that

j ¢, Bdx < | ([T min(B, a~ {9~ M) dx

Ey- By E,—B, =1

< j a~ Py “”‘du)(jnnn(B‘ ""”‘.v”’“)dv)rr1
=

r

x{ [ [min(B*, a"z’”‘w"“"‘)wdwdqo)
—-n O
+(III111’1(BS| —sjk —s,ik)du)r1 ]: ?a—Zslk _2""+1dud¢) )
~n =1
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FL-

x(f [min(B*, ﬂuzsfkw"“”‘)wdwd@)'z'l
~n 0 Co

@\ a_s/k hslk_ 1 a— r1—1 B(s-—k)(rl —-1) a—-Zrz B2(s—k)r2

+ a~r1 B(s—k)r]_ - 2sfk hz_g/k.... 2 a— 2(rg-1) Bl(s—k)(rz -1)
& B~ 0n=1) = sk nt 1 (Lt z/n)(%~ 1)

+B(3~k)(n-. 2) a-— 2é/k— nt+2+(1 +ky—zjn)(%‘-l-— 2)

+2 2zs 2z

@B"(s"k)a—"(a kn g +"t7)
@Bn(s—k)amn—‘?z‘

The lemma follows by substitution into (37).

6. Singular integral. Let

7 =yioi+ ..+, =xio+ ... +X0.
&y = dy..dy, dx =dx,...dx,
§=By and [=g~lTkyp,
The Jacobians of y,..., y, and xy, ..., x, with respect to ¥i, ..., ¥, ﬁnd

X1, ...s X, are B" and (a1 7%)" respectively. Define y; = ag/a (1 < i < 5). Then

unl =y, 1<i<s,
and by (16), we have

(38) Co <[P <oy, 1<j<s,1<i<n.

Let us write #’ and ' as 4 and { again and let

10 =11 LO

i=1

L) = {E@y nOdy (1<i<s) and

where P = P(1). Then

L, B =BL(©), 1 siss,

and thus

- (39) §I(¢, Bydx=B"%g™" [ I({)dx
: : E, . E

; LEMMA 6.

jI ©ds =D s’“k‘ IN Gyl T F, [T B,
. P 9

n
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where

g
Fo={ [Twh* tdw,...dws_,
U, i=1 .

in which U, denotes the domain
O0<w S, 1igs, wy=wy, yEwit .. dw,

here the sign before w; is the sign of a;y{" (cf. (22)), and where

H, = | H wi~ldw, ...dw,. deo,...dp,_,

'Vq i=1
in which V, denotes the domain
OS w<h?® (1Ki<y), —-n<g;sn (Isj<s-1),

ip Py
|wl"2 Ly pwk et

The proof is similar to that of Lemma 16 in Wang Yuan 41

7. The proof of the theorem. We have
Y1 Yy N@<}y d2<t3"—-a
rellz) Nia} €17 dgt
If (24) holds, then by (23), (39) and Lemmas 2, 5 and 6, we have _
7z = Z jF(C)dx-b—O(H"B""”“’a”‘ 4z)
yellty By
=Jo &(t, H)B* Pa "+ O (H"B* Ma " %),

where .
Jo = DAL= N (y, .9 F,[1H,
P q
and :
G=C¢t H= Y Y GOE(-.
xeP(H) yel(t)

Let Z* denote a sum, where y runs over a reduced residue system of
(a8)" 1, mod 7. Then

Y Y6 X

N@E=1 7 xeP(H)
= &+ &,, say.

We have

T 360 L ECwm

L<N(pps ¥

E{—yp+

S = 3y 1lzH"
xeP(H)
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(See, e.g., [4]) If N(a) > 1, then
Y E(-m=
x(moda) ’

Therefore if the domain ye P(H) has to be split up into a union of complete.
residue set {mod a), plus a few other, remaining elements, say R elements,
then

R QH"—I N(a)"",

and thus
S < Y YHTIN@U<HT ¥ N(g't
Nigpsim ¥ Na€a”
<H11~1 Z da _@Hn—ltttn@Hn—z:.
FESL ’
Hence

S » H"
It follows by (38) that J, > ¢,4, and therefore
Z>c¢H' B Rgmns

if a>cqlk, K ). The theorem is proved.
Remarks. 1. The inequality (3) can be replaced by

max N <max(l, [Ny, ..., IN@)F.

(See [4])
2. Consider the equation

(40) A(D =

foi)»f

i=1
, 0, are given mtegers in K. If k is an odd number, then

w A =g (1<igy).

Ifr, =0, ie, K is totally complex, then the singular integral J, is always
positive. Therefore in these two cases it follows by the theorem that
if s 2 ¢y5(k, n, ), the equation (40) has a solution in integers 4, ..., A,, not
all zero, satisfying

where a, ..

1Al <Al

3. We can further considér the problem of the estimation of bounds

for solutions of certain dlophantme mcqualmes in an algebraic number
ﬁe}d (cf. [2]). .
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