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On unit solutions of the equation xyz =x+y+z
in the ring of integers of a quadratic field
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R. A. Mowrun (Calgary), C. SmaLL (Kingston),
K. Varaparalaw (Calgary) and P. G. Warsu (Calgary) ®

1. Introduction. This work was inspired by a study of the equation xyz
= x-+y+z = 1 which is known to have no solutions in the rational number
field O (see [17, [2] and [3]). In [4] this equation is studied over finite fields,
and a precise count is given therein of the number of solutions in the finite
fields. It is natural to ask the more general question: What are the solutions

- of xyz = x+y-+z =u where 4 is a unit in the ring of integers of a mumber

field? Equivalently; what are the solutions of xyz = x+y+z where X, y, Z are
units in the ring of integers of a number field? It is the purpose of this paper
to completely solve this problem in the quadratic number field case.

2. Results. In what follows Uy denotes the units of the ring of integers of

K= Q(\/;i), where d is a square-free rational integer.
TueoreM. There exist solutions to:

(*) u1u2u3:u1+u2+u3

where u,e Uy for i=1,2,3 if and only if d = —1, 2 or 5.

A complete classification of the selutions for each d is given in Table 4
following the proof of the theorem.

Proof. First we consider the case d < Q. If d# —1 or —3 then Uy
= |+ 1} and the equation (#) is clearly not solvable. If d = — 3 then we claim
there are no solutions. Let w denote a primitive 6th root of unity. Then v
= w" where 0 <[, <5. If any two of the I’s are equal, say [, = I, without
‘ Uty gt Byl

2. However for

. . 1+

foss of generality, then w implies w'!
I;—1

whence w'! ?—w3 " =2 and
I -1

0l €5wegetwi—w '=0or

* The first thres authors research is supperted by N.SER.C. Canada, and the fourth
author was a senior undergraduate mathematics student at The Umversuty of Calgary at the

time this paper was written.

i -1
so wiwl-w Y=
—3, which yields a contradiction in
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any case. Therefore all of the I's are distinct. If any I is 3, say I, without logs

of generality, then —1+w2+w'® = —y/2%5

W' = (L= w31 +w'"?).

, whence

Therefore (1 —w'?)® = +(1+w?® and it is straightforward to check that this
leads to a contradiction. By a similar argument no l; can be 0. Only four

cases remain for the . They are dismissed in the following chart where 0
<l <l <l g5

Table 1
I Loy WYy
1 2 4 w w?
1 2 5 w? w
1 4 5, w* W
2 4 5 w? w
The remaining case for 4 <0 is d = —1. Here Ug = {41, +i! where

i* =

= —1. Let i*72" 3 o1 ja b Using similar arguments to the above
it can be shown that any two of the I/s are equal if and only if all the I7s
are odd and this case yields solutions of (*) which are permutations of
+(i, i, —i). The remaining cases where the l/s are distinct yields solutions
of (x} which are permutations of (1,4, —i)

Now we may restrict our attention to d > 0. Let £ — (a,+b, \/E) be the
fundamental unit of K, and set E' = (a; + b, \/E)’ =u+b \/c_i for any integer
I (with the convention that a, = 1 and b, = 0). Since Ug = {+E" leZ) then
we may assume without loss of generality that u, u, u, = E'L 72273 (since we

may multiply by —1 otherwise). Therefore only two possibilities occur,
namely either:

Ell+i2+[3 — Ell-'—El:-}-Ela
or

E!1+12+l3 . E“—Elz'——E,a
(up to order). For convenience sake set § = +1 and set

e =ugtpuy = E1TTE o g spia spis + dutly + Sudl

where duj = u; for i =2, 3. Hence:

(11.) ail +I2+!3 = al.l alz a13 '+a(3 bll b[z d‘|"’a;1 b’Z bza d‘+” al2 bll bl3 d
= a, +5a12'+5a_,3

icm
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and
(1.2) bfl tlgtly ™ a[1 ars bI2+ al,?. aIS bll +b11 blz bza d+ ﬁ[l alz b13
= br‘l +5b12+5b13.

Multiplying (1.1) by g, , and subtracting (1.2) times b, d yields:
(13) N(ul) [alz alS + bIZ bIE! d—' 1] = 5 [a;l a;z + a;l a_[3 —b[1 blZ d_bll bl'_’: d}
where N(-) denotes the norm from K to Q. Also:

N (W) = (@, +8a,, +8a,,)> — by, + b, +5by,)d
whence:
(14) [N (ug)—N(uy) =N (uz) — 0N (u3)]/2
== 5(&11 a12+a11 a;a _bli blzd_bll bl3 d)"‘ a12 a;a —b12 b;a d.
Combining (1.3) and (1.4) yields:
(15) [N (uy)— 0N (uz) — 6N (uz) + N (ug) /2
= N(ul) [a;z a;s +b12 b[a d] -+ ﬂ;z ala - b;z b[3 d.

Now it remains to analyze (1.5) in terms of the ordgred 4-tuples
(N{uy), N(uy), N(us), 8) of £1's. The following chart contains the values
(exactly half) of these 4-tuples which lead to either a;, a,, =0 or by, by, d = 1,

both of which cannot hold. Hence these values yield no solutio.ns._

Table 2
(N{us), N(ua), N (3), 8) result

(1, 1,1, 1) ay, fy =0
L1, -1,1 a, o, =0
(1,1, =1, 1) ay, g, = 0
(, -1, 1,1) a, @, =0
(i, -1, 1, -1 ay, &, =0
{1, -1, -1, —1) a, &, =0
(-1, L 11 by, b d =1
(-1, -1, -1, -1} bybd=1

The next table vields the remaining half of the values of the four-tuples
which do yield solutions. They imply either that a;, @, =1 or b‘lz-.b,3 =.O' In
cither case we get the same set of solutions, the details of which will be
discussed after that table.
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Table 3
(N(ul):r N(uz)a N(';’la)a 5) result

(1, 1,1, =1) a, a, =1
I -1, -1 ar,ap, =1
(-1,1,1, =1 b, b, =0
(-1, -1,1,1) b by, =0
(=1, =1,1, =1) b, b, =0
X (-4, =11 biyby, =0
(-1,1, =1, =1) by, by, =0
(-1, -1, -1, 1) by by, =0

First we consider b, b, = 0. We may assume without loss of generality
that b, = 0. Therefore a,, =1 and we are left with

ul = 5“’2"‘5 = u1 utz.
Therefore

wy = (wy + 8 uy —0) = (ay, + by Jd+EWa, +b,, \Jd—5).
Multiplying numerator and denominator by (a,l—bzlﬁ —4d) we get:

1ty = (N ()~ 28b,, \/d—1)(N (uy) — 260, + 1),

However, from Table 3 we see that N) = —1 so:

(16) g 61y = (1+8by, \/d)fa,.
Since 2a) €Z then a s{tl, +2, £1/2}. We now analyze (1.6) for the
various values of a, .

Il g, =+1 then d=2 and b, =41 If q, =1 and 6=1 then
w=1+£2 Su;=1+./2 and duy=1. If @, =-1 and §=1 then
wp=—1t/2 owy=-1F/2 and Suy=1 If aq =1 and 6= —1
then uy = 13./2, Sup=1F./2 and duy = —1. If a, = ~1 and § = 1
then u; = -—li\@, Ouy == - 1 i\/ﬁ, and Juj = ""1:. Hence all solutions for
the case @, = 11 are permutations of i(1+\/2, 1+\/5, 1), i(1~\/§,
1—2, 1) and +(14./2, 1-./2, =1).

Xf @, = +1/2 then b, = £2 and d=5. If @, =1/2 and 5 =1 then
= (1%/5)/2 6wy =24./5 and Suh = 1. If & = ~1/2 and 5 =1 then
wp=(~1£./5)/2 duy = —2F./5 and ouy =1 If 4, =1/2 and 6 = —1
then u, = (1+./35)/2, duy =2F./5, and duy= —1. If a, = —1/2 and

= —] then u, = (——1¢ﬁ)/2, duy = —24./5 and Sui = — 1. Hence all sol-
utions for the case a;, = +1/2 are permutations of +((1+ \/5)'/2, 2+ \/5, 1),
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+(1=/5)/2,2-/5, 1), £(1+/3%22-y5, 1) and  +{1-./5/2,
245, —1). ' 7
If @;, = +2 then the roles of u, and u, are reversed in the previous case

and no new solutions are found.
Finally one may check that an analysis of 4;, 4, =1 yields exactly the

same solutions as in the above cases. This completes the proof of the
theorem, and the results are summarized in the following table. a

Table 4. Classification of all solutions to w; uyuy = 1y +uy+us for nel,
for any quadratic field K = Q(\’E)

d Solutions are permutations of:

|
H

(i, i, =) and (1,4, —§)
(142, 14472, 1) 21— /2, 1~ /2, 1) and +(1+/2, 1—/2, —1)
5 R+ /502, 245, 2((1=/5)2, 2— /5, 1)

((1+-/3)2, 2—/5, —1) and &1 —./5/2, 2+./5, —1)

No solutions exist for d # —~1, 2 or 5.

It remains open to classify all solutions of (») for the ring of integers of
an arbitrary number field K. For example, in view of the Kronecker—Weber
Theorem, to answer the question for abelian extensions of @ it would be of
value to know the solutions of (x) in Z[£] where ¢ is a primitive root of
unity. In this paper we have solved the case where & is a primitive third or
fourth root of unity since these are the only roots of unity which generate
quadratic fields.
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