

- [10] B. C. Berndt and U. Dieter, Sums involving the greatest integer function and Riemann-Stieljes integration, Journ. Reine Angew. Math. 337 (1982), pp. 208-220.
- [11] B. C. Berndt and R. J. Evans. Problem E2758, Amer. Math. Monthly 87 (1980), pp. 404-405.
- [12] B. C. Berndt and L. A. Goldberg, Analytic properties of arithmetic sums arising in the theory of the classical theta-functions, SIAM Journ. Math. Anal. 15 (1984), pp. 143-150.
- [13] T. J. I'. A. Bromwich, An introduction to the theory of infinite series, 2nd edition, Macmillan and Co., London 1926.
- [14] B. Davis and R. Sitaramachandrarao, Arithmetical properties of Hardy sums, in preparation.
- [15] R. Dedekind, Erläuterungen zu der Riemannschen Fragmenten über die Grenzfalle der elliptischen Funktionen, Gesammelte Math. Werke 1. Braunschweig 1930, pp. 159-173.
- [16] U. Dieter, Cotangent sums, a further generalization of Dedekind sums, Journ. Number Theory 18 (1984), pp. 289-305.
- [17] L. A. Goldberg, An elementary proof of the Peterson-Knopp theorem on Dedekind sums, ibid. 12 (1980), pp. 541-542.
- [18] Transformations of theta-functions and analogues of Dedekind sums, Thesis, University of Illinois, Urbana, 1981.
- [19] G. H. Hardy, On certain series of discontinuous functions connected with the modular functions, Quart. Journ. Math. 36 (1905), pp. 93-123 = Collected papers, Vol. IV, pp. 362-392, Clarendon Press, Oxford 1969.
- [20] M. I. Knopp, Hecke operators and an identity for the Dedekind sums, Journ. Number Theory 12 (1980), pp. 2-9.
- [21] D. H. Lehmer, Euler constants for arithmetical progressions, Acta Arith. 27 (1975), pp. 125-142.
- [22] L. A. Parson and K. H. Rosen, Hecke operators and Lambert series, Math. Scand. 49 (1981), pp. 5-14.
- [23] M. Pettet and R. Sitaramachandrarao, Three-term relations for Hardy sums, Journ. Number Theory 25 (1987).
- [24] H. Rademacher, Egy Reciprocitásképletről a Modulfüggevenyek Elméletéből, Mat. Fiz. Lapok 40 (1933), pp. 24-34.
- [25] Some remarks on certain generalized Dedekind sums, Acta Arith. 9 (1964), pp. 97-105.
- [26] H. Rademacher and E. Grosswald, Dedekind sums, Carus Mathematical Monograph, No. 16, Math. Assoc. of America, Washington, D. C., 1972.
- [27] H. Rademacher and A. L. Whiteman, Theorems on Dedekind sums, Amer. Journ. Math. 63 (1941), pp. 377-407.
- [28] P. Subrahmanyam, On sums involving the integer part of x, Math. Student 45 (1977), pp. 8-12.
- [29] E. T. Whittaker and G. N. Watson, A course of Modern Analysis, 4th edition, Cambridge 1962.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF TOLEDO Toledo, Ohio 43606, U.S.A.

> Received on 26.7.1985 and in revised form on 26.2.1986 (1533)

ACTA ARITHMETICA XLVIII (1987)

On unit solutions of the equation xyz = x + y + zin the ring of integers of a quadratic field

b

R. A. Mollin (Calgary), C. Small (Kingston), K. Varadarajan (Calgary) and P. G. Walsh (Calgary)*

- 1. Introduction. This work was inspired by a study of the equation xyz = x+y+z=1 which is known to have no solutions in the rational number field Q (see [1], [2] and [3]). In [4] this equation is studied over finite fields, and a precise count is given therein of the number of solutions in the finite fields. It is natural to ask the more general question: What are the solutions of xyz = x+y+z=u where u is a unit in the ring of integers of a number field? Equivalently; what are the solutions of xyz = x+y+z where x, y, z are units in the ring of integers of a number field? It is the purpose of this paper to completely solve this problem in the quadratic number field case.
- 2. Results. In what follows U_K denotes the units of the ring of integers of $K = O(\sqrt{d})$, where d is a square-free rational integer.

THEOREM. There exist solutions to:

$$(*) u_1 u_2 u_3 = u_1 + u_2 + u_3$$

where $u_i \in U_K$ for i = 1, 2, 3 if and only if d = -1, 2 or 5.

A complete classification of the solutions for each d is given in Table 4 following the proof of the theorem.

Proof. First we consider the case d < 0. If $d \ne -1$ or -3 then $U_K = \{\pm 1\}$ and the equation (*) is clearly not solvable. If d = -3 then we claim there are no solutions. Let w denote a primitive 6th root of unity. Then $u_i = w^{l_i}$ where $0 \le l_i \le 5$. If any two of the l_i 's are equal, say $l_1 = l_2$ without loss of generality, then $w^{2l_1+l_3} = 2w^{l_1} + w^{l_3}$ implies $w^{l_1+l_3} = 2 + w^{l_3-l_1}$ whence $w^{l_1+l_3} - w^{l_3-l_1} = 2$, and so $w^{l_3}(w^{l_1} - w^{-l_1}) = 2$. However for $0 \le l_1 \le 5$ we get $w^{l_1} - w^{-l_1} = 0$ or $\pm \sqrt{-3}$, which yields a contradiction in

^{*} The first three authors' research is supported by N.S.E.R.C. Canada, and the fourth author was a senior undergraduate mathematics student at The University of Calgary at the time this paper was written.

On the equation xyz = x + y + z

any case. Therefore all of the l_i 's are distinct. If any l_i is 3, say l_1 without loss of generality, then $-1+w^{l_2}+w^{l_3}=-w^{l_2+l_3}$, whence

$$w^{l_3} = (1 - w^{l_2})/(1 + w^{l_2}).$$

Therefore $(1-w^{l_2})^3 = \pm (1+w^{l_2})^3$ and it is straightforward to check that this leads to a contradiction. By a similar argument no l_i can be 0. Only four cases remain for the l_i . They are dismissed in the following chart where $0 < l_1 < l_2 < l_3 \le 5$.

 Table 1

 l_1 l_2 l_3 $w^{l_1+l_2+l_3}$ $w^{l_1}+w^{l_2}+w^{l_3}$

 1
 2
 4
 w w^2

 1
 2
 5
 w^2 w

 1
 4
 5
 w^4 w^5

 2
 4
 5
 w^5 w^4

The remaining case for d < 0 is d = -1. Here $U_K = \{\pm 1, \pm i\}$ where $i^2 = -1$. Let $i^{l_1 + l_2 + l_3} = i^{l_1} + i^{l_2} + i^{l_3}$. Using similar arguments to the above it can be shown that any two of the l_j 's are equal if and only if all the l_j 's are odd and this case yields solutions of (*) which are permutations of $\pm (i, i, -i)$. The remaining cases where the l_j 's are distinct yields solutions of (*) which are permutations of $\pm (1, i, -i)$.

Now we may restrict our attention to d>0. Let $E=(a_1+b_1\sqrt{d})$ be the fundamental unit of K, and set $E^l=(a_1+b_1\sqrt{d})^l=a_l+b_l\sqrt{d}$ for any integer l (with the convention that $a_0=1$ and $b_0=0$). Since $U_K=\{\pm E^l\colon l\in Z\}$ then we may assume without loss of generality that $u_1u_2u_3=E^{l_1+l_2+l_3}$ (since we may multiply by -1 otherwise). Therefore only two possibilities occur, namely either:

$$E^{l_1+l_2+l_3}=E^{l_1}+E^{l_2}+E^{l_3}$$

or

$$E^{l_1+l_2+l_3} = E^{l_1} - E^{l_2} - E^{l_3}$$

(up to order). For convenience sake set $\delta = \pm 1$ and set

$$u_4 = u_1 u_2 u_3 = E^{l_1 + l_2 + l_3} = E^{l_1} + \delta E^{l_2} + \delta E^{l_3} = u_1 + \delta u_2' + \delta u_3'$$

where $\delta u'_i = u_i$ for i = 2, 3. Hence:

(1.1)
$$a_{l_1+l_2+l_3} = a_{l_1} a_{l_2} a_{l_3} + a_{l_3} b_{l_1} b_{l_2} d + a_{l_1} b_{l_2} b_{l_3} d + a_{l_2} b_{l_1} b_{l_3} d$$
$$= a_{l_1} + \delta a_{l_2} + \delta a_{l_3}$$

and

$$(1.2) b_{l_1+l_2+l_3} = a_{l_1} a_{l_3} b_{l_2} + a_{l_2} a_{l_3} b_{l_1} + b_{l_1} b_{l_2} b_{l_3} d + a_{l_1} a_{l_2} b_{l_3}$$
$$= b_{l_1} + \delta b_{l_2} + \delta b_{l_3}.$$

Multiplying (1.1) by a_{l_1} and subtracting (1.2) times $b_{l_1}d$ yields:

$$(1.3) N(u_1)[a_{l_2}a_{l_3} + b_{l_2}b_{l_3}d - 1] = \delta[a_{l_1}a_{l_2} + a_{l_1}a_{l_3} - b_{l_1}b_{l_2}d - b_{l_1}b_{l_3}d]$$

where $N(\cdot)$ denotes the norm from K to Q. Also:

$$N(u_4) = (a_{l_1} + \delta a_{l_2} + \delta a_{l_3})^2 - (b_{l_1} + \delta b_{l_2} + \delta b_{l_3})^2 d$$

whence:

(1.4)
$$[N(u_4) - N(u_1) - \delta N(u_2) - \delta N(u_3)]/2$$

$$= \delta (a_{l_1} a_{l_2} + a_{l_1} a_{l_3} - b_{l_1} b_{l_2} d - b_{l_1} b_{l_3} d) + a_{l_2} a_{l_3} - b_{l_2} b_{l_3} d.$$

Combining (1.3) and (1.4) yields:

$$(1.5) [N(u_1) - \delta N(u_2) - \delta N(u_3) + N(u_4)]/2$$

$$= N(u_1) [a_{l_2} a_{l_3} + b_{l_2} b_{l_3} d] + a_{l_2} a_{l_3} - b_{l_2} b_{l_3} d$$

Now it remains to analyze (1.5) in terms of the ordered 4-tuples $(N(u_1), N(u_2), N(u_3), \delta)$ of ± 1 's. The following chart contains the values (exactly half) of these 4-tuples which lead to either $a_{l_2}a_{l_3}=0$ or $b_{l_2}b_{l_3}d=1$, both of which cannot hold. Hence these values yield no solutions.

Table 2 $(N(u_1), N(u_2), N(u_3), \delta)$ result (1, 1, 1, 1) $a_{l_1} a_{l_2} = 0$ (1, 1, -1, 1) $a_{l_2} a_{l_3} = 0$ (1, 1, -1, -1) $a_{l_2} a_{l_3} = 0$ (1, -1, 1, 1) $a_{l_2} a_{l_3} = 0$ (1, -1, 1, -1) $a_{l_2} a_{l_3} = 0$ (1, -1, -1, -1) $a_{l_2} a_{l_3} = 0$ (-1, 1, 1, 1) $b_{1}, b_{1}, d = 1$ (-1, -1, -1, -1) $b_{l_2}b_{l_3}d=1$

The next table yields the remaining half of the values of the four-tuples which do yield solutions. They imply either that $a_{l_2}a_{l_3}=1$ or $b_{l_2}b_{l_3}=0$. In either case we get the same set of solutions, the details of which will be discussed after that table.

$(N(u_1), N(u_2), N(u_3), \delta)$	result
(1, 1, 1, -1)	$a_{l_2} a_{l_3} = 1$
(1, -1, -1, 1)	$a_{l_2}a_{l_3}=1$
(-1, 1, 1, -1)	$b_{i_2}b_{i_3}=0$
(-1, -1, 1, 1)	$b_{l_2}b_{l_3}=0$
(-1, -1, 1, -1)	$b_{l_2}b_{l_3}=0$
(-1, 1, -1, 1)	$b_{l_2}b_{l_3}=0$
(-1, 1, -1, -1)	$b_{l_2}b_{l_3}=0$
(-1, -1, -1, 1)	$b_{l_2}b_{l_3}=0$

First we consider $b_{l_2}b_{l_3}=0$. We may assume without loss of generality that $b_{l_3}=0$. Therefore $a_{l_3}=1$ and we are left with

$$u_1 = \delta u_2' + \delta = u_1 u_2'.$$

Therefore

$$u_2' = (u_1 + \delta)/(u_1 - \delta) = (a_{l_1} + b_{l_1} \sqrt{d} + \delta)/(a_{l_1} + b_{l_1} \sqrt{d} - \delta).$$

Multiplying numerator and denominator by $(a_l, -b_l, \sqrt{d} - \delta)$ we get:

$$u_2' = (N(u_1) - 2\delta b_1, \sqrt{d} - 1)/(N(u_1) - 2\delta a_1, + 1).$$

However, from Table 3 we see that $N(u_1) = -1$ so:

(1.6)
$$u_2 + \delta u_2' = (1 + \delta b_{l_1} \sqrt{d})/a_{l_1}.$$

Since $2a_{l_1} \in \mathbb{Z}$ then $a_{l_1} \in \{\pm 1, \pm 2, \pm 1/2\}$. We now analyze (1.6) for the various values of a_{l_1} .

If $a_{l_1}=\pm 1$ then d=2 and $b_{l_1}=\pm 1$. If $a_{l_1}=1$ and $\delta=1$ then $u_1=1\pm\sqrt{2},\ \delta u_2'=1\pm\sqrt{2}$ and $\delta u_3'=1$. If $a_{l_1}=-1$ and $\delta=1$ then $u_1=-1\pm\sqrt{2},\ \delta u_2'=-1\mp\sqrt{2}$ and $\delta u_3'=1$. If $a_{l_1}=1$ and $\delta=-1$ then $u_1=1\pm\sqrt{2},\ \delta u_2'=1\mp\sqrt{2}$ and $\delta u_3'=-1$. If $a_{l_1}=1$ and $\delta=-1$ then $u_1=1\pm\sqrt{2},\ \delta u_2'=1\pm\sqrt{2},\ and\ \delta u_3'=-1$. Hence all solutions for the case $a_{l_1}=\pm 1$ are permutations of $\pm (1+\sqrt{2},1+\sqrt{2},1),\ \pm (1-\sqrt{2},1-\sqrt{2},1)$ and $\pm (1+\sqrt{2},1-\sqrt{2},-1)$.

If $a_{l_1}=\pm 1/2$ then $b_{l_1}=\pm 2$ and d=5. If $a_{l_1}=1/2$ and $\delta=1$ then $u_1=(1\pm\sqrt{5})/2$, $\delta u_2'=2\pm\sqrt{5}$ and $\delta u_3'=1$. If $a_{l_1}=-1/2$ and $\delta=1$ then $u_1=(-1\pm\sqrt{5})/2$, $\delta u_2'=-2\mp\sqrt{5}$ and $\delta u_3'=1$. If $a_{l_1}=1/2$ and $\delta=-1$ then $u_1=(1\pm\sqrt{5})/2$, $\delta u_2'=2\mp\sqrt{5}$, and $\delta u_3'=-1$. If $a_{l_1}=-1/2$ and $\delta=-1$ then $u_1=(-1\pm\sqrt{5})/2$, $\delta u_2'=-2\pm\sqrt{5}$ and $\delta u_3'=-1$. Hence all solutions for the case $a_{l_1}=\pm 1/2$ are permutations of $\pm ((1+\sqrt{5})/2, 2+\sqrt{5}, 1)$,

 $\pm((1-\sqrt{5})/2, 2-\sqrt{5}, 1), \pm((1+\sqrt{5})/2, 2-\sqrt{5}, -1)$ and $\pm((1-\sqrt{5})/2, 2-\sqrt{5}, -1)$.

If $a_{l_1} = \pm 2$ then the roles of u_1 and u_2 are reversed in the previous case and no new solutions are found.

Finally one may check that an analysis of $a_{l_2}a_{l_3}=1$ yields exactly the same solutions as in the above cases. This completes the proof of the theorem, and the results are summarized in the following table.

Table 4. Classification of all solutions to $u_1 u_2 u_3 = u_1 + u_2 + u_3$ for $u_i \in U_k$ for any quadratic field $K = Q(\sqrt{d})$

d	Solutions are permutations of:
-1 2 5	$\pm(i, i, -i)$ and $\pm(1, i, -i)$ $\pm(1+\sqrt{2}, 1+\sqrt{2}, 1); \pm(1-\sqrt{2}, 1-\sqrt{2}, 1)$ and $\pm(1+\sqrt{2}, 1-\sqrt{2}, -1)$ $\pm((1+\sqrt{5})/2, 2+\sqrt{5}, 1); \pm((1-\sqrt{5})/2, 2-\sqrt{5}, 1);$ $\pm((1+\sqrt{5})/2, 2-\sqrt{5}, -1)$ and $\pm((1-\sqrt{5})/2, 2+\sqrt{5}, -1)$
	No solutions exist for $d \neq -1$, 2 or 5.

It remains open to classify all solutions of (*) for the ring of integers of an arbitrary number field K. For example, in view of the Kronecker-Weber Theorem, to answer the question for abelian extensions of Q it would be of value to know the solutions of (*) in $Z[\xi]$ where ξ is a primitive root of unity. In this paper we have solved the case where ξ is a primitive third or fourth root of unity since these are the only roots of unity which generate quadratic fields.

References

- [1] J. W. S. Cassels, On a diophantine equation, Acta. Arith. 6 (1960), pp. 47-52.
- [2] W. Sierpiński, On some unsolved problems of arithmetics, Scripta Math. 25 (1960), pp. 125-136.
- [3] Remarques sur le travail de M. J. W. S. Cassels "On a diophantine equation", Acta. Arith. 6 (1961), pp. 469-471.
- [4] C. Small, On the equation xyz = x + y + z = 1, Amer. Math. Monthly 89 (1982), pp. 736-749.

MATHEMATICS DEPARTMENT UNIVERSITY OF CALGARY Calgary, Alberta Canada T2N 1N4

Received on 2.9.1985 and in revised form on 26.3.1986

(1538)