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On Waring’s problem for squares
by

ErnsT S. SeLMER (Bergen)

Given an integral basis
Ak={a1,a2,...,ak}‘, Imﬂl<q2<...<ﬂk.

For ‘a positive integer h, we form all the combinalions
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and ask for the smallest integer N, (A,) which is not represented. by such a
combination. The number n,(4,) = N,(4,)— 1 is called the h-range of 4,. For
more details, see for instance Selmer [3].

‘A popular interpretation arises if we congider the integers a; as sramp
denominations, and h as the “size of the envelope”.

A basis A, 1s called admissible for a given h if there are no gaps in the
representations below the largest basis element . Thus A, is admissible if
and only if h > h,, where

ho = h$' = min the N| m,(4;) = @}

In owr institute report [4], we tabulate extensive numerica] information
on the h-ranges n,{A,) when A, consists of the first k squares, cubes or
triangular numbers. We give below our main theoretical result for squares,
hence

Ay ={12,22 . k2.

It then follows from Waring’s theorem that A =4 for all k>3 (and
trivially A = 3). .
We shall determine ny(4,) for all k. With k < 100, the values are listed
in Table 1. We notice the striking fact that there are intervals for k, of
increasing ‘length, with constant n, (A,).
For k sufficiently large, Table 1 indicates that the constancy intervals for
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Table 1. The h-ranges n, (7%, 2% ..., k%) for k< 100

kom k fla k Hy k "y

3 23 o 175 17 700 [40—47 3583
4  38(10—11 223 |18—19 703 |48—55 6015
5 52 12 334 {20-23 895 [56—63 6143
6 82 13 375 {24-27 1503 |64-—79 11263
7 95(14—15 383 {2831 1535 [BO--95 14335
8 154 16 686 [32—3% 2815 [96— 24063

na(A,) are divided into four cases. Let
k=24+12""41,- 272+ 24 (522

be the binary representation of k. The cases are:

Lt,=0 1,=0; BLhk < P22
: 24=0, t;=1; PP 2Lk« 4!
W =1, 1,=0; WPl 242 252

4. ty=1, ty=1; 24271422k <P*
A closer study of (an extended) Table 1 led to the following
THEOREM. Let

k=27, k8,12, 16,17.
Then

(2} ' ng(1%, 2% .., k) =N, 223~
where
Ny =22, N;=28  N;=47, N,=48

in cases 1-4 respectively.

Let x be a natural number, with a representation by four integer
squares:

(3 x=x{+xi+x3+xi, X, =X, Zx32x 20
o LEMMA. Ler s = 2, then .
x = 0(mod 2%73) = all x; = 0(mod 25”2,
For if 2%|x; (exactly divides) with 4 < s—3, then

4 : x—x7 = 227322 v odd square
= 2%(1-2%73"2_0dd square)
=0modB)  =lonod8)

=4@Bm+7.
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But by the famous theorem of Legendre and Gauss, a natural number has a
representation by three squares if and only if it is not of the form (4).
Let ki, i=1,2, 3,4, denote the smallest k in each interval (1).
COROLLARY.
ng (A )+ 1 = 0(mod 257 %) = n, (4,) = ny {4;.),

k,' <k < kl+2sq2.

Since 2°73|k;, it follows from the lemma that no summand k? is possible
in 71,(4, )+ 1. This explains the constancy intervals for n,(A,), and shows
that it suffices to prove the theorem for k =k, i=1,2. 3, 4.

For this purpose, we first show that n,(4,) is at Jeast bounded by the
expressions (2). It suffices to establish that N, 2% has no 4-representation
by A, in the cases 1-4. From the lemma, it follows that we only need to
exclude representations where all summands x7 have 27~ 2x;.

In case 1, with k; = 2°, we can only use x; = 2°72, 2°7% 3.252 or 25, We
must use 2° at least once, since

4-(3-27%% = {82273 < N, 2273 = 22.2%73,

But 22:2%73(29% = 4°~ 1.7, which by (4} has no 3-representation.

The cases 2-4 are treated similarly (with a few more possibilities to
consider),

We must finally show that any natural number x < N;-2%*73 really has -
a 4-representation by A,",. This is trivial for x €< k?, so we may assume
x>k}

If x =4x', we can “double™ the representation of x' from the same case
with s reduced by 1. Using induction on s, we may thus assume that 4 fx. In
what follows, this condition is- very important.

For the representation (3), we consider the sum

O-X = X1+x2+X3+X4,.

For given x, ¢, will generally increase if the “dispersion” of the summands
decreases. The theoretlcal maximum of ¢, occurs when all the summands

are equal, with o, =2 X. :
On the other hand we clearly have o, = x(mod 2). Let

7, = max laxeN[ g, €2 ’r; o, = x{mod 2)}.

It was shown by Cauchy (cf Dickson [1], Vol, 2, p. 284) that there
always exists a representation (3) with o, =#&,. (Cauchy’s condition
x— 02/4;é45(8m+7) for even x is automatlcally satlsﬁed when 4.tx.)
A proof is found in [2], Vol. 2,-Ch. 6, § 1.

We now show that for sufficiently large k;, any representation (3} with.
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x; >k will have o, <d,.. By Cauchy's result, there must -then exist a
representation with x; < k;, hence by 4,.
For this purpose, we write
x =(1+347) kF < N;- 2273,

and so 4; < M; < 1, where ‘
5 My=3/5 M =3 M =3B Mo=hF
Choose x; > k;. lBy the “principle of dispersion”, we then get a smaller o,
than by choosing x, =k;, X, = X3 = x, = 4;k;, hence
o o, < (1+34) ky.
More concisely, this may be proved as follows Write k for &, and 4 for

A, and put

Xp =k+t; (>0 x;=dk+r, j=234.

We must show . that Zr < 0. Now x = (14+34%)k* = Zx can be written as

a
2kty +24k{ty 3+ 15) = =3 1] <0,
1

hence from 1, > 0 and 4 < 1:

4 .-
d-3 6 <r+A(t+1+1ty) <0,
1

On the other hand, we know that
1+ 34 k.

We can thus find a 7, > o,, of appropriate parity, if there is “room” for two
consecutive integers in the (real) mterval

[(14+34)k;, 2. /14342 k7.
This is 'alway.s" possible if the interval length is at least 2, hence
2 |
L+347~(1434)
The lower boﬁnd is an increasing function of 4; fof 0< 4; < 1. We thus

get-a k; which is large enough for a]l the cases 1—4 if we replacc 4; by the
largest bound M:L in (5):

<20% =2

k

%

2" ;
x~79, hence k; > 80.

2 TH3ME—(143M,)

icm
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Together with Table I, this completes the proof of the theorem.

Our result clearly gives new information on Waring’s problem for
squares. It may safely be said that the theorem would not have been found
without substantial numerical evidence.

Considered as a result in the theory of h-ranges, it is one (and probably
the simplest) of the very few explicitly determined non-trivial h-ranges for
arbitrarily large bases.
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