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L. Equations in rational integers. Let F(X, ¥) be an irreducible binary
form of degree n = 3 with coefficients in Z (the ring of rational integers) and
m a non-zero rational integer. In 1968, Baker [1] gave an explicit upper
bound for all the solutions of the Thue equation

(1) ‘F(x,y)nm in x,yeZ

which depends only on m, n and the height H(F) of F (ie. the maximal
absolute value of the coefficients of F). Here the irreducibility of F can be
replaced by the weaker assumption that & (F) = 3 where w{F) denotes the
maximal number of pairwise non-proportional linear factors of F in its
factorisation over C (see eg. [10] or [20]).

After Baker had proved the effective version of Thue's theorem on
equation (1), Coates [3], [4] showed that the dependence on m can be
replaced by dependence on the distinct prime divisors of m. He proved that if
FeZ[X, Y] is an irreducible binary form of degree n 2 3 and if p,, ..., p,
are distingt prime numbers, then all solutions of the Thue-Mahler equation

2 F(x,y)=pi...p’ in X p0,...,06Z

with (x, =1 and v, 20,...,0, 20, in absolute values are less than
a bound depending only on n, H(F}), s and maxp,. As a consequence, he

established an explicit lower bound for the greatest prime factor P(F(x, y))
of F(x, y) in terms of & = max(|x|, |y]). These estimates of Coates have been,
improved and generalised by others (for references see [2], [10], [21], [14],
[207). In 1977, Shorey, van der Poorten, Tijdeman and Schinzel [19] proved
that if Fe Z[X, Y] is any binary form with w(F) = 3 then for all pairs x, y
with (x, y) =1 and F(x, )+ 0,

* The research was partly done at the University of Leiden in the academic year 1983/1984.
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(3) P(F(x, y)) > Cyloglog{(Z'+2)

where C, is an effectively computable positive number depending only on F.
Shorey and Tijdeman [20, Corollary 7.1] derived an effective upper
bound for the solutions of the equation

(4) Fix,)=G(x,y) in x,yeZ with F(x,y)#0

where F, G are binary forms with rational integral coefficients such that
deg F >deg G and w(F) = 3. Since a binary form may be a constant,
equation (4) is more general than equation (1). Further it follows from the
arguments of their proof that if F, Ge Z[X, Y] are relatively prime binary
forms with @ (F) = 3, then

Fx, v .

((F(x, oo y)))w oo, - effectively,
when # — oo subject to (x, y) =L

In this paper we shall give various further generalisations some of which
in a guantitative form. For any rational number a, let P(a) denote the
maximum of the greatest prime factors of the numerator and denominator of
a (in its reduced form), but P(0) = P(1) = P(~1) = 1.

Tueorem 1. Let F, Ge Z[X, Y] ke relatively prime binary forms. Let x
and v be rational integers with (x, y) = 1 and G(x, ¥) # 0. If o(FG) = 3, then

F(x, y)
P
(G (x, y)

)> C,loglog(#+2).
If w(F) = 3, then

) > Cyloglog{(#+2).

/

(F(x, ). G(x, y))
Here & = max(x], [¥|) and C,, Cs are effectively computable positive numbers

depending only on the (constant and non-constant) irreducible factors of FG in
Z[X. Y.

The second part of Theorem | has the following immediate consequence.

CoroLLARY 1. Let F, GeZ[X, Y] be relatively prime binary forms such
that o(F)=3. Let {p,,...,p} be a set of prime numbers. Let

X, ¥, 2, Ky, ..., k, be rational integers with
2F (%, 3) =G (x, Yo' ..o
=1 Gxn#0 (@p..p}=1
Then max(ix], [y[. 2], [k, ... |k[) is bounded by an effectively computable

number depending only on the primes py, ..., p, and the (constant and non-
constant) irreducible factors of FG in Z[X, Y]. ‘
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This is an improvement of Theorem 7.3 of Shorey and Tijdeman [20].

In the next corollaries the restrictions concerning F and G are further
relaxed.

CoroLLARY 2. Let F, GeZ[X, Y] be relatively prime non-zerc binary
forms. Suppose that F is not a constant multiple of a power of a linear or an
indefinite quadratic form. If x, y are rational integers such that

Fix, MIG(x, ), Glx,»)#0, (x,p=1

then max(jx|, |yl) is bounded by an effectively compurable number which
depends only on the degrees wnd heights of F and G.

CoroLLARY 3. Let F, GeZ[X, Y] be binary forms which satisfy the
conditions of Corollary 2 and also deg F > degG. Then all pairs of rational
integers x, y with

Fix, YWG(x,y), Glx,»##0,

are such that max{|x|, |y|) is bounded by an effectively computable number
which depends only on the degrees and heights of F and G.

Corollary 3 implies the result of Shorey and Tijdeman on equation (4).

CoroLLARY 4. Ler F, GeZ[X, Y] be distinct non-zero binary forms.
Suppose that F/G is not a constant multiple of a (positive or negative) power of
a linear or an indefinite quadratic form. If x, y are rational integers such that

(5 ‘ Fix,y)=G(x,)), (xy=1

then max (x|, |yl) is bounded by an effectively computable number which
depends only on the degrees and heights of F and G.

Theorem 2 gives an upper bound for the magnitude of the solutions of
(5) and Theorem 3 implies an upper bound for the number of solutions of (5)
both of which depend only on the irreducible factors of FG in Z [X, Y] In
order to formulate these theorems we need some further notation. Let 47 be
an integral domain of characteristic 0 with guotient field K and let

F(X, Y)=aoX"+a, X" ' Y+.. +a, Y%,
G(X, Y) = bqu'Fleq_—l Yt.. . +b, YieR[X, Y]
be binary forms. Then the resultant R(F, G) of F and G is defined as follows:
1 if p=g=1,

R(F,G)=<ap if p=0,9>0,
b, if p>0,qg=0;
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dg @ ... 8, 0 ... 0
0 a, a4 N S
P e, 0

) 0‘... 0 ao ay ... ap .
= f >0, ¢>0,

RUE. G =lp b, ...b,0... of " P2751
0 by by ... b :
G ... 0 by by ... b,

where in the determinant the first 4 rows contain the coefficients of F and
the other p rows the coefficients of G. The forms F and G have a non-
constant common factor in K{X, Y] if and only if R(F, G) =
Let Fy,...., F,, Gy,..., G,eZ[X, Y] be non-—zero binary forms with
coefficients having absolute values at most H (> 2). Suppose that for
i=1,...,randj=1, ..., s the forms F;, G; have no non-constant common
divisor in Z[X, Y]. Let L denote the splitting field of F,...F,G;... G, and
I, R;, h;y the degree, regulator and class number of L, respectively. Let ¢ be
the number of distinct prime factors of
[T R(F:, G)

1Sisr

1€j€y
and let P denote the greatest of these prime factors (with the convention that
P =2 if 1 = 0). Finally, we define sets of binary forms #, % by

[T Fi(X, Y for certain u;, ...

i=1

F=IF F(X, Y} = ,u,eNY,

)
Il

=[] Gi(X, )" for certain v,, .

i=1

,rG: G(X, Y} ,,,vse_N}_

Here N denotes the set of positive rational integers. .
THEOREM 2. Ler n be the degree of Fy...F;Gy...G,. Suppose
w(F,..F.G...G) =3,

If x, v are rational integérs with

{5) Fx, ) =G(x,», (x,))=1,
for some Fe . #, Ge ¥, then _ ' _
(6) max (|x], [y} < exp | +5) n‘((C4(r+1).log Pt P)Cs log H |

where C, and _CS are effectively computable positive numbers such thar C,
‘depends only on I, R, and h;, and Cy depends only on I.
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Note that the bound in the theorem depends only of Fy, ..., F,,
Gy, ..y Go. If F and G have a common factor, then it can be divided out.
Any common factor of F and G is a binary form which yields only finitely
many new solutions of (5). In the special case r = 1,

J(X’ Y)=Pj for Jﬁls-"ss

where p(, ..., p, are distinct prime numbers, Theorem 2 gives an upper
bound for the solutions of the Thue-Mahler equation (2) for binary forms
F=Z[X, Y] with @ (F) 2 3. For this case Gydry (cf. [9], Corollary 1) has
proved the same estimate, but with completely explicit values of C, and Cj.

We call elements 4y, ..., q, of a fleld K multiplicatively independent in K

if 4y tz... 0 # 0 and if the only rational integers I, ..., I, for which al...aF
=1 are /; =... =1 = (. The following consequence of Theorem 2 relates
multiplicative independence of binary forms to multiplicative independence of

H

the values of these forms.

CoroLLARY 5. Ler F (X, Y),...,F. (X, Y)e Z[X, Y] be binary forms
such that Fy, ..., F,, P/Q are multiplicatively independent in Q(X, Y) for all
relarively prime binary forms P,Q in Z{X, Y] with o(PQ)e 1,2}, Then
there exists an effectively computable number C, depending only on Fy, ..., F,
stich that F(x, ), ..., F,(x, y) are multiplicatively independent in Q for all
rational integers x, y with {x, ) =1 and max{lx|, {y}} > Cs.

For binary forms Fe Z[X, Y] with w(F) 2 3, Evertse [6] and Evertse

and Gy&ry [7] derived the upper bounds 257723 and 4 57423,
respectively, for the number of solutions of (2). Here n = deg(F) and ! is the
degree of the splitting field of F. (Thus 1<!<n!) We shall generalise
Evertse’s result to the more general equatlon (5).

THEOREM 3. Let #,%, Fy, ..., F,, G, ..., G, and 1 be as above. Let n be
the degree of Fy...F,G,:..G,. Suppose &(F ...F,G,...G)= 3. Then the
';“’",;’%’;2,0{3‘,9‘1"5 X, ye Z Jor which (5) holds for some Fe f Ge % is at most

1% L

This bound can be compared with the estimate {6) obtained for the
solutjons themselves. Note that the upper bound in Theorem 3 is indepen-
dent of r. s, P, H and L.

For results on expanential diophantine equations

A.\'m‘l"B.}‘m = X"+ Dy",
see Shorey and Tijdeman [20, Chapters 2 and 7]

2. Equations in integers from an algebraic number field. We shall prove
Theorems 1, 2, 3 in the more general situation when the coefficients of the
binary forms and the unknowns of the equations assume their values in the
ring of integers of any given algebraic number field K. We shall refer to the
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-general situation as the relative case, and to the case K = @ which was
considered in Section 1 as the absolute case.

In the sequel we shall use the following notation. If « is an algebraic
number, then [x] will denote the size of a, i.e. the maximum-of the absolute
values of the conjugates of a. If f(X,, ..., X,) is & polynomial with algebraic
coefficients then we denote by || the maximum of the sizes of the coefficients
of f. The ring of integers of the algebraic number field K is denoted by (i
and the group of units of ¢, by Ujy. For x.ve (4 we define

g (x, y) = inf max(fex], [ey h.{")
relUg

If 2. ... 4,6 K then the ideal (ie. (%-module) generated by o, ..., & is
denoted by ‘aq, ..., %0k In Ax(x, 3 and ‘ay, ..., %0k we suppress the
subscript K if no confusion can arise: If a is an ideal in K then we shall
denote the norm of a over @ by N{a). If a s ¢0%, 713, then we define P(q)
as the maximum of the norms of the prime ideals occurring in the prime
ideal decomposition of a. while if a= "0 or a= 71" then we put P(a) = 1.
If a= <o) with some ae K, then we shall often write P(x) instead of P{<a)).

Before stating our resulls in this section, we remark that Coates’ result
[31, [4] mentioned in Section 1 was partially extended by Kotov [16] to the
relative case asfollows. Let K be an algebraic number field, let Fe ¢ {X, Y]
be an irreducible bhinary form of degree at least 5 and let =,. ..., =, be non-

zero non-unit elements of Cg. Then all solutions of the equation

x, ve O, vy, ...,0,6Z

with N{“x. y» € Ng.

(7 Fx,pb=m"...n’ in

(where N, = 1) satisfy max ([%], [¥]) < C. where C, is an effectively compu-
table number depending only on K, F, 7y, ..., m,, No. Kotov also proved
that for x, ye ¢4 with N({x, ) < N, '

{8)  P(F(x. V)2 Cyloglog(-#'+2) with . #" = max ({Ng;q(x)l, INko(WH).

Later Gydry [8], [9] generalised Kotov's results -to the -case that
Fe (¢[X, Y] is any binary form with w (F) = 3. Moreover, he proved that
{8) can be replaced by

i

(" For xe K, let &Y, ..., 29 denote the conjugates of « relative to K/Q, where d = [K: Q7.
For x, ye 0. let Hy(x, _v] be the maximum of the #bsolute values of the coelficients ol (he

bmary form H (y'”X xy), Then 1here are computab]e positive numbers c,\, ¢k, depending

only-on K, such that ck (s, 1) < Zi(x, ' < cf He . )
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Here Cy and Cy are effectively computable positive constants depending only
on K, F and N,. Inequality (9) is an 1mprovement of (8) since for ~, ye (y
both

A(x, y) =

and (when Uy is infinite)

(max(|N (). [Ny (i)

sup £(x, y)=x%.

X, yelly
Further, {9) is a generalisation of (3) to the relative case. For related results,
see SprindZzuk [21], Gyory [9], [13], [14] and Shorey and Tijdeman [20].

Let ¥y, ..., F,, Gy, ..., G, be non-zero binary forms in ¢ [X, Y] such

that F;, G; have no common non-constant divisors in K[X, Y] for 1<i<r,
1<j<s that the form F,,..F,G,...G, has degree n and that
w(F,.. F.Gy...G)=3. Let

H=max(2,[F;}, ....[F.1[Gi] ..., [G.))

Denote by L the splitting field of F, ... .G, over K and let I, R, h; be
the degree, regulator and class number o% L, respectlvely Let lay, ..., q,! be
a (possibly empty) set of distinct prime ideals. Further, suppose that the
number of distinct prime ideals which belong to the set |q,, ..., g, or divide
the ideal H ¢R(F;, Gpyisequal to ¢ and let P be the maximum of the norms

of these prnne ideals (with the convention that P.= =2 if t = 0.
Finally, let Ny = 2 and '

= F(X,Y): F(X,Y)= HF (X, Y " for certain ki, ..., k,e N},

9= G(X, Y): G(X, ¥) = ]’I G,(%, Y)Y for certain 1, ..., l,e NI,
TuroreM 4. Suppose that x, ye @y are not both zero and satisfy
Fx, v}y <G(x, y)) v v,
(10) Cr o = oo O G NG oIS No
for some Fe F, Ge¥, vy, ...,v,€Z. Then
(1) @glx, y) <exp 'r+8n*(Crolr+Dlog ) ) g (N HY!

where Cyn, C,,. are effectively compurable posirive numbers such that Ci,
depends on I, R,, h, and Cyy depends only on L. :

In (10) we considered expressions with powers of “x, y» in the denomi-
nator to provide a convenient generalisation of equation (5) in Theorem 2 in
which the variables x, ye.Z satisfied the condition (x,y)= 1. Note' that
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Theorem 2 follows at once from Theorem 4 by taking K = Q, u=0, Ny = 1.
The condition N(¢x, ¥)) < N, is necessary, since if x. ye (' satisfy (10) then
so do ax, ay for each ae (; with  # 0. We remark that from Theorem 4 we
can deduce a new version of Gybry's theorem on (7) in [9] with another
bound.

From Theorem 4 we shall deduce the following generalisation of The-
orem 1.

THEGREM 5. Let Fe F, Ge® Let x,y be elements of Oy with
Glx.»#0 and N({x.y)) <N

If o(FG) =3 then

. o
(12) : P(Eg—,%)>culoglog( (x, ¥)+2).

If w(F)=3 then _

' Flx, 9y

(13) P((F(x 5. Glx, y)>)> Cy3loglog(Z (x, y)+2).

Here Cy, and Cy5 are effectively computable positive numbers depending only
on K, Fy,...,F,,Gy, ..., G, and N,.

Theorem 1 follows at once. from Theorem 5 with K = Q, Ny =1 and
F,, ..., F, and Gy, ..., G, being the (constant and non-constant) irreducible
factors of F and G, respectlvely, in Z[X,Y]. If Fed[X, Y] is a binary
form with w(F) 2 3, then {13) yields (9).

Evertse [5], [6] and later Evertse and Gyéry [7] derived their upper
‘bounds for the number of solutions of (2) mentioned in Section 1 also in the
relative case, We shall now give a generalisation of Theorem 3 to the relative
case. If x, ye K satisfy (10) for some Fe #, Ge ¥, v, ..., v, Z then so do
ax, zy for all xe K\ |0!. Therefore it is natural to consider the set of points
on the projective line P'(K)} of which the homogeneous coordinates (x:y)
satisfy (10) instead of considering the set of solutions of (10) itself. We shall
say that a projective point satisfies (10) if its homogeneous coordinates (x:})
satisfy (10). In Theorem 6 we use the same notation as in Theorems 4, 3.
Moreover, let d = d, +2d, be the degree of K, where , is the number of real
and 24, the number of complex conjugates of K.

TueoreM 6. The number of points on P*(K) which satisfy (10) for some
Fe# Ge¥, v, ....v,e Z is at most

7;.3w+ 2(dy +a2+ml

Theorem 3 follows immediately from Theorem 6 on using that for each
point on P*{Q) there are exactly two possible choices for the homogeneous
coordinates (x:y} such that x, ye Z and (x, y) = 1.

We shall prove Theorems 4 and 6 by reducing (10} to an appropriate
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Thue—Mahler equation. To this Thue-Mahler equation we shall apply cer-
tain results of Gydry [11] and Evertse [6]. We note that Gyéry derived his
result by applying Baker's method concerning linear forms in logarithms of
algebraic numbers, while Evertse proved his result by applying a method of
Thue and Siegel.

3. Proofs of Theorems 1, 2, 4 and 5 and their coroliaries. In Lemma 1 we
state some properties of resultants of binary forms which will be used
throughout the paper. We define the degree of the binary form which is
identically zero to be —1.

Lemma 1. Let 9 be an integral domain of characteristic 0.

(i) Let F, Ge ®[X, Y] be binary forms of degrees p =0, g = 0, respect-
ively. Then for each binary form Qe R[X, Y] of degree p+q—1 there exist
binary forms Ay, Boe #[X, Y] such that

(14) AgF+ByG = R(F, G)Q.
(i) Let Fy, Fp, Ge R[X, Y] be binary forms of degrees
R(F, F,, G) = R(F,, G)R(F3, G),
R(G, F,F;) = R(G, F)R(G, F).

= 0. Then

(15)

Proof. (i) We shall prove that (14) holds with A,, By having degrees at
most g—1, p—1, respectively. Consider the coefficients of 4,, By as p+gq
unknowns. By equating the coefficienis of the polynomials on the left and
right hand side of (14), we obtain a system of p+4 linear equations in p+gq
unknowns:

(16) Ax=b

where & is a (p+q) x(p+ q)-matrix with entries in #, be #7"7 and x is a
vector consisting of the p+g unknowns. It is easy to check that the
determinant of &7 is equal to R(F, G) whereas all entries of b are divisible by
R(F,G). This shows that (16) has a solution xe#*"4.

(ii) Let F, Ge&#[X, Y] be binary forms of degree p > 1, ¢
ively, and take some factorisations

= 1, respect-

FOG T = [T@X-81, 6061 =]]6X-47)

j=1

in some finite extension K of the quotient field of #. Then

H H (% 5j B: ?j)

i=1j=

(17) . R(F, Q)=

A similar result for resultants of polynomials has been proved in van der
Waerden [22, § 35]). Formula (17) can be obtained by a slight modification of
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this proof. It is not difficult to derive (15) from (17} and the definition of the
resultant. =
We shall adopt the notations of Section 2. Further put

E(X,Y)=F,(X,Y).. F,(X, V)G, (X, ¥)...G,(X, Y)
and let & = {p,y, ..., p; denote the set of distinct prime ideals in K which
belong to {qy, ..., q,} or divide [] (R(F;, G))>. We recall that, by assump-

L) .
tion, deg E = n. The following elementary lemma is-essential in the proofs of
our results.

LemMa 2. If (x, y)e G\ {0, O} satisfies (10) for some Fe %, Ge¥,

vy, ..., v, Z, then there are non-negative rational integers uy, ..., 4, such that
18) E D)
Gy

Proof. Let (x, y)e G§\{(0, 0)} and let Fe #, Ge ¥. Since, by assump-
tion, F and G have no common non-constant factor in K[X, Y], we have
R(F, G) # 0. Put p =degF, q =deg G. We recall that an ideal a divides an
other ideal b if and only if b < a. The greatest common divisor of two ideals
a and b (i.e. the smallest ideal containing both a and b} is denoted by a+b.
Let K’ be the smallest extension such that {x, y>,c is a principal ideal, with
generator 8 say. Put x' = x/8, ¥ —y/rS Then x', y'e O and (X, ¥ D =1.
Finally, put

_Flx vk Glx
N0 N

By (14) there are binary forms A(X, ¥), B(X, Y) in 0x[X, Y] such that
A(X, NFX, Y)+B(X, Y)G(X, ¥) = R(F, G) X** "1, |

Hence .‘ _
g = FX, ) G, ¥)xe
= AKX, YIF (X, y)+B(x, Y)G(X, y)dg = {R(F, G)xPT97 5,
Similarly we have |
el = {R(F, G)yP+e~1y,.,
Therefore, ¢0y » {(R(F, G)>.. But this implies that
w > RE. O

From now on we consider only ideals in K, so we omit the subscript K.
Let (x, y)e G\ {(0, 0)} be -a pair satisfying (10) for some Fe F, Ge¥,
1, ..., b€ Z. Let p be a prime ideal not belonging to {q,, ..., q,} which
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divides <E(x, y)>/¢x, y>" Then p divides at least one of the ideals

o, Y, 5 =1, ..,0, G0 90/ )™ (G=1,..., 9.

Therefore p divides at least one of the ideals

CF(x, Yo/ <x, )8, (G (x, )/ x, yy*e,

But by (10) this implies that p divides «. Together with (19) this shows that p
divides <{R(F, G)>. By combining this with (15) we obtain, on noting that
Fe &, Ge ¥, that p divides the ideal || <R(F;, G;)}. Hence {E(x, y)y/<{x, y>"

is composed solely of prime ideals ffjcwm S om

Let now f, @y, ..., 7, be non-zero elements of (g such that »y, ..., @,
are not units. Let ¢’ denote the number of distinct prime ideals of X dividing
(ny..m» and let -P =max(2, P(z;...n)). Further suppose that
max/n| < 2 (22 2). Let Eq(X, Y)e Og[X, Y] be a binary form of degree n

wijth splitting field L over K such that w(Eg) > 3. In the proofs of Lemmas 3,
4, 5 and the proof of Theorem 4, ¢y, ¢y, ..., €5, €y, €3, ¢35 will denote
effectively computable positive numbers such that ¢y, ¢4, ..., ¢s depend only
on I, R;, hy and ¢}, ¢4, ci only on L As before, Ny = 2.

Lemma 3. Let x, ye & satisfy

W

EO(x: y ﬁnl . qq: N(<x: Y>) g N
for certain non-negative integers wy, ..., w,. Then
max([x], [y <exp {n*(g+ 1){(c, (g+ 1) log P’)q"+1 P’)c1 (log ) log (Ny [-Ez,_lnﬂ)} '
Proof. This is an immediate consegquence of Theorem 2 of Gyéry {11]
{see also [12]).
Lemma 4. (i) Let a be an ideal in K. Then a*
(ii) Let o be a non-zero element of K with |Ngg()l = m and let v be a
positive integer. Then there exists a unit ¢ in K such that |ae®| < (mc})' %9,
Proof. (i) The ideal (a@;)™
that the ideal o~ V'L = N LK ((u(OL)hL) is principal in X.
(i) By Lemma 6 of [15], for each «’e L with [Npg(@) =m # 0 and
v'e N, there exists a unit x in L such that

] < e,

*IL s a principal ideal.

is obviously principal in L. This implies

, Apply this result with o' = a, o’ = p[L: X]. Put & = Ny (). Then, on takmg

ey =y,

) |C¢8"| — a.lL‘.K] av[.L:KJ LK) NLIK(W,’U[L:K]) IILK]

< o[ L:K] < .iNL/a(UfM“[L"Q cg[L:K] — (mcg)lf[x.:ﬂlu "
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In the lemma below, b will denote a non-zero integral ideal. As before,
Nygz2and P=P(p;,...,p) if 120 P=2it=0.
Lemma 5. Suppose that x, ye Oy are not both equal to zero and that

(Eolx, y)> TR
O bt p
(20) & PP

for certain non-negative rational integers uy, ...
#(x, ) < exp [0 ((ea (t+1) Tog P P) " log (No[EQIN (B)}.
Proof. Let n, w; be rational integers such that

OSUIS[L.K]}?L—]. H.Ild u,-=[L:K]hLW;+U,- (lsfﬁt)

N({{x, y)) < No

, u,. Then

By Lemma 4 (i), the ideals pi 'L are principal. Moreover,
N(pEL:K]hL) < P[L:K]hL.

Hence, by Lemma 4 (i) with v = 1, there exist =, ..., ;e Ox such that
(LK),

=y and

(21) ] < PS5 for i=1,...,1.

There exists a fqe Ux such that (8> = bp'...p," {x, y)" and
(22) Eo(x, )= Bomy"ooo7

Now

INgo(B0) < N (B) Ny pIHALe+ D,

Hence, by Lemma 4 (i), there exists a unit & in K such that for § = &"f,,

23) [B1< (c5 N (b) N P D i)
Moreover, by (22), .
(24) Eofex, oy) = pmi*..m;".

Now Lemma § follows immediately from Lemma 3, (21), (23), (24), by taking
Pe=P g=g=t n

Proof of Theorem 4. Theorem 4 follows at once from Lemmas 2 and
5 by observing that there exists a constant ¢ with

[El< (nH) H=max(2,[F} ...,[F G ....[G). u
Proof of Theorem 2. Take K = Q, u=0, Ny =1 in Theorem 4. .

Proof of Corollary 5. Let F, (X, Y), ..., F,(X, Ve Z[X, Y]lbe binary
forms such that Fy, ..., F,, P/Q are multiplicatively independent in Q(X, Y)
for all relatively prime binary forms P, Q in Z{X, Y] with w(PQ)e {1, 2}.

where
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ce and c; will denote effectively computable positive numbers depending only
on Fy,...,F,. If x and y are rational integers with {x, y)j=1 and
Filx, p)...F{x, y) =0 then max{|x|, y) <cs. Let x and y be rational
integers such that max (x|, |¥}} > cs, (x, ) =1 and F, (x, y), ..., F,(x, y) are
multiplicatively dependent in Q. Let [y, ..., I, be rational integers, not all
zero, such that

(25) Fy(x, )t Fo(x, )7 = 1.
Let

]

where P, Qe Z[X, Y] are relatively prime binary forms. Then (25) implies
that

(26) P(x: »w=0{x ), (x, ) =1.

Since Fy, ..., F, are multiplicatively independent, P # Q. Moreover, P/Q can
not be a constant # 1 for otherwise (26) is impossible. Therefore w(PQ) = 3.
Let Gy, ..., G, be the (constant and non-constant) irreducible factors of PQ
in Z[X, Y] Then w(G,...G)>3 and G,,..., G, are irreducible factors
of F;...F,. Together with (26) and Theorem 2 this shows that
max (x|, [y} £ ¢;. This proves Corotlary 5. e

Proof of Theorem 5, In what follows, ¢, ¢, ..., ¢35 will denote
effectively computable positive numbers depending only on K, N,,
Fi, ..., F, G, ..., G,. We assume that xy # 0 which is no restriction in the
proofs of (12) and (13). '

First suppose that F(x, y) =0. Then F,(x,y) =0 for some i with
I €i<r. Together with xy # 0, this shows that F,(X, Y) has at least two
non-zero terms. Hence

max ([N o(X)], INgo()) < cs.

By Lemma 4 (ii), there is a unit ¢ in K such that [ex] < ¢;. Now F;(ex, ey) -
=0 implies that [ey]< ¢;o. This proves (12) and (13) in case F(x, ) =0,

Now suppose that F(x, y) # 0. Put p =degF, g = degG. In order to
prove (12) it suffices to show that

P(<F(x, Wy /<G(x, )
x, PP {x, vH?

For if loglog (% (x, y)+2) € ¢;5:= ¢i;' Ny then (12) holds for an appropriate
value of ¢y, and otherwise (27) implies that

T F(X, 1) = P(X, YYQ(X, V),
=1

(27)

) = ¢y loglog (2 (x, y)+2).

Fx, )\ _ p(<F(x 9 [<Gx, y)>)
P (-G(x,y)> S
and (12) follows from (27).
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We shall now prove (27). Let
(Flx )G, y)>)
0 =P (G

q.) be the set of all prime ideals with norm

F(x, G(x, vy
%) GES) SECIEN .
, X, ¥7 x, ¥y
for certain rational integers vy, ..., t,. Note that the prime ideals dividing
[T<R(F., G))> have norms at most ¢;3. For each prime number p there are

and let 2 = {qy, ..., < Q. Then

4,

at most [K: Q] prime ideals in K dividing {p) and all of them have a norm

which is a power of p. Since there are at most 2Q/log Q rational primes not

exceeding Q (cf. [18]) we have u < ¢y, Qflog Q. Now Theorem 4 implies that
loglog (Z(x, Y)+2} <5 Q.

This proves (27).
We shall now prove (13). Suppose that w(F) > 3. By (14) there exist
binary forms A,, A,, B;, B, in 0x[X, Y] such that . .

A (X, VF(X, Y)+B,(X, )G(X, Y) = R(F, G) XPT171,
A (X, F(X, V)+B,(X; NG(X, Y) — R(F, G) Y7+a-1,

This shows that the ideal <F(x, y), G{x, y))> divides <R(F, G}> {x, y)yrta~1.
In view of (15) this implies that

(29) P(<F(x, 1), G(x, YY) € cy6-
By applying (12) with s =1 and G, = 1, we obtain
(30) P(F(x, y)) > ¢,;loglog(#{x, y)+2).

If loglog(:‘?(x V)+2) < g0yt =1¢yq, then (13) follows. If
_ loglog{# (x, y)+2) > ¢
then (29) and (30) give
P ( Flx 3>
Fx, 1), Gx, y))

)= P{F(x, y)) > 01;1 loglog (' (x, ¥)+2).

This completes the proof of {13). =

Proof of Theorem 1. Take K = Q, No—l in Theorem 5. Let
Fy,..,F, dand G,,..., G, be the (constant and non—constant) irreducible
factors of F and G, respectlvely [

Proof of Corolliary 2. We have either (i) @(F)> 3 or (i) F=c-Q°
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where ce @*, ae Z, a > 0 and Q is a definite quadratic form with coefficients
in Z or (ili) F = cL% I where ceQ* a,beZ a>0, b>0and L,, L, are
non-proportional linear forms with coefficients in Z. Put p=degF,
g =deg G,

Let x, y be integers with (x, ¥} = 1. By applying (14) with Q =
we obtain that (F(x, y), G(x, y)) divides R(F, G)x"*e~3,
(F(x, ), G(x, y)) divides R(F, G)y**¢"'. Hence

(31) (F (x, », G(x, Y)|R(F, G).

Now suppose that x,y are integers with (x, ) =1, G(x, ¥)#0 and’
F(x, y)G(x, v). Then (31) implies that

F(x, yR(F, G).

Xp+g 1

Sm‘ularly,

We claim that max(|x|, |y}) can be bounded by an effectively computable
number depending only on the heights and degrees of F and G. In case (i)
this follows from Corollary 1 applied with ¢ = 0. In case (i) it follows from
the fact that {Q(x, y)| = c45 {max(|x], |y))}* for some effectively computable
positive number ¢,, depending only on the height of Q. Fmally, in case (iii)
we have

|y G, YN < [P R(F, G),  [Lax, p)l < ™' R(F, G).

Since L; and L, are non-proportional, the claim is also justified in this
case. m

Proof of Corollary 3. We have p>g>0 where p=degF, g
=degG. Let x, y be integers with G(x, y)# 0 and F(x, y)|G(x, y). Put d°
={(x, ¥), Xg = x/d, yo = y/d. Then d* 79 F (xq, yo)lG(xp, ¥o): Hence, by Corol-
lary 2, max{|xg|, |yg|) and therefore d are bounded by effectively computable
numbers depending only on the degrees and heights of F and G. =

Proof of Corollary 4. Let D be the greatest common divisor of F
and G in the ring Z[X, Y]. Put F, =F/D and G, =G/D. Let x,y be
rational integers with (x, ¥) =1 and F(x, y) = G(x, y). If F(x, y) =0, then
max (|x|, |y|} does not exceed a computable number depending only on the
degree and height of F. Suppose that F(x, y) s 0. Then

Fi(x, y)=Gy(x, ).

Hence F (x, )G, (x, ¥) divides both {F(x, y)}*
(31) this implies

and {G'l (>, ¥} In view of

F1 (x, _}") Gl (x: y)I{R(Fla G!)}zf

Since F/G is a constant muitiple of a power of a linear _of an indefinite
quadratic form if and only if F, G, is, Corollary 4 follows at once from
Corollary 2 with F, G, and {R(F,, G,)}* replacing F and G, respectively. =
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4. Proofs of Theorems 3 and 6. We shall use the notation of Section 2.
Let & = {py,..., p,} be a finite set of prime ideals in @ and let a bea fixed
ideai in K. Let

Wi(a, &) ={aeK: 3u,, ..., e Z such that () = apy*...p"}.

Note that W({13, %) is just the group of S-units where § is the set of
valuations containing the archimedean valuations on K and the valuations
corresponding to py, ..., P,

Lemma 6. Let & be a finite set of prime ideals in @y of cardinality t and
let a,b be fixed non-zero ideals in K. Then the number of solutions of the
equation

(32) xty=1 in (x, VeW(a, &) xW(b, ¥

. d+2(dy +dqy +¢
is at most 3 x7 T HITRTY,

Proof. Suppose that (32) is solvable and let (4, ¢) be a fixed solution of
(32). Let U = W ({1}, %). Then (x, y)is a solution of (32) if and only if there
are £, ne U such that x = A%, y == pun and A{+un = 1. But by Theorem 1

of Evertse [6] there are at most 3 x7° -1 792"%

AM+um=1. =

Let F(X, Y)eK[X, Y]\ {0} be a binary form. The content of F with
respect to K, denoted by ¢ (F), is defined as the ideal in K generated by the
coefficients of F. We shall need the following generalisation of Gauss’
Lemma: if F(X, Y), G(X, Y) are binary forms in K [X, Y] then

(33) « (FG) = & (F)- (G).

This follows for example from Lang [17, Proposi'tion 2.1].
For any point (x:y)e P'(K), the homogeneous coordinates x, y can be

chosen so that x, ye 0. Hence Theorem 6 is an immediate consequence of
Lemma 1 and Lemma 7 below. :

Lemma 7. Let Eo(X, Y)eK[X, Y] be g.binary‘form of degree n with

w(Eo) >3 and let {py, ..., p! be a set of prime ideals in K. Then the number
of points (x:y)e P1(K) satisfying '

pairs (£, n)e U? with

<E0(xa.y)> H u,
34 RN S =pt
>y w(Eg) G, yyr R

d+2
Jor some u,y, . AT 2y g

.o uel is at most 7
Proof. There exists a field M of degree at most n(n—1)(n—2) over K

which contains the coefficients of three pairwise non-proportional linear

forms dividing E, in M [X, Y], A(X, Y), B(X, Y), C(X, Y) say. Let $1, 255 ..
denote the number of real and complex conjugates of M, respectively,

and lgt_ql, .-+ G, be the prime ideals in @y, lying above py, ..., p,. Then
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(35) si+s+usnin—-1n-2d,;+d,+1), [M:Ql<nn—1){n-2)d.

Let (x: ) e P1(K) be a point satisfying (34) for certain u,, ..., ;€ Z. Sincé
the left-hand side of (34) is an integral ideal, the u; are non-negative. Since
the linear forms A4, B and C are linearly dependent, there are non-zero
elernents a, fe M such that

ed(X, V)+BB(X, Y)=C(X,Y).
Put u=ad(x, »)/C(x, ¥), v=FfB(x, y)/C(x, y). Then u+v=1. Moreover,
by (33), the integral ideals
<A (x, YoM (Blx, you (Clx, you
(A& W B Xy’ (O (X, you

divide the left-hand side of (34) and are therefore composed of prime ideals
from & = {ua,, ..., G,}. It follows easily that ue W{a, %), ve W(b, &) where

a= Oy (A (C), b= By (B wn(C).

Moreover the projective point (x:y) is completely determined by u, v. Now a
combination of Lemma 6 and (35) with the facts mentioned above yields that
the number of points (x: y)e P* (K) which satisfy (34) for certain 4, ..., e Z
is at most

identically in X, Y.

- - a4 2(dy +dot+
3x7n(n 1)(n 2)(d+2(d1+a‘2+t))<7n( (dy +do r))_ -

Proof of Theorem 3. Apply Theorem 6 and use that for each point
on P'(Q) there are exactly two possible choices for the homogenecus
coordinates (x:y) such that x, yeZ and (x,y)=1. &
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ACTA ARITHMETICA
XLVIIL {1987)

On S-integral solutions of the Catalan equation
by

B. Brinpza {Debrecen)

1. Introduction. In 1976 R. Tijdeman [15], employing a refined form of
an inequality of A. Baker [1] on linear forms in logarithms, gave an
effectively computable bound for the solutions of the Catalan equation.
Later, A. J. van der Poorten proved the following p-adic generalization of
Tijdeman’s result. .

THeorEM A (A. J. van der Poorten [12]). Let S be a finite set of distinct
positive primes, § = {p;, ..., p;}. Then there is an effectively computable
constant Cy depending only on the set S, such that all rational integer solutions
x>l y>1, u>l, v>1, @ ...,o, with (x,y)=1 and uv >4 of the
equation

X =y =(py* ... g
are bounded by C;.

(We denote by (x, y) the ged. of integers x, y and by {u, v} the Lem. of
integers u, v.) ‘

Let K be an algebraic number field with ring of integers (. Further, let
[«] denote the maximum absolute value of the conjugates of an algebraic
number o. Recently, K. Gyéry, R. Tijdeman and the author bave extended
Tijdeman's result to the case of algebraic number fields.

Tueorem B (B. Brindza, K. Gy¢ry, R. Tideman [3]). There exists an
effectively computable number C, which depends only on K such that all
solutions of the equation
{1 x!~yt=1 in x, ye0x p,geN
with x, y not roots of unity and p > 1, 9> 1, pq > 4 satisfy

max {rﬂ, [¥l p, q} <C,.

For further results connected with the Catalan equation we refer to
Shorey and Tijdeman [14], Ribenboim [13] and Tijdeman [15], [16].
Let py, ..., P, (¢ > 0) be distinct prime ideals in K, let P = max Np; (with



