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ACTA ARITHMETICA
XLVIIL {1987)

On S-integral solutions of the Catalan equation
by

B. Brinpza {Debrecen)

1. Introduction. In 1976 R. Tijdeman [15], employing a refined form of
an inequality of A. Baker [1] on linear forms in logarithms, gave an
effectively computable bound for the solutions of the Catalan equation.
Later, A. J. van der Poorten proved the following p-adic generalization of
Tijdeman’s result. .

THeorEM A (A. J. van der Poorten [12]). Let S be a finite set of distinct
positive primes, § = {p;, ..., p;}. Then there is an effectively computable
constant Cy depending only on the set S, such that all rational integer solutions
x>l y>1, u>l, v>1, @ ...,o, with (x,y)=1 and uv >4 of the
equation

X =y =(py* ... g
are bounded by C;.

(We denote by (x, y) the ged. of integers x, y and by {u, v} the Lem. of
integers u, v.) ‘

Let K be an algebraic number field with ring of integers (. Further, let
[«] denote the maximum absolute value of the conjugates of an algebraic
number o. Recently, K. Gyéry, R. Tijdeman and the author bave extended
Tijdeman's result to the case of algebraic number fields.

Tueorem B (B. Brindza, K. Gy¢ry, R. Tideman [3]). There exists an
effectively computable number C, which depends only on K such that all
solutions of the equation
{1 x!~yt=1 in x, ye0x p,geN
with x, y not roots of unity and p > 1, 9> 1, pq > 4 satisfy

max {rﬂ, [¥l p, q} <C,.

For further results connected with the Catalan equation we refer to
Shorey and Tijdeman [14], Ribenboim [13] and Tijdeman [15], [16].
Let py, ..., P, (¢ > 0) be distinct prime ideals in K, let P = max Np; (with
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P=1if t=0) and let § denote the set of all additive valuations of K
corresponding to py, ..., p,. Further, let ¢y denote the ring of S-integers of
K. We recall that an element « of K is said to be S-integral if v(z) = 0 for all
yaluations & of K not contained in §. The purpose of this paper is to prove
the following result.

TueoreM. There exists an effectively computable constant C which de-
pends only on K, P and t such that all solutions of the equation (1) in
x, ye Uxs, p,qeN with p, ¢> 1, pg > 4 and x, y not roots of unity satisfy

max {H(x}, H(y), p, ¢ < C. ("

We note that the proof of this theorem is also based on the Gel'fond—
Baker method and we shall use some arguments from Tijdeman’s proof [15],
and the proofs of Theorem A and Theorem B.

I would like to thank Professor K. Gydry and Professor R. Tijdeman
for their suggestions and valuable remarks.

2. Auxiliary results. Let ay, ..., o, (k> 1) be algebraic numbers in K
with heights at most Ay, ..., 4, respectively, and assume that A; >4,
1<j<k Pt

k=1

= n IOgA,-,

i=1

Q=Qlogd,, n=[K: Q]

Lemma 1 (A. Baker [1]). There exist effectively computable constants
C3 >0 and C, >0 such that the inequalities

(C3 kn)

., by, with absolute values at most B (= 2).

Denote by p a prime ideal of K and suppose that p divides the rational
prime p.

Lemma 2 (A. 1. van der Poorten [12]). For some e{[fecrively computable
number C} > 0 depending only on p, k and n the inequalities

C*Qlog < (log B*)

.. b, with absolute values at most B

Cqk

0 <. o —1] <exp{— Qlog @' log B}

have no solutions in rational by, ..

0 <loy!...o*— 1, < exp |-

have no solutions in rational integers by, ..
(2 4). (See “Added in proff”, page 411.)

(Let v, denote the additive valuation of K corresponding to p and e,
is the exponent to which p divides p, moreover, f, is given by Np = pr
If & is any non-zero element of K then lu|, = (Np)""“(’)"e"‘r".

Let By, ..., Bus 715 ..., My (n2> 2, 5 2 0) be algebraic integers in K with
Bi # B; for i+ j and suppose that 0 s m; is not a unit in K, 1 €i<s. .

(*) By the height H(x) of an algebraic number o we mean the maximum of the absolute
- values of the relatively prime integer coefficients in its minimal defining polynomial over Z.
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Put
7 0<keZ, i=1,..,5),

FX, V) = [T (X~ ¥)".

Consider the equation -
Sx, ) =epy™
where z, ve 8, xe Uy, me N, £1s a unit and 0 % ye @k is not a un{t. Let 7 be
a positive number. »
LemmMa 3 (Shorey and Tijdeman [14], Th. 10.3). If

min {ord, x, ord,z} <1

Jor all prime ideals p then all solutions of the equation f(x, z) = eyy™ in x, z, &,
Y, ¥, m with above mentioned conditions satisfy m < Cg, where Cs is an
effectively computable constant depending on K, S,, t and the binary form f.
The follwing lemma 15 an effective version of a well-known theorem of
LeVeque [11].
Lemma 4 (B. Brindza [2]). Let

769 =all (¥-2)"e K]

be a polynomial with a # 0 and «; +# «; for i #j. Further, let m be a positive
integer and put t; =m{(m, ry) for i=1, ..., n. Suppose that t,, ..., t, is not a
permutation of the n-tuples {t,1,...,1} and {2,2,1, ..., 1}. Then all solu-
tions x, ye Ox, of the eguation

fx) =
satisfy
max {H (x), H(y)} <expexp {Cs P*(s+1)*}

where Cg is an effectively computable constant depending only on K, f and m.

LemMa 5. There are independent units ¢y, ..., &, in K (r denores the unit

rank of K) and a root of unity g, such that
max[g] < C;,  [Bol < Cy
1

and that every unit can be written as £ = 08 ... &, with ag, ..., a,e Z where
C, and Cg are effectively computable numbers depending only on K.
For a proof see [15, Corollaries A4 and A.5] or [8, Lemma 3].
There are »n = [K:Q] isomorphisms oy, ..., ¢, of K into the complex
numbers; denote the images of an element « of K under these isomorphisms
by ' S

gl =a® for i=1,...,n
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Levma 6. Let 0 #ae K with [Nyo(@) = M. Then there exists a fe K

associated to o such that
[log (M~ 1"|B9)| < Co  for

where Cq is an effectively computable number which depends only on K.
For a proof see [15, Lemma A.15] or [8, Lemma 3].

Lemma 7. There is an integral basis ©,, ..., w, of K such that

[s
max{w;] < Cyo|Dg ™
i

i=1,..,n

where Dy is the discriminamt of K and C,,, Cy, are effectively computable
constants depending only on n.

(Cf. K. M. Bartz, On a theorem of Sokolovski, Acta Arith. 34 (1978), pp.
113-126)

The following lermma is a special case of a result of Gydry (see Lemma 6
in [10]).
Lemma 8. Let U, denote the group of S-units in K. If x,, x, and x; are

non-zero algebraic integers in K satisfying
X +X,+%y =0 and  x, %, x36 U, N O

then for some oeU,n Uy and g; Ox we have x;=o0p;, (j=1,2,3) and
maxlo;| < Cy, where Cy, is an effectively computable constant depending only

ori K and §.

" Lemma 9, Let @ be a non-zero algebraic integer of degree n which is not a
root of unity. There exists an effectively computable positive number C,,
depending only on n such that

[a] > 14 Cy,.

Proof. This theorem is due to Schinzel and Zassenhaus who gave.an
explicit value for C,4. See also Cantor and Straus [4] and Dobrowolski [7].

3. Proof of the theorem. Let v be an arbitrary {additive) valuation of K.
It is well known that if v{a} 5 v(B) for some 2, f= K then

v(a+f) = min {v(a), v(B)}.

Suppose that v(x") <0 or v(y?) < 0. Then from equation (1) we have v{x’)
= v(y9). It means that the principal ideals [x”] and [y?] can be written in the
following form

B = Aot iR, [ = ol

where 3’. and 9) are integral idcais, oy -

e p:x){l’ﬂ}

. &t are positive integers such that

X 9, pit...pd are relatively prime.” We may assume that 0 <s (<1).
Supposing the contrary we get x, ye Ox and we can apply Theorem B,
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It is known that there are infinitely many prime ideals in every ideal
class of K. Hence we can choose distinct prime ideals qf, ..., qf such that
mar=EA] i=1,...,5) for some fie Ox and pl|[£] but p,r[f] for j#i.
Let y, ..., w, be an integral basis of X such that

max[e;] < Cyo Dyt =:¢,.
: .
In the proof ¢,, ¢;, ... denote effectively computable positive constants which
depend only on K, P and t. Write Np; =n, (1 <i<s) and
‘ j;=x1,-a)1+...+x-t0,, (lﬁigs)
< 5. Let xj; be defined by

xj = X5 (mod n,l...nf),

where x;eZ for 1<j<n 1
0< xp; <ni...n?
for every pair (j, i) and

ff=xo+.. +xuo, =1, ...,5.

Then prl[f—f,] and pll[f]1 but p,/[f7] for j#i We can write

A m-p, qI lor some integral ideal g such that p;,..
are relatively prime ideals and
< @l =

No <IN <LH(A <

Let h = hyg denote the class number of K and 0< m,-<h such that
m;=a;(modh), i=1, ..., s. Then

- Ps and Ogy «oen G5

RO

for some ze (' and by Lemma 6 we may assume that [z] < ¢; |N(z)|. Putting
x; =xzP" 1 and  y =y e |

we have |

(2) xf—y] =z,

and

X3, y16 O

([x§1, [20%9) = ([p4], (2129 = (a;* ... a9

Put p'=[r],i=1,...,5 and (q;°... g )" = [9] with some fixed =,, ..., =,
9 and  go = haV4of®, g=ah+b with 0<a® <h 0<<b<h
(2, af?, 4, be Z). By Lemma 6 we can write :

gq-a .. =1 X5
197 =y LT

where ¢ i85 a unit and

[0] < ca IN(@)] < co [T Vp; 4"
i=1
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At first we assume that p =g (> 2). From (2) we obtain
x¥f =yi0i+29.
For brevity let us set y, =yi-97% y;=x}y4972 and y=9% 1
Y2, ¥3€ Og and
(3) Wi = v+ 979"

Hence, by {3) we have

W

- o
'J’E_Zh}’g=(}’23—1)h(y23 1""7’511 e Ty o).

() (1) :
Moreover, y,&~ ! and 1;1'1 ...%° are relatively prime integers in . ]

is not a unit then from Lemma 3 we get g <c;. We suppose now
Yy =297 97Y is a unit. It means that g =x}97'e Oy anc

= " 8~ 1e Oy are also units. Therefore ;... q,° and py*...p" are princ

artqt=[Q], pi'..ps =[R]
with some Q, Re 0. From (2) we obtain
e —el =eR?

where &3 = %, 0%, g, = y; 07! and ¢ are units. Thus, by Lemma 8 we .

Rt eszq'l < g,

We infer o
29 < [N (R%ee3 %) < (2c6)™

hence g <c¢,.

It suffices to prove the theorcm in case p and g are primes such
pq > 4. Indeed, let p, and g, be the greatest prime factor of p and g. The
implies

. (xl’/Pl)Pl__(y‘Ifﬂl)’ll =1

Hence, if p, g, > 4 then max{p,, ¢;} < C and
max {H(x""1), H(y"")} < C.

There are A, BeZ such that max{|4|, |B|} <C and Ax"", By'"

integers in K. But then p”"Y[4] and p™|[B]. It means
max{p/p,, q/9:} < C’. In the remaining case we have p, = g, = 2 am
can write

PP -0PR =1 o (PP =1
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for some non-negative integers @, fi and by Lemma 4
max {H| (xz" yHOP)) <c¢  or max {H ("), HG¥) < ¢4,

Conaaqlwntly, a8 abﬂve max {H(x), H(y), a, B} < c,. After this, we may
assume w;thout loss of generality that p and g are distinct primes and
g >4

Now suppose that p is fixed. Put L= K(n) with 5 = e™?, From (2) we
get

P

=[{x,—n'29). .

i=1

Using the notation of the case P =g we obtain
p
_gbpy:{h = 9w H (xl g_a__ﬂi zq‘gwa)h_
i=1 -
Putting y, = 97, y, = 4 97 and x, = x, §7% we have y,, X, Uy and

P
Y1V5 = H (X, —n'27879*
L=l
hence
_ LA o1 ey
v Py = [ (e —nin! nt o)
i=1
. oo . (1) (1)
where ¢ is a unit in K and [p] < ¢y, again. Further, x,27! and n}’ ...7°
are relatively prime integers in (O (and in O, of course). If y; is a wnit in @,

respectlvely Oy then y§ and 9” are associated and [y,] = 9 ... q;**. Since
¥1 and z" have only fixed prime ideals, by Lemma 5 and Lemma 6 we
can write

=fiy¥ and M= fyz}P
where fy, f,, y» and z; are integers in K such that

max {W} < gy,
i

 Then §y = y§z; 7 and &, = x, z; 3 are non-zero S'-integers, where §’ is the set

of all valuations of K corresponding to the prime ideal dmsors of thc product
QP q,ps From (2) we obtain. .

4 &= hHE+h.

We may apply Lemma 4 to (4) and we get H(&)) <c¢;,. We deduce from
definition of ¢, that

H(y{/z") < ¢;3.

7 — Arta Arithmatica ¥1 VITT 2
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Then there is an ae Z such that |a] < ¢4 and ayi/z™ is an integer in K. Since
p[2] and p, 4[], we have pi¥[a] and hence g <c;s. If y, is not a unit in
@ then, by Lemma 3, g < ¢. 7

1t is easy to verify that if g is fixed then we can apply similar arguments.
The equation (1) can be written :

(== (=" =1 (p,q>2)
Thus we may assume that p and g are primes such that p > ¢ > ¢4, where
¢,; is large enough.
We have by (2}
[(]* = [xy — 2] [ (%, — 2%} + pz™]
for some oxe Ox. We can write
[p1=P..Py and [q]=0...0¢

where Py, ..., P, Q1,..., @, are distinct prime ideals in K;w, t, Gy, ..., Gy,
by, ..., b, are. positive integers not exceeding n. If ¢y, is large enough then
(pg,z)=1and if p*is a common divisor of [x, ~29] and [a(x; —z%)+ pz™]
for some prime ideal p and positive integer k, but p, /[z] then plp] and
k < n. Hence the ideal [x, —z7] can be written in the following form

[% =27 = it .. Pyt Pl
where ¥, is an integral ideal, n,, ..., n, ky, ..., k,, are rational integers such
that k] <»n and 0 < n,. Further, we may assume that n; <q (j=1,..., s}.

(The factor qE"im can be multiplied to ¥,) Setting of = [8], ¥ ={X,],
Ph =T[u;] for some X, uy, ..., Uy, 9y, ..., 8¢ Ox we obtain
(x; —z%" = £87" . PR ¢

where ¢ is a unit in K. By using Lemma 6 we can choose ¥, ..., 3,
U, ..., 4, such that . _ :

max {19, ], 180 <es ‘and max {1y |, ..., [y} < Crop-
By applying Lemma 5 we can write
(5) oy =2 = gm0 e 90 L9l b XS
where X e O, max |m;| < g and &, ..., & are units such that max {eg), ..., [£.[}

is bounded. .
By similar arguments we have

(6) : (yﬁ-z’f)"=si,o...ai'B‘;l...Sisv'f...v:'Y”.

- where Ye Oy, [I] <n, max {ligl, ..., li,], ], -+ i} < p and max[y,] < ¢504.
. . i
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Firstly we aim to show that
0 q < x1 (log p)*?
for some effective constants y, and y,. We suppose that
| A=y =2y 427) 120
{later, we shall deal with case A = 0). By construction of the element z we

have .pfil[g], pi" (21", z%%x4®— % and p, ¥y, +2¥]. It means that (using the
notation introduced between Lemma 2 and Lemma 3)

—oigien Sy, —aygn™ 1
(8) AL, < (V) " < ()

Now, we shall apply Lemma 2 to A with k =r+s+w-+i+2 B-—¥2p2,
ol == XY~ 1,

PP

100, ey Oyt = {80y ooy 8 By ey S Uy, o, Uy, Uy, e, B
Since _ '
max {H(Eo): AERE} H(£r)7 H(‘gl): AERE H(‘gs)} =< Cars
wax {H (w,), ..., H(w,), H(vy), ..., H(v)} < p*?
and
HxY™ Y < (X+r) < w2,

where M = max {Lﬂ ], 2}, we have

© iy, > exp{—cy3 (log p)** log M}.
Comparing (8) with (9) we obtain '
(10) (Np) < MU Sy,

As we want to show that ¢ < ¥, (logp)** we may assume that M > ¢,
where ¢, is to be determined later. Taking the product of the inequalities
(10) for all p; (i=1, ..., 5) we get

e
N‘I(pil P;“) < p21leen 24
and
(11) 21 < g M2t
Supposing ¢ > 12¢,, h(log p)** and c¢,¢ > 32" we have
(12) [2] < Mo,
Write '
U = dp®. g8, 9 uyt g
and '

o i ol TR
V=gl 8. 8. .0}
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Then [U] < c4q, vl< cfo and

U = NI TV > 58 j=1,....m,
: i}
and similatly
VO>c3f, j=1,..,n

Using (5), (6) and (12) we obtain at least one of the following inequalities

EAEL G

__['ZT’ ~ M"”‘c;l“--Mg"G"

or
(V1> Y 52 —[21 < Mol e — Mook
held.
Supposing M > max {031, ¢34} and g > 6h we get
[x{]> Mai3n
or 4
[y:]> M7,

If [x;]> M9 (> [z P4 then

Y1 2 [x{P— 2979,

i=1....n
and
Iy‘ —|1 q 2 %, P__I?IPQ - Mpqlah__Mpq/tih > Mpq[4h > |'E‘|3pql2'

In the other case, when [y,]|> M¥*" we have by a similar argument

Sl > P,

So, we may assume that

(13) o min{x T >

Choose Jj such that [x|]=

() Uha \bp gy I

xy' —(z) ~ W [2] hp [ 21074

A < (L (MY

( Xy ) h 1)Ex1 BN
Since we intend to show that gq <y, (logp)*> we may assume that
'(hp)z < Malizh

Then by (13)

MrEUEE

[’;qu/ 2

I-x(f’j. Then we have

[ /[T >

Mq/lth/Mqlﬁh (hp)z,

hence

(hp) W ( hp ) [ZHi+D

m > +1 F_I"“’ i=1,...

» hp—1.

On S-integral solutions of the Catalan eguation

Therefore from (11) we obtain

(14) ) L < L M g M =
7 P M
Mau(msp)“z“
MCSS‘I
Now, we shall give an upper bound for _
(9 (40 ) ~1).
By taking ¢y, { < g) large enough we obtain
A il 2
o +1> e “1=lma—1 -1
(z (=)
m a |——| M4k
>(2fﬂ4 1>y M‘?"i">(hq}2' |
Then
hy (4mq)i ( r"lq)Hl o
(i) *T > i+1) T i=1,...,hg—-1
and therefore
% hg Tl pgearlosn
(15) \( ] fmp —1}<(2hq)2m < Z
W+ [, ] M3+

Since
‘ |_|pq
M Pfz e~

(PP O = 1+ 09 < U i

we have, by (11),

” ¢ g7llog p)° 24 27 pllog 0)°2%
16) S0l o M M
() o e M73EM

Mcz-;'(los.v)'f«z“
DY

if M is large enough and c¢,;(logg)** < cagq.
For any complex numbers zj, z;, z3

3
Zy2323~1= H (z;— 1)+ Z

i=1 1€i<}€3

. .
=Dz =1+ 3 (z—1).
: i=1 :

407
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Using (14), (15) and (16) we obtain

39llos )40
(17) [P — )" (4 + () U] <

On the other hand, from Lemma 1 we have
(18) | AP > exp(—cq (log pY** log M).
Comparmg (17) with (18) we see that

M—c42(lcgpl 43 o paotoen "’0-0412

and this yields g < ¥, (log pY*.
We assumed that 4 5 0; supposing the contrary we have
(x =2 = (1 +27)".
If pl[x; —z?] for some prime ideal p then, by (2),

dlxf-z], ply]  and  plDys+270.
It means that p|g;...q,. Put ' '
a1 551
ql"‘qs=‘-R.l ""ERSI:

where R, ..., R,, are distinct prime ideals. Then

Dr =20 = (R W)

[y, +273 = (R R Ly

@,, are non-negative integers. We may assume that
(pg, h) = 1. Therefore ER?...‘R:? and 91”1’1...&]1:31
we have as before (cf. (5))-

sy - X —2% = it e X1,

6y Yzl =gt g Yy

51

where Ty, ..., Tgs W1, -0y

are principal ideals and

for some X,;, Y;e € and maxiyl < g, max|v| < p. Now, we show that

Ay ={x, =29 (y; +27) =1 0.
Indeed, if
(x5 —29)F = (y; +2°)?
then
(19) (f‘)-.xlf*liq = xf— y + Bt gt

icm
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for some f, y& @g. From (19) we get

(20) zlx{ ™ p.
By taking c¢y; (< p) large enough we have
pAlP), podlx] and  pitIpxt!]

which contradicts (20).

Now, we can repeat the arguments with A, instead of A, starting from
(5" and (6") in place of (5) and (6), respectively, and we again arrive at (7), but
with other constants.

In second part of the proof we shall show that

(21) p < x3(log p)™*

where y, and y, are effectively computable constants.
Write

(22) Ay = xP(yy+29) -1

We postpone discussion of the case 4,

=0. Since p;[z] and
27|xf" —(y; +27)* but p; #[y; +27], we obtain

(23) i/‘lzlpi < (NPI)’"MPIEM.'IP; < (NP;)—a[p/n.

On the other hand A, can be written in the form (cf. {6))

~i,q q=i —ia, ~lg | —ha _
e e e Y e M Yy —

A2=s,)_i°é...a, _
and we may apply Lemma 2 to give a lower bound for |4,],. Puttinf',r
M, = max {X], ﬁ’l [z]} |
we have by (5) | |
[ < c§q M P%j,

hence

H(x Y0 < (% +H Y < oge M7 p8,

* Therefore, by (7),

(24) log H(x" Y
Consequently, by Lemma 2 we obtain

(25) 1 4al,, > exp(~ c51(logp) ”log Ml) |
Comparing (23) with (25) we have |
(26) < (N <

As we aim to show (21) we may assumc that M, > cs3 where cs; i8 to be :

79) < cag(log p) > log M.

M—aﬂ(iogp} 52
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determined later. Taking the product of iﬁcqualities (26) we have
¢ og ) 32
2 < (cs N@) < cBs MT™
By assuming pA12k) > c55(togp)°* and ci3" <csy we obtain
[7] < cxa MY134 < MY

and by definition of M, we have

_ M,=M (=max{x|[¥])
and
|?| < MY (of. (12},
Hence, we may assume that
min {x, [, {y, [} > Mpaldh - |?|3qu2 (cf. (13)).

By [x{| =[x,] we get
PP < P+ 2 1P,

[Frk <[e P +lzle

Consequently,

|ym > X, P I"‘]M N 2 .

0~ P R
By Lemma 9 we have [z]> 1+¢s, (2 is not a root of unity because of p,[[2]).
Therefore by taking ¢,4 (< p) large enough we obtain [y{| > 4y, and

. & l
@ RO ) -1 < (M)Mﬁ’

H
(e <

iz

hq |"‘|pt
£ e

Z( Py <2 ﬂm

kg ct, M‘SS“““") £52
M EEh

M sllogp)©32

L,
. MCS'T-"
Further, since |(x{)?(y{) 79 <2, we have

(28) (xm)ph(YY)) " —1 <Csa|(l’€&”)'J Py |J’?j| < lcgglz |_}pq it
< cgq 2 el MESSHOEH

- £60 1P
<M¢59(103_17) : .

M- pajdh
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For any complex numbers z;, z,
212y —1 = (2~ Dz~ D+(z; - D+{z5—1).

From (27) and {28) we have

(29) 4] < peoreen ™ conr

Moreover, by Lemma 1, we obtain

(30) | AP} > exp(—cqs (log p) ¢% log M).

Comparing (29) with (30) we have p < x5 (log p)/™* or g < p < ¢ev. Finally, by
virtue of Lemma 4, max {H(x), H(y)} < ces.
To complete our argument we consider the case A, =

= (y, + 27

0. Then

and
- (hlq)y’{“"'l 2P = Yl — XIP 4 E22P = Fz%F
for some E, Fe 0. Since py|[z] and p, ¥[y,], we get pf|[hg] and
P < (Npy)? < N (hg)| < oo p™°

which implies p < ¢qq.

Added in prool. Recent work of Yu Kunrui (Linear forms in logarithms in the p-adic
case, to appear in the Proceedings of the Durham conference on Transcendental Number Theory,
1986) has thrown doubt on the validity of van der Poorten’s proof of Lemma 2. The matters in
question, however, could only affect the constant C, and thus de not affect the results of this
paper. In particular, observe that in the present work we may assume that we have the strong
independence condition required according to Yu, in order that the inequalities of J. H. Loxton
and A, J. van der Poorten (Multiplicative independence in number fields, Acta Arith. 42 (1983),
pp- 291-302) allow. us to appropriately transform the expressions to which we apply Lemma 2.
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