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On exceptions to Szegedy’s theorem
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Thanks once more to Professor Erdds
Jor so many things he did for us

1. Introduction and main result, Finally the attempts [17, [3], [5], (6,
[7] to answer a question of R. L. Graham on

fJ"
max ;o
iy (g, a4)
1&i%n
1% j%n

ended in the following resuit of M. Szegedy:
if n = ny, where g is an explicitly computable constant, then for any n
distinct positive integers &y, dy, ..., 4y

(00 max = .
v (g, dy)

This beautiful result being asymptotic: the way is not closed for combi-
natorially minded rescarchers to look for possible exceptions or to look for a
proof that no exceptions exist.

For some particular cases this has been done in the papers cited above.

The main result of this paper is formulated in the following theorem:

Turorem 1. Let o, < ay < ... <, be natural integers, n z 2. If s is the
smallest mumber of primes such that each @, i=1,2,...,nis a product of
powers of those primes and s < § then

The methods of this paper also provide an easy proof of the following
theorem, a weaker version of Szegedy’s result.
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TueoriM 2. Let joli.y and s be as in Theorem | but without the
condition s < 5. Then for sufficiently large n
u,

max —— 2 1
{4, ay)

ie, Jor fixed s there is a ng such that the conclusion holds for n 2 ny.

2. Detinitions, noiadon. Let ¢, < ¢y « ... < o, be nawural integers, nz 2
and put A = gy, ¢q, ..., 4, Denote the quotient af(«;, a)) by g;;. We shall
also use glw. b) = afia. b). Let the least common multiple of the members of'4
have the decomposition into different primes pi' py*...p Then each o; has
the form

%sf

{0) a=p P pd with O<a,, S a,

and therefore g;; = pilphr ooy with 0K p, € oy

A set 4 will be calied good respectively had according as it satislies ((0)
or not.

Since in our consideration only the set g} matters we can and shall
assume that the largest common divisor of the members in A is 1. We shall
refer to this as Assumption A.

We shall also assume that the primes occurring in (0) are the first
primes, ie, p; =2, py=3, py =5, ... This is justified by observing that on
replacing any s primes by the first s primes the corresponding g;'s will not
increase.

A well-known [5] observation is that if M is the least common multiple
of the members of A4 then the set lgy}, {i, 7} < {1, 2,..., nj is the same as

. M M M . .
the set {g};} corresponding to A’ = %, ey } We shall reler to Lhis as the
ay Uy |

Symmelry property.

3. Some basic propositions and consequences,

ProvoSIION 1. Let A, [p) and oyl be as above, If for some m and |
(1) P p
then A is good.

Proof. By Assumption A there is some j such that 4, is not a multiple
of py; then g = py 2 n.

Cororrary L. If A is bad then for m=1,2, ..., s and i =1,2,..., 1

(2) 0 ay, <
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Deeinrion 1. For given n denote the set of integers of the form
logn

Bio Bz fs : log
* log p,,

h e PP with 0 = ﬂm <

by B,(r). Further denote the number of members of B,(n) by N(n).

OnservaTion 1.
W [ logn
N,(n) = R
H( m Il [ 10g pm‘l

Corortary 2. If A is bad then

AcB,(n and

=1

Lorlogn

it is convenient sometimes 1o use

CoroLLary 3. If n> Ny(n) then A is good.

ProvosiTioN 2. There Is an integer ny depending only on s such that
N,..(n) P

implies - 1.

3 " A
(3) = My q

Proof. This can be seen by elementary calculus, using

N.n) < log 7’
s{ \"log;"

DeFivimion 2. An integer 1 will be called good if (3) holds for v = ny.

CoROLLARY 4. If |A| = n and nz n' and n' is good then A is good.

Propostrion 3. 1f B(n) contains two members by and b, such that one of
athy, by) and ¢iby, b)) is at least n then if' A is bud it does not contain both.

Provostrion 4. [ Bo(n) contains k puirwise disjoint pairs b;, by as in
Proposition 3 then n x> N~k implies A s good.

PROVOSITION 5, Lot A be ldy, g, .o, Gy}, and as before ay < ay < ...
< a,. If there is no had subset of A& containing a; then there is no such subset
containing &y v

Proofl. This follows from the Symmetry property.

Proof of Theorem 2. For any # 2 n,, where ny i8 good, the assump-
tion of Corollary 3 is fulfilled; therelore A is good, ie., ny in Theorem 2 can
be taken to be n,.

Remark 1. Sinee “2 is good for every s” would mean that there are no
exceptions to Szegedy's theorem, it is clearly of interest to determine good
values as small as we can. We shall do that in Section 4.1.



110 M. Chaimovich, G. Freiman and J. Schnheim

4. Proof of Theorem 1, The proof is based on facts from Section 3 and
on numerical results obtained by computation, In particular the theorem will
follow straight away from Proposition 6 in 4.2 and Proposition 7 in 4.3.

4.1. An algorithm. It is not too difficult to decide for a fixed 5 whether a
set N, of N, numbers contains a bad set of size n, or less if N, and a, are not
too large. We could formulate and program on a computer such an
algorithm, based essentially on trial and error and have the answer in
reasonable time if N, < 100000 with n, £ 150, while for N, = 15000 cven
with n, € 7500. These bounds are sufficient for our purposes and are not
sharp. In this way the fiest step in proving Theorem I is made.

42. A procedure for obtaining smallest good integers,

Procedure 1.
Suppose #" is good: put N,(n") =1 and n® =1l +1 Then
N, (%) € Ny (n") < n'®, and n® is a good value smaller than n'", provided
l,-+1 < ny; notice |, +1 < n, holds always.
Repeating the above procedure one defines a sequence
A s @ s e gD

and the value a® cannot be improved in the same way.

DernaTioN 3. The smallest good value which may be obtained by
Procedure 1 will be denoted by n'® and n®(s) emphasizing .

Exampre 1. Put s =2, i.e, py = 2, p, = 3, then 64 is a good value, since
log 64 log 64
2 == 604 = | e || e | < 64,
(logz-"»logli—\ 64 _
Put

I, = 24, ' = 64, then n'¥ = 25.
rlog 257|og 257

I o e ST B * == X (3 =

P iog2 || Tog3 5-3 =15, then » 16.
rlog 167 log 167

Y - otucl | obic. Rl SN Y. -

Iy og2 || log 3 4+3 =12, then n 13,
Hlog 13- log 1371

[, | e B 43 = )

e = Tog2 | og3 4-3 =12, therefore n 13

ProrosiTion 6. n°(2) = 13, n®(3) = 160, n®(4) = 1540, n"(5) == 33600.
~ Proof. The above values can be obtained by computation using Pro-
cedure 1.
Remark 2. Proposition 6 shows that smallest good values are not
good enough to prove that for fixed s Szegedy’s theorem is true with no
exceptions.
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Derivmion 4. An integer 1" is bad il for every bad A it follows that
n < n”. Notice that here (3) is not used.
CorOLLARY 5. Fiy = n'" =1 is bad.

“Remark 3. *1is bad™ would mean that there are no exceplions, so it is
of interest to find small bad values.

43. A procedure for ohtaining small bad values.

Procedure 2.

Consider B,(#"~1); determine as many ag possible pairs by, by as in
Proposition 3. Suppose there arc k; such pairs. Put iy = N(ii))—k,. If
k, >0 then this value is bad and certainly smaller than 7. Repeating this
procedure one defines a sequence iy > fip > ... > fiy = I, -+ | where i, cannot
be improved by this procedure.

DeFiNrmion 3. Write # and emphasizing s, #(s), for the smallest bad
value which can be obtained in this way.

ExampLe 2. Let s = 2. Then Fiy (2) =" ~1 = 12,

1 2 4 8
B,(12) =<3 6 12 24
9 18 36 72

Observe that the 4 pairs [1,12], {2, 24), 3, 36}, |6, 72] arc as required.
Therefore ii; = 12—4 = §; then consider

12 4 8
31(8)2{3 6 12 24}

containing the pairs |3, 24, {1, 8], A =8-2=6,

12 4
B, (6) '"‘“”“{3 6 12}

with pairs 12, 12}, [1, 6}, fi, = 6--2:=4, By(d) = [1,2,3, 4] containing
1,4}, Hy=d~1:=3, By(3)= 11,2 3} containing (1,3}, A =2 B(2)
=112, iy =180 =1,

ProposITION 7. #i(2) = 1, A(3) = 44, F(4) = 759, F(5) = 7350.

Proof. The above values are obtained by Procedure 2.

Final remark. As already mentioned the numerical results in Sections 4
are not sharp. To improve Theorem 1, i.e. to prove its validity for values of s
larger than 5, one should apply more powerful tools than those used in
Section 4.
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Another way to improve our results would be to replace the inequality
in Corollary 2 by a stronger incquality, namely

ea i)

10 P

where ¢, depends only on s and decreases rapidly with it. Some heuristic
evidence, based on geometric considerations and on a refinement of the
Symmetry property, indicates the existence of such a constant; this could lead
te prove Szegedy's theorem wilh no exceplions.

Finally, this would also [ollow from the following conjecture in the
gpirit of [3].

Conmerurt (Schénhgim), If ay < wy 007 a,, 02 2 are natural inte-

gers and a,/a; < n then
i
oo Ve
(¢, ay)
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