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nal equation which can be derived from the functional equation for f(z), as
follows.
By definition,
f(2)=p@)f ), where p(z)=po+piz+..+p2,
hence
fle ) =potpre ?+pre 4. +pe” ) fle™).

Therefore

oo

Ts)p(sla) = [e™“fle™)(po+pre "+ . . +pe ") 2271 dZ
o

@

d
=3 p e “f (e ) e 27 1 dZ.
=0 0

Here replace gZ by the new variable {. Then this formula becomes

ath

I'(s)p(sla) = Z Pr je Tt f (e (gy  dl/g
a+h)

g

a-i—h)

)

On differentiating the integral for I'(s) @(sia) partially with respect to «,
we obtain the further identity

Z pg T S)GD(

Hence ¢(s/a) satisfies the functional equation

(3) @(sta) = Zp;.g (P(

h=

@ 2 ook = ~ (s 1)
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1. Introduction and statement of results. Let as usual Q(n) and win)
denote the number of all prime factors of n 2 1 and the number of distinct
prime factors of n, respectively. Further let P(n) denote the largest prime
factor of n=2, and let P(l)=1. The functions Q(n), w(n and P(m
determine to a large extent the distribution of prime divisors of n. In many
problems involving P(n} one often encounters the function
(1.1} vix, )= 3 1,

ngx,P{m<y

which represents the number of positive integers < x all of whose prime
factors are < y. An extensive literature on ¥ (x, y) exists, and recently (see
[7], [8)) important developments in this field have been made. The new
results on ¥ (x, y) are likely to find many applications, and in [11] they were
used to obtain information about local densities of a certain class of
arithmetical functions over integers with small prime factors. Several results
concerning the local behaviour of i (x, y) were derived in [11], and some of
these will be needed in the proof of

Treorem 1. Let y < x, log y/loglogx — oo as x — o, and let p denote
prime numbers. Then we have uniformly

_ 1 log log x 13
(1.2) néx!;msy(ﬂ(n)—w(n)) = (x, y) (% pz—p_+0 ( Tos s ))

Asymptotic estimates of sums involving Q(n), w(n) and reciprocals of
P(n) elucidate the distribution of prime factors of n, and they were studied in
[51, [6], and [10]. In particular, it was proved in {6] that

Qnm—-wn (loglog x)™/2 1
3 2P ‘{”0( log 7 x )}Z'ﬁfij

holds for a suitable constant ¢ > 0, and that, as x — o0,
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nEx P(f‘l) ‘

In these formulas certain sums are compared with the sum of reciprocals of
P(n), which was estimated in [3], [6]. [9] and [10]. A precise estimate for
this sum Jis obtained in [6], where it is shown that

1 log log x \'/?
(L.5) Exm_%wo(( logx_) }xé(x).

The function 8 (x) is explicitly given, although it is fairly complicated. 1ts first
approximation by elementary functions (see [10]) is

w(n) 2(n) ~.,( 2log x )”2 5 1

(14 L B " & P loglogx

logs x—2—log2
2log, x

log?
—{+o(D) loogiz)} (x = o),

2

(1.6)  &(x) = exp{ —{(2log xlog, x)'/* (1 +

where here and in the sequel log, x = loglog x and log; x = logloglog x. One
of the aims of this paper is to provide sharpenings of (1.3) and (14). OQur
approach is different and simpler than the one employed in [6]. The resulls
are contained in

TreorEM 2.
Qn)—w(n) | ((loglogx uzy {
. = ol =225 L
D L 5 {Z 7= O\ Tlogx 2.5
THEOREM 3.

g ¥ el %( 2log x )1/2(1+0(———-—nl°g 1°gl°gx))} e
= P{n loglog x loglog x nee P(m

The lasi formula remains true if w(n) is replaced by 2(n), which follows
trivially from (1.7). By more elaborate arguments the error term in (1.8) could
be replaced by a more precise expression. Qur methods of proof are capable
of dealing with several other sums which are similar to those on the feft-hand
side of (1.7} and (1.8). Thus it may be shown that (1.7) and (1.8} remain true if
P(n) is replaced by P(n) for any fixed r > 0, but for simplicity only the most
interesting case r = 1 is considered. Also it seems interesting to compare the
sum of reciprocals of P{n) over squarefree integers with the sum of recipro-
cals of P(n}. The resuli is

THEOREM 4.

Wi . _ log log x\!/2 1
4 2P ”{6'” o ([Fr) )}ZF@
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This is exactly the type of formula one expects heuristically, since the
density of squarefree numbers is well known to be 6n~2 and p?{n) is the
characteristic function of squarefree numbers. It will transpire from the proofl
that the major contributien to the sums in (1.5), (1.7}<{1.9) comes from those
n for which

(1.10) P{m =exp {(1/\,’3-{-0(1))(10&\'log log )+

(x — ).

Since it 1s known (see [7]) that the error term in the asymptotic formula (2.3)
for W (x, y) 18 best possible, it is reasonable (o conjecture that the error terms
in {1.5), (1.7) and (1.9) are also best possible.

2. Auxiliary estimates. In this section we shall formulate several results
which will be needed in the sequel.
Lemma 1. For any additive function [(n) and 2 € vy < x we have

(2.1) Y f= )

ngx Pl gy PExpsy

(S =L g (xp™e, p).

This is a straightforward result, stated as Lemma & in [4]. Namely,
because of additivity the left-hand side of (2.1} equals

Y OTS= T S0
S ST

= ¥ =5
pPEXpSy
= )
PEx,psy

Lemma 2. For any fixed ¢ >0 and

Y 1

mEx/pd, P(m) S

(f (=" D fxp™2 y).

(2.2) exp((loglog x)*P " <y < x

we have uniformly

log{u-+1)"
1 =xp(u) (1 +0 (m_)),
n‘éx'g(n)sl: lOg y .

where g(v) is the solution of the differential delay equation vg'(v)+o{v—1) = O
with the initial condition o(v) = 1 for 0 < v < 1. An approximation to g(v) in
terms of elementary functions is

 logx

(23) ¥(x,p) = =Ty

loglogr—1
logv

S

(24) ol = exp{—v (logu-Hog logu—1+
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Lemma 2 contains standard results on y(x, y}. The proof of (2.3) for the
wide range (2.2) is given by A. Hildebrand [7], who extended considerably
the earlier known range, due to N. G. de Bruijn. The asymptotic formula
(2.4) was established much earlier by de Brugn [2].

LevMa 3. For 1<d<y, log'*"x<yp<x, 0<e<]1 fixed, we have
uniformly
- log(dlog y)
= 4 (—-——~— ,
i, 3) =¥ 5, ) {1+0 o) )
where
¢ (log x/log y)
= =1 2RETR
B=pix,y lozy

Here & =¢(v) for v>1 is the solution of the equation é® =14 ¢&v, so that
asymptotically

£(v) = loguv+logloguv+ O(1).

Lemma 4. For 1gd<x, logl™*x<g<y<x 0<s<1 fixed, we have
uniformly
vy (xfd, y) < (x, y)d P reow

Jor some absolute ¢ >0, where B = f{x,y) is as in Lemma 3.
LemmMa 5. For y satisfying (2.2) we have uniformly

Y= (6n“2+0 (log logy))w(x, »).

ngx,Pm) Ly logy

Lemmas 3-5 are proved in [11] by using results on ¥ (x, p) which were
obtained in {8]. Actually a more precise result than Lemma 5 is proved in
[11], but for our purposes Lemma 5 is more than sufficient.

Lemma 6. For

log log1
Yo = €xp {(%logxlog log x)!/* (1 +0 (fﬁ_‘ig__%_ﬂ‘{))}

we have

2logx M2 log log log x
a0 = (rees ) (140 (Siigr )

ngx.PimEyg

Proof. Taking f(n) =cw(n) in (2.1) we obtain
(2.5) _ Y o= ¥ yxp, ).

agx,Pm<y pEy
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If v satisfies (2.2), then

26 T é(pN=xY lg(hﬁ:lo_ge)(l +O(log(u+1)))

pEY pSyp k’gx IOgy

= (x, yinlx, y) (1+0(1°_%§5;1_)D’

where

nix, y) = Z EQ(logx—logp)/Q(logx)

sy P logy logy

Here we used the notation of K. Alladi {17, who investigated the sums in
(2.5). At the time of his writing the asymptotic formula {2.3) was not known
to hold in the range (2.2), but his arguments clearly remain valid if y satisfies
(2.2). Alladi proved that

7(x, ¥) = li(uf(w))—log logu+loglog y+ O (1)+ 0 (¢ (w)/log y),

where u = log x/log y, and li x = {dt/logr is the logarithmic integral. We have
r

) ué (1)
li(uc () = log (uf (u))+ ° (1082 (g (”))) ‘

But e = 1+ u#, whence
log (ué () = log(e®—1) = E+log (1 —e™%) = £ () + Oe™*™),
u (u)/log (u& () = u+0(1).
Taking y = y, we find that

log yo = ($log xlog, x)*/? (1 +0 (log_3x)):

log, x

172 4
uz(Zlogx (1+0(log3x ,
log, x log, x

E(u} = log u+loglogu--0(1) = log log x+ O (log log log x).

2logx \'?/ . rlogloglogx’
= 140 | ——r—
1, Yol (loglogx) ( + ( loglog x ))’
and the assertion of the lemma follows from (2.5) and (2.6).
The lemma can be also obtained from Theorem 3 of [8], which gives

Y w/p, ) =¥ (x, 0 Y P (1+ 01w+ 0 ogy))

Py . Py

Therefore
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uniformly for 2 < y < x'/2, where u = log x/log , and o = «(x, V) is precisely
defined and evaluated in [8] A standard application of the prime number
theorem gives uniformly

- 1 1+e < ( _]_nggﬁ
,Eyp = y+Olufloguw), log ' "*x<Ey=<exp (loglogx)? )’

and the lemma follows as before.

3. Proof of Theorem 1. We remark first that in the special case y =x
(1.2) reduces to

I log log x
3 @t =5(5 50 ()

This is a well-known formula (see p. 30 of [3]) which shows that Q(rn)—aw(n)
has a mean value. The true order of the O-term above is known tc be
0(1/log x), which shows that the error term in (1.2) cannot be in general
much improved.

We begin the proof by setting f (n) = 2(n)—«(#) in {2.1) and noting that
Q(p)—w(p) = a—1 for a= 1 and any prime p. It follows that

B3y Y Yixp™", )

usx,Pmsy

(Q(n)—w(n) = Y

PExpsyazl

= ¥ YxpTh o+ )3 W (xp~ »)

MPEyaz2 yapiSx,pEyaz2

. Sl_l_SH’
say. Using Lemma 3 we obtain

(3.2) S =y(x.y) ¥ p—m(HO(fibngoglogy))

PEyez2 ]Ogv

— loglog y

=y{ey) X P ”+0(W(x,y)-f )
PEyvaz2 ogy

Further we have

(3.3) ropt= % p"ﬂ(1+ (“”‘3@3))
z2

PITRTY) Pz logy
- loglog x
= P "-l—O( )
p,azaz logy
1 log log x
S
p D" P ogy
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Ta estimate 8" we use Lemma 4. Thus we obtain

(3.4) SUw(x Y predete
y<plgx,plpaz2
={x, y) Y p eI g (x, yi/log x,

y<pisx psyaz2

since lim fi{x, y) =1 if logy/loglogx — 0. Theorem 1 follows then from

(3.1)-(3.4).
It seems interesting to note that there is another approach to Theorem i,
which can be generalized to sums of the type
S(x,;; iI= Y FQn-ov@)

nEx, Pn<y
for any function F such that the series Y}, k27 F (k) converges. This may be
k20
obtained, even in a more general setting, from Theorem 1 of [11], in whose
notation we have

s

S(x,y: F) = Z Flky Y 1= Fly(x, y Q—o).

k=10 nEx,Pm<y k=0
Am— o=k

Theorem 1 of [11] gives a sharp approximation of yq({x, y; @—w) in the
range log?™* <y x, 0 <z <1 fixed, which eventually leads to a suitable
expression for S(x, y: F). In the case F(n) =n and log y/log logx—+ w as
x — oo this expression will reduce after some calculation to (12. Hm>0
is fixed and log y/loglog x — 2, then we obtain with some constant C,, > 0

that
Y (@m-em) = (C,,, +0, (103 log x )) |

rnEx. PMEyY lOg_‘lf
4. Preof of Theorem 2. Let L = exp((logxlog, x)"/?}. Using Lemma 2,
(1.5) and {1.6) we easily obtain

1 1
a1 Lo a1 w5
(‘ ) Z P(H) nms.\:,z}‘(mls.p r p%x pljj

nEx

=(1+0(og %) 3, —d/( )

L110g g0 P
for any fixed 4 > 0. The crucial step in the proof is to show that the range
for p in the last sum can be further restricted. Namely, let

logy x
- " Loz f1—2-—=2220)8
4.2) L, =exp {(zlog xlog, x) (1 o, x)}
log, x
— 1/2
L, =exp {( log xlog; x) (1 + 210g; x)}
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Then we shall show that
1 1 /x
Z ﬁm=(1+0(10g 4 x)) Z —!/1(;1 p)

nEXx P( ) Li%psLly P

for any fixed A > 0. To accomplish this we shall use Lemma 2 to obtain

{4.3)

1 -
Sp= ¥ “‘W(’Eg p)écxp(Clog”?‘x(]ogZ x)™¥?logs x)

LM 0gpsr, P

x max !

exp(—vlogv—rvloglogv-+u),
LU0 gLy

where v = log (x/t)flogt, and C > 0 denotes generic absolute constants. Set-
ting further w = logr it is seen that

vlogr+vloglogv—u

l g (loglogx—log w+log(log og x —log w)— 1)+ O (log log x).

Hence

max
(logL)f 10SwSlogLy

§; < exp{Clog"?*x(log , x)"*?logs x) exp(—F(w)),
where we have set
F(w) = w—l——gi(loglogx—-log w+log(loglog x—logw)—1).

But we have

F(w)=1- l‘f (loglogx—logw+log(loglogx—logw)+

1
loglog x~log w)'

Therefore F'(w) =0 for

= log x{log log x—log w+log (log log x—log w)+ 0 (1)),
whence
logw = 4log, x+4logs x—§log 2+ O (log; xflog, x),
and then
w=wy = [3logx(log; x+logs x+0(1))}”2-

Since F"(wq) > 0, the function F(w) attains its minimal value for w = w, in
the interval (log L)/10 < w < 10log L. For our choice of L, and L, we have

logly <wy, and loglL, > w,.

icm
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Moreover, for any fixed real B and

L(B) = exp {(’%ng}ogz )12 (1 _wBlOgs X)}
log, x

we compute that, as x — 20,

F(-log L(B)) = exp{ —(2log xlog, x)*/?

log;x—2—log2 B*+B log? x
1 1 1 .
x( i 2log, x * 2 (I-+o ))logix)}
But in L, and L, we have B =2 and B = — 2, respectively. Hence in view of
(1.5) and (1.6) we obtain

5, < c:xp(C]og”2 x(logy x)~¥*logy x) F{—log L)

“ L Fomiorts
for any fixed 4 > 0. Analogously we obtain

S_.')_:m Z

Lp<psrll

< exp(Clog'? x(log, x) ™ ¥?log, x) F(—log L,)

1
N ,,;x P(n)log* x’

Formula (4.3) follows then from (4.1) and the estimates for §; and $,.

We proceed now to estimate the sum on the left-hand side of (1.7). The
contribution of integers n for which P*(m)n and L, < P(n) < L, is

LA

1 1 X
4.4 <logx Y =logx Y -y (—Ea p)
qu,Pz(n)L ( n) LispsL, P \P
L1 sP#HS .
1
= xexp(=(2+o(1) (og xlog: ') < ¥ prsie

for any fixed 4 > 0. This follows by using Lemma 2, and a more precise
formula for sums of 1/P(n} when P?(n)ln has been given in [10]. Using the
additivity of Q(n)—w(n) we obtain

Qn)—awin
“) L TFm
1 1
= = Qmy—o(m)+0( Y -
Ly Sg& Ly p mﬁxlg'(m) <p ( (m) @ (m)) (n%x P(n) 1Og JC)

1
=2%0 ( P o8 x)
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where we have set

(4.6) Y= 3 ! Y (Q{m) — o (m)).

L1<p< Ly P mxypPom<p

The inner sum in (4.6) may be estimated by Theorem 1_ with_ y=p and x
replaced by x/p. The condition log y/loglog(x/p) — e« 1s satisfied because
L, < p< L, and it follows that

1, {x ( (Ioglogx))
_ L% PR Y falla
(4.7) )3 ngﬂzpd/(p p) c os 1
o (lo8loex ”2) ! (* )
:%l’""o(( Ing ) }Ll\§\i‘2 P'f/ p*p
loglog x ”2) 1
=jevo (s ) 2

where we used (4.3) and ¢ =Y 1/(p®—p) (it is not difficult to show that the

P
value for ¢ obtained in [6] is the same). Theorem 2 follows from (4.54-(4.7).

5. Proof of Theorems 3 apd 4. Both proofs will use (4.3). To prove (1.8)
we remark first that, reasoning as in (4.4), we may suppose that P*(n) does
not divide n. Because of the additivity of e (n) and (4.3) we see that the main
contribution to the sum on the left-hand side of (1.8) will be

12()

Li$p<Ly P msxyp Pl

sp
1 ( (Zlog(r/p ) (1 N 0(195_19;1_0_5(_)5/1))))
Lw,s,,f) log log (x/p) log log (/)
2 loglog! 1, {x
(o), 6o
loglogx : loglog x Li<rsny PP
_ ( 2logx 2 (1-} O(]_og_g,célogx)) 7 1_
loglog x loglog x et P(n)
Here we used Lemma 6, since for L, < p< L; we have

3 x\42 log log | (\/J))
- Lo~ X g log losly/]
pmexp{(zlogploglogp) (H«O( loglog(\/p) .

Finally we remark that the sum on the left-hand side of (1.9) is estimated
analogously. The main contribution is by Lemma 5 equal to

1 Y w(m

LyS$pSLy P mEx/pPimySp

1 fx - log log log (x/p) 4z
= — |, or 2-I-O((
1y gﬂzpw(p p)( loglog (x/p)
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. d 172
-_—{61;‘2-{-0((%) Z 11/1 X »
loglog x Lidrs, PP

rSL

] AR ¥
={6nﬁ2+0((ogloglogx D _L
loglog x = P(n
where in the last step (4.3) was used.

6. Concluding remarks. It was mentioned in Section 1 that our methods
are capable of dealing with certain other sums which involve Q{n}, win) and
the reciprocals of P(n). This is to be understood in the sense that the sums in
question are compared with the sum of reciprocals of P(n), for which a
precise expression (furnished by (1.5) and (1.€)) is known. In view of {(4.3) the
main. contribution comes from P(n) lying in a relatively short interval. As
shown by Lemma 35, the average order of w(n in that case is

~ (2log x/log, ¥)'/%. However, the normal order of w(n) is then also the
same, which was shown by K. Alladi [17]. Alladi proves that, uniformly for
exp(log?® x) <y < x,

(6.1) )3

nSx,Pm<y

(@m—nlx, 9)° ~y(x, » (rz( = (g)(i)l)

as x — oo, where u = log x/logy, and », ¢ are as in Section 2. Since (2.3) is
now known to hoid for (2.2), it is easily seen that (6.1) holds also for {2.2), in
particular if P{n) satisfies (1.10), which is the relevant range for our problems
involving the reciprocals of P(n). Using (6.1) and the foregoing methods a
number of further results may be proved without difficulty. Simple examples
are:

1 log log x \/* -
(62 2.:2,,:.:\ w(n P(n) =(1+ (1))( 2logx ) < P{n} (x = ),
A 12 1 .
(6.3) ngx YT (1+0(log x))m 500 (0 <e <1/,
(6.4) O io(og ) T -L.
' 2émsx 2(M) P(n) nsx P

For (6.3} the easiest way seems to write

Q) Q—wh)

o o) 1.

To obtain (6.4) note that trivially w(n)/Q(n) <1, which yields an upper
bound for the sum in question. To derive a lower bound, note that by the
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Cauchy-Schwarz inequality

1 e (n) 172 . Q(n) 12
L5 <UL aorm) (I soas)
n<x P(ﬂ) 2&nLx ‘Q(H)P(H) Asnex LU(”!)P(.”E)
Thus using (6.3) we obtain (6.4).

It is possible to generalize both Theorem 2 and Theorem 4 by consider-
ing sums of the type Z f(n)/P(n) and comparing them with the sum of

nEx

reciprocals of P(m) when f(»n) is an s-function. This class of functions was
defined in [11] as the class of nonnegative, integer-valued arithmetical
functions f(n) such that f(n) = f(s(n)} for all n > 1. Here by 5(n) we mean
the largest squarefull divisor of n (an integer m is squarefull if plm implies
p*lm). Clearly both Q(n)~w(n) and p*(n) are examples of s-functions. By
using Lemma 4 of [11] and the method of proof of Theorem 2 it is possible
to obtain that

1
2 S ()P =(Cr+o(1) E{: Y

nEx x P(”)

as x — oo, where C, > 0 is an absolute constant depending on f, provided
that the average order of f is not too large.

Finally T wish to thank G. Tenenbaum for useful remarks and Math.
Institute of Belgrade and Rep. Zajed. of Serbia for financing this research,
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