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A local Turdn-Kubilies inequality
by
P. D. T. A. ELuotr (Boulder, Colo)

In celebration of the seventy-fifth birthday of P. Erdds

A complex-valued function f(n), defined on the positive integers, is
additive if it satisfies f(ab) = f{a}+f(b) for every pair of mutually prime
integers a, b. A standard form of the Turdn-Kubilius inequality asserts that
for x =2 '
(1) AT f-xTt Y fmF < Y If @

nEx mEx gEx
the' final sum being taken over prime-powers ¢ and the implied constant
absolute. .

For integral x the sum V(f) estimated here may be viewed as a
variance. To a certain extent it may be modelled using sums of independent
random variables (e.g. Kubilius [7], Elliott [1]), so that for a wide class of
additive functions the upper bound in (1) is asymptotically best possible.
However, when f(n) = logn the upper bound sum is » (log x)%, whereas
V(log) €1, which is much smaller. Indeed, after an application of the
Cauchy-Schwarz inequality we obtain

(2 V() <22+ % |f(@)—Aloggl*q™,
. gEx
valid for all . That this is of an appropriate form was shown by Ruzsa [8],
who proved that with a suitable choice of 4 there is an inequality of this type
going in the other direction. His argument combined an elaboration of the
method of Haldsz [5], with ideas from the Theory of Probability. A possible
value A, for i may be readily computed: o :
Jo(t+ T, (logaq™")= Y a7 ' f(@)logq.
gEx qg&x

We may reappraise the inequality (2) by considering the complex space

¢ of tuples (f(2),7(3),...), with one coordinate for each of the s prime-.

powers not exceeding x, and introducing the norm
‘ ) ~ . 1/2
o = l4ol +( %, a7* 1f (@) 4o log al?) "

g€x
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Furthermore, let € denote the standard [x]-dimensional space derived
from the Cartesian product of copies of C, with the norm

_ 1/2
lizll = ([x17" X |z
nEx
Then the inequality (2) with the companion obtained by Ruzsa, assert that
for certain positive constants c,, ¢z, the operator 4: C*— C* given by

(Af)(n) = ;\V‘T J@-Ya'f(@
q||n TEx
satisfies

e lifllo < 11411 < ez flo-

A is an approximate isometry.
A functional-analytic source for the logarithm can be given. Let g,
denote the prime of which q is a power, and introduce on C° the inner-

product .
_ v f @@ (1 1 )
(f’ g) qu q do

with its corresponding norm

_ If(q)lz(_l D“z

Then ¥r(g) = |7 log] "* " log g, with L =logx, is an approximate eigen-
function of the operator T* C*— C* given by :

f@— ¥ m(1——1—),
xlg<l€x ! lO

where ! runs through prime-powers. The operator T is self-adjoint with
respect to this inner-product, and ¥ has a corresponding approximate
eigenvalue 1, which is close to the largest eigenvalue of T, A functional-
analytic derivation of Ruzsa’s result is sketched in Elliott [2], and a detailed
Justification of the above assertion is given in Elliott [4]. Whilst the scalar
factor L may be removed from y, its presence reminds that underlying this
functional-analytic point of view is the isomorphism u —+(log u)/log x between
the multiplicative group of positive reals, and the additive group of all reals.
In some sense this study takes place on the former of these two groups. This
notation is also consistent with that of Elliott [4], save that there ¥ ois
denoted by ¥,.

What form should an analogue of the Turdn-Kubilivs inequality take if

we restrict the integers nin V(f) to lie in an interval x—y <n < x? Ideally it
should be an approximate isometry.
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Define
1 2
Afy=y=t Y U-- Y fO .
x—p<ngx x—yp<tEx

For integral y this is once again a variance, and with the weights y~*
replaced by ([x]—[x—y])"* this will be true whether y is integral or not.
The following resulis remain true with this modified definition of 4 (f), but
for notational simplicity I shall retain the use of the y~ !, and assume y to be
an integer.
Tueorem 1. The inequality
2
A(f) <1A* A (log)+ 3, %@L

qsy

i 2
y*logy ’y ?;J 2

with g(q) = f(g)—Alog g, holds for all additive functions f, for all 2, and for all
\/r?: < xM? < y < x. Here ' indicates that summation is confined to those prime-
powers which exactly-divide at least one integer in the inzerpal (x—y, x].

If ¢ <y, then some integer in the interval (x—y, x] will be at least
divisible by g, but for g >y that need not happen. In cgntrast to the
situation for the standard form of the Turdn-Kubilius inequality (y = x), the
values [ (n), x—y <n<x, need not completely deter_mine f on the whole
interval [1, x]. o

‘It is convenient to define f(g) to be zero when g does not exactly divide
an integer in the inmterval (x—y, x]. '

Tucorem 2. Let ¢ be a positive constant. In the rotation of Theorem 1

Ls o=t v gl +
+; glg ) _

YEGER y<gs€x

2
A(f) <12 A(log)+ ¥ 'i(-?L+— S @
q€y

PEqgEx
provided y > x, x 2= 2. ) 3
That this gives an appropriate generalisation of the Tpran~l£q_l:_>1]_1_us
inequality is shown by ‘

THEOREM 3. With F = (J, /) the inequality

FEAW)+ T 1(1~i)|f(q)—F¢(q)|2+—1- S 1@ =Ry @ <4
. . g2y 4 _QQ o yry‘<q~<._x s e
holds uniformly for all additive functions f, x(log x)™!* loglogx'<y. <% and x
absolutely large. SRR SHE
For these ranges of x, y, Theorem 3 is a. companion to Theorem 2 with

A= F([{lL)~*. I have expressed this theorem in the .language of the space
C* since that is how it natpraily arises. No doubt a version of Theorem 3

2a AF
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appropriate to Theorem 1 exists with much weaker constraints upon the size
of y, perhaps even those required in Theorem 1. However, with the present
formulation T can appeal to results, of a functional analytic nature, already
available.

The formulation and proof of these theorems was an exercise in the
philosophy that: if an operator (or argument) shows that certain conditions
force a statement to be valid, then its dual may be used in the investigation
of their necessity. Such a methodology T applied to arithmetic functions in
1972 [3], and it forms part of my recent book [2] on arithmetic functions.

We begin with a version of the Turdn—Kubilius inequality. For z > 0 let

M@E =Y 5%1(1_-1“).

g€z do
The inequality

L'y |y ro-Mof < 3

yx'-y<n~.x H.{‘IZ qsyllz
qsy

may be obtamed in the classical way of Turan, as developed by Kubilius [7];
by carrying out the squaring and inverting the order of summation. If
y > x'2 then each integer n, not exceeding x, can have at most 3 exact
divisors g > y'/*. Applications of the Cauchy-Schwarz inequality enable us
to extend to

1S @*

X 2
® L'y s ro-muf < 37 L@
yx y<n€x gi; sy

Proof of Theorem 1. By the Cauchy-Schwarz inequality
A(f) < 2|4 4(log)+24 (f— Alog),
so that it will be enough to establish the theorem for the case A = 0.

We note that
szl HE D)

a=y~t ¥ fl)=
X—y<ngx:
flg) 1 J 1 o
=3 ——1-— Mo (=Y If @ J+- ¥ f@
a<y 4 o 45y y<g€x
since at most one integer in the interval (x—y, x] can be exactly divisible by
a g>y. Let the last of thése sums be denoted by B,
Writing f(n) in the form

Y f@+Y @

q||» q||n
q=y - q>y
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applying the Cauchy—Schwarz inequality and then (3), we see that

2
@ A(f<§:'m| L %f@—~ §A§U@W-
Since _ ”
2
(x1rar< gy,

g5y qsy g%y
and this last sum is < y*/logy, the third of the terms in the upper bound at
{4) may be omitted in favour of the first. Towards the second term in that
upper bound, those integers » which are exactly-divisible by some ¢ >y
contribute at most

2

: B
Z f(ﬁI)—'}-

yPYgEx

The remaining integers give < y~'w|B|%, where w denotes the number of
integers in the interval (x—y, x] which are not exactly-divisible by any ¢ > y.
We can estimate this number by

w< ) )

2 x_y<n\x
yRpoEx
n= O(mndp)

1+ ¥y 1

xuy<p5x

where p denotes a prime; since any integer not exceeding x which is not
divisible by any prime > y (> x'/?) must be a prime. That the number of
primes in an interval (x--y, x], with y > 2, is O(y/logy) goes back to Hardy
and Littlewood, and may be obtained by a sieve method (e.g. Halberstam

and Richert [6]). Moreover,
xHZ
<
J) =¥ Ei/zp 10835

x
z =
yH2 <pxlf2 P>y

so that altogether w < y/logy. .
The proof of Theorem 1 is complete.
Theorem 2 may be proved in a similar manner provided we note that

el ¥ 1< ¥ logggs ¥

yEgEx - y<g€x x=y<n¥x

logn< yL

For ¢z 1/2 it may be déduced ftom Theorem 1 with applications of the
Cauchy—Schwarz inequality.
Proof of Theorem 3, This is the more lntercstmg Wc duahsc the

norm mequallty (3):

St 3 ali-2) 5 af<d 5 o
a”_-— A y . n| - 2
q\yq Y x— yﬁn.\x _ g\ 4do yx ~y<nEx : x—y<nSx
qln .
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.valid for all complex a,. This inequality remains valid if we remove the
factor 1 —ggy ', and introduce the condition (n, ) = 1 into the sum attached
to it. We then set a,= f(n)—o, and note that the terms involving o
contribute to the multiple sum an amount < |u|*/logy. Altogether

- U 1
) Sap T f0i~— ¥ 1) <A(f)+'°”
i Y xoynss x s

Tt is convenient to define
1/ —y : —y
AHZHHE)
yi\l4g q g _99q
a function which satisfies
-1

Lea(lo-L)) <
27 g do 2

uniformly for 2 < g < y/8. For this range of ¢ the first inner sum of (5) has
the alternative representation

1
o f @+~ X

(x—y)g <mSxiq
(m.g)=1

S (m).

Let H be the space of complex vectors, one coordinate for each prime-
power q which exactly divides some integer in the interval (x—y, x]. To

investigate the implications of the inequality (5} a study of the operator H
— H given by

1 1
6 by —— —
R ((x I o qx_énsxﬂ"})

(m,g)=1 (mg)=1

is appropriate. Moreover, it is better to keep the terms involving « inside the
square at (5), and integrate them into the treatment. However, to reduce
details I relate this operator to the operator T introduced earlier, requiring
that y not be too. small,

The sums at (6) may be treated in the earlier manner of «, and given the
alternative representation

1
Z LI(—Q(I*Z_)“ Z [";Q(l—;‘)+Eq;

I<x/q 0 1€y ! 0

Lg=1 =1

where

E, <~ z|fu)|+— Yoo+ Y (o

Yigy y<q€x 1< xfg
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uniformly for ¢ < ¥/8. In particular

L2 (logL x*logL FE 1 o, |
M T B <( T +yzﬁ)(z ey’ I_f(l)ll)-

45-)’/3q ISy y<i€x
For example, by the Cauchy-Schwarz inequality

{25 10 ) eplo X5 JUF

qsyq _v.lsx/q q\yq y max(l, IOSx/Q) I<x/q
Ef(f)l 1 1
Z Z Z I
}’ I<x gExe” ‘LQ\/' —\/L<q<x

to which we may apply well-known elementary estimates. For small values of
g this argument is wasteful. :
Let

=A(f)+(10gL)"( > M‘*‘% /8§'< lf(q!)[")

q<y/8

Noting that under the hypotheses of Theorem 3 |o|? L7t <5,

B\ D? o lqg .
21( ¥ lf()l) ey MO g 1a g
q»yq xjg<isy ! i<y ! g5y %

(Lay>1

U o OV 1x
ZM(Z T) <y<1 é:q

qSyq y<l€x <x

and

we derive from (5) the partial-norm inequality

® T Are-ang <6
a=y/8
Define the operator S: C*— C° by
T @) (T —(f, Wi (9)s

largely removing the effect of T upon its first eigenspace. As x— co the
spectral radius of the operdtor § approaches 1/2, and the resolvent operator
(I—S)~! is bounded. This may be obtained using the argument on pages ‘433,
434 of the Supplement in Elliott [2]. A detailed proof of this result is given
in Elliott [4].

The inequality (8) only gives information concerning Tf on the prime-
powers g < /8, although the definition of T involves values of f on the
prime-powers all the way up to x. It is therefore convenient -to employ an
analogue of T defined on a.slightly smaller space.

Let ¢ denote the number of prime-powers not exceeding /8. Let Ti) be
the operator €' — C' which is defined like T, but with y/8 in place of x.
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Corresponding to § there will be an operator §;, with a function y,
corresponding to .
Applications of the Cauchy-Schwarz inequality, and of the estimate
’ 1 logL
—_ < g

yle 2‘5 xfq ! ﬁ

which is valid uniformly for ¢ < xe™ V%, allow us to write (8) in the form
I = To) £11* <6,

in the norm on C. Then

| f=Fo(I—8o)™ *hol® < &
with Fo = (f, rg). Morecver

1S Woll = IToWa—tholi < L1

may be checked directly. In view of the operator relation

-8 '=I1+J-85"'S
we have

lf=Fowoll* <|Fol* L' -+8 <4,

this last by applying the Cauchy-Schwarz inequality to the inner-product F,.
Since W, ¥, are each the logarithm function, rescaled to have norm 1 in
C*, €' respectively, it is readily checked that these final inequalities remain
valid with F,, v, replaced by F, and s suitably restricted. Thus we reach
©) )
g<ys 4

Replacmg fin the inequality (9) by f—Fy;, and taking note of the form
of 8, gives

SCUREDY “lf(q) —Fy(g)* <d(f~Fy)+

a5y/8

llf(q}—F'!f(q)lz <.

logLy;MI f(q)—Fir (9)*.

We denote f— Fy by g, consistent with the notation of Theorem 1 when
A=F(y]]L)"*. We may apply this together with the Turdn-Kubilius vari-
ant (3) to the estimation of 4(g) itself, and so obtain

1

o t ! 2
'yT—ygnsxl q[lrllsg(Q)l <Ala)+ IOgLy<Zq$¥|g(Q)I
Thus i o
1 .
at -y g If(Q)—F'#(Q)I2'<A(f"-FIIJ)
also holds.
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We next investigate the function A4 ().
Lemma 1. The estimate

f+ ap) =

2 3
f)+f@i24(!l/)+0(|9ii|f!| “’g”)

21?;‘2

holds uniformly for 2<y < x.
Proof. We need only consider the cross-term

y=2 3

x—y<nix

(m 2y

x—yp<tEx

r0)we-3 3 vo)

y<Esx-

Since y is an integer (and only in this lemma do we use that fact), we may
replace the average of ¥ over the interval (x—y, x] by its average

x)"“—ZlI/

X 1<x

over the whole interval [1, xJ. This enables us to take ad\?antage of the good
distribution of the logarithm function in residue classes. Direct calculation
shows that for z = 2

24

g%z

(z loglog z)*
R
logz

b3 (log nﬁé ¥ log t)

sz | £3
ailn

We represent Y in the form

-f;Z(f(n Loy

nEx x—-p<tEx

! (r,))(w (m)— B(x))

-2 ¥ (f(n)—% ) f(t))(!!l(n)-ﬁ(x—y))

nEx~ x-y<t€x

+pw-pun) L (10 T _so)

RSx—y
In the first of these three sums we may omit the inner average over t and,
representing f in terms of its values on prime-powers, invert the order of
summation

2Y 1@ T (wim—p).

g%x HEX
— L

Applying the Cauchy-Schwarz mequallty, and the bound (10) with z = x,
shows this expression to be <«|g|| f]|xlog L(yl?"z)‘
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The second sum may be similarly treated, with log(x—y) in place of L,
giving a satisfactory bound if x~y > x%/2, Otherwise, we argue crudely with

LIFOI<Y TIf@l <x)f

ISx t€xq|l1

logL,

and estimate it to be

PLANESLATC
¥ ¥

which is also satisfactory.
To estimate the third and final sum representing Y, we note that from
our earlier representation of «

1 1 X2 1l
v, (s =3z (‘)) RN

whiist for x—y > 2

} ﬁ(x)"ﬁ(x—J}) <€ (1—Iog (1—';}:'"))1;_1,

If x—~y > xexp{—(log L)*) then altogether

Y <lglilf1l x* (log L)* (y2 B/%)~1.

Otherwise we give the third sum the same crude treatment that we gave the

second, and obtain for it the bound

’Q'W(x) ~Be= =SV,

from which a sharper upper bound for ¥ follows.
In order to usefully apply this lemma we need a lower bound for 4 ().
Lemma 2. We have
P <gd(log) <1

promdea' Y (xlogx)"! and x are sufficiently large.
Proof. Replacing the sum by an integral shows that

' logA:1 >

xX-y<t€x

logi = —flog (1 —£)+log(x—y)-1+0 (—Lf—)
. y x _ ¥

Since ~log(1—6) <8(1-0)~* for 00 <1,

0< —(i'—l)log (l—z)s 1,.
¥y N x

icm

A local Turdn-Kubilius inequality 137

and log A = logx+ O (1) uniformly for y > L. To obtain an upper bound for
A(log) we note that

1 ( " )2 1 ( ) (LZ)
- log— log— | dt+0
yx—ygns.x X/ ¥ xj‘y y

since the integrand decreases over the range 1<t<x The change of
variable ¢ == x/u shows that the integral has the alternative representation
=901 (1oo )2
x ( gzu) d,
y i u
which, considering the cases y > x/2, y < x/2 separately, is seen to be
bounded. The given upper bound for 4 (log) is actually uniform for I? < y
< X.
On the other hand

2

x oy xfy ¥y
= BN Pl EATREa, |
. log (1 x) ; (x+2x2)

sufficiently large

so that for y?(xL)~!

Y
2 Az(x- — I
x2Az2(x y)exp(4x>
Thus

1 AV
A(log) = — 2 (log _)
Y x~y <ns dexp(- y/8x} n

A ol e

x/2 and y sufficiently large is at least y?(32x)~2. However, if y

A(0g) >+ | (10 t') dr+0( 2)
(s =
5% v

Here the integral is larger than

A xfA 5x/84

=( [ + | (loguwdu).

Y 3xj44  x24
If x/A > 3/2, then logu > 9/8 over the first interval of integration, otherwise
—~logu > 16/15 over the second mtcrval In either case we conclude that

4(log) > 1. _
To complete the proof of Theorem 3 we apply Lemma 2 with f replaced

by f—Fy, and ¢ by F. In view of Lemma 2, our hypothesis on the size of y,
(19 and {11):

which for y =
= x/2, then
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1 2
_ A(f)==(1+0(@))(A(f~Flll)+iFl AW

Note that only here do we use the full restriction on y. Up until this point
the weaker y » xL™Y*(log I}* would have sufficed.
Concluding remarks. Introduce the norm
(T g™ e+ T 1)
asy y<gsx
onto the space H. Let K be the space of complex vectors z,, one for each
integer in the interval x-~y < n € x, with norm

1 172
Iznlz) -
x—y<nsx

- X
According to Theorem 2, the map A: H — K which takes (f'(g)) to

(ro-5 L2 (-1 )

has a norm which is bounded independently of x, uniformly for x° €< y < x,
any fixed ¢ > 0. .

' Let N be the norm of a typical functional x —{x, b) in the dual space
H’, where the inner-product is the usual Euclidean one on H. Then

N<(Y qlb)+(y 3 b)) < 2N,
a5y y<gsx
The dual space of K may be represented by functionals zm»(z, f), with
associated norm

|6,

v X

x—y<ansx

Since H, K are Hilbert spaces, both the dual A" and the adjoint A* of
the operator A are well defined, and have the same bounded norm as 4. In
particular the inequality

1 1
) a,,——( “_) Y,
x-yII:nS.x q do X—y<nEx
qlin

2
Y q

9y

, YA 2 |
+y ¥ )y a,,——(l—m—) Yoal <€y Y laf?
y<g€x x—y[TnS,x q qU x—p<ngx X—p=spEy

qlln

holds for all complex a,, ** <y <x, x> 2.
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