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On Waldsparger's theorem
by
H. Iwaniect (Princeton, N. J)

To Paul Erdbs on the occasion of his 75th birthday

1. Introduction. J.-L. Waldspurger {5], [6] showed that, under the
Shimura correspondence g = Shimura (f) between Hecke eigenforms f(z) of
weight k =3+1 and g(z) of weight 2k—1, the square of the nth Fourier
coefficient of f, where n is square-free, is proportional to n*~* L,(k—3, x,)-.
Here L,(s, x.) is the L-series attached to g twisted by the real character 1n (M)

4]
= (m) and 5 = k—% is the center of the critical strip. The original arguments

of Waldspurger use the language of representation theory. W. Kohnen [3]
gave a rather explicit derivation by constructing reproducing kernels for the
Shimura and the Shintani lifts.

In this note we establish a similar result in a completely elementary
fashion. Our relation is essentially the Waldspurger formula averaged over a
basis of the space of cusp forms. Due to such averaging we avoid speaking
about the Hecke operators and the Shimura correspondence. The method of
proof is conceptually direct. We first express the Fourier coefficients as a sum
of generalized Kloosterman sums by an appeal to Petersson’s formulas for
the Poincaré series. In the case of forms of half-integral weight the
Kloosterman sums in question are twisted by a real character and this
makes it possible to evaluate them explicitly by means of Gauss sums.
Having done this we then use Poisson’s summation to get another sum
involving ordinary Kloosterman sums which, in turn, are related to the
Fourier coefficients of cusp forms of an integral weight.

This work is primarily of theoretical value; therefore we do not attempt
to reach full generality for the sake of simplicity. In the main result (Theorem
1) we assume that 2k = 1. (mod 4), n =1 (mod 4) and that the level of thc
group I' =T, (N) is N =4" with v 2 4.
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2. Statement of results. For z in H = {x+iy, y>0} and y= e gl ® Ki(mon;)= 3 g5 ) e( - )
d [mod ¢)
To(4) let j(y, z) stand for the theta multiplier;
. and d is a solution to dd = 1 (mod c). Notice that if &k is an even integer then
jiy, 2) = g7 * (E)(cz+d)”2. K, becomes the ordinary Kloosterman sum
' . . . md + nd
let 2k be an integer =3 and I =T,(N) with 4|N if 2k is odd. A K(m,nc)= % e( )
holomorphic function f: H— C is a cusp form of weight k for I' if dtmoda) ¢
f2) =iy, 21 (2) All the above results can be found in the book [4] of Rankin.
‘ . Form n N, Q=1 with (0, Ny=1 and 4N i i
for all ze H, ye I and f vanishes at each cusp of I'. The linear space S, (I') of Q (Q. Ny=1 and 4|N if 2k is odd define
cusp forms equipped with the inner product 4
, Gelm, n, @, Ny =i"% % CAIJ&—;( T mn)K,‘(m,n;c).
<f gy = j f(2)g(z) v~ 2 dxdy ¢20(nod N) c
is a finite dimensional Hilbert space spanued by the Poincaré series Now we are ready to state our main results.
P, iz, k, I) = Y i, 2 *e(mz), m=1. Tugorem 1. Suppose k>1, 2k=1(mod 4), n>1, n=1 (mod4), n
yelo\T squarefree and N = 4" with v = 4. We then have
Let
o > n
E H)E(HZ . . Gk(na n, n, N) =2 Z (;)m—”zGZk-‘l (ma 1: n, %N)
. 1 . m=1
be the Fourier expansion of feS; (I at the cusp ico. Given a cusp form
Petersson’s formula 1: g =Y G(me(mz)
N (4mnpt—1 m=1
2.1 fin= T&—1) s Py ( z, k). form the twisted L-series
. ’>f t n e -5
By (2.1) it follows that for m, n 1( - Lis, )= Y (_m_)g(m)m .
= ~ 4m m=1
(22) 2" Sl J () === 1)P w( k, 1)
_ FeSytr) By (2.2), (2.3) and _Thcorcm 1 we infer
where on the left-hand side ¥ * means that the summation is taken over an ToEGREM 2. Under the same assumptions as in Theorem 1 we have
orthonormal basis of §,(I). - A
On the right-hand side P, (n, k, I') is the ath Fourier coefficient of the > ul(d) Z* [f (2
mth Poincaré series for which we have another formula of Petersson. dln SeSidToldin _ _
Petersson’s formula II: =2 P k—Hrt 1 Y u(d) ¥ gy L, (k~%, -
: . din  geSap— y(IpidN/4)
n \E— 12 . /m : .
P, k, nN= ( ) {6m"+2m"" b) c_l.I,‘wl( T p n)Kk(m, n;c)} Proof. By the M&bius formula we have
e=0lmod N)
where J,_{(x) is the Bessel function of order k—1 and K,(m, n;c) is the (24) 2 =nDu@dl =) pd ¥

. (em=1 ¢ d din c=0(modd)
generalized Kloosterman sum defined by
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Hence, in particular, by (2.2), (2.3) and Theorem 1 we get
Yud ¥ 1fm)f
dln SeSiTgWN)
k-1 dren
G ey (2 )Kk(n,n c)}

Th-H "9

d|n

{1 +2mi7E

¢ =0 (mod dN)
_ (4Tcn)" !
T k-1

4 k—~1 oo n _
(1—.1(1;: 1) Z ( ) V2 Gy y(m, 1, n, IN).
m=1

2n Gy (n, n, n,'N)

Now applying again (2.2} and (2.3) in the reversed order we end up with

r(zk—z)(n>“”1 & (ﬂ) 12k *
2 d —m
Tik—1) \dn %,#( )mgl m geSzk_§ro(dN/4))

This completes the proof of Theorem 2 by the Legendre duplication formula
I(2z) = 221 _1’2F(Z)F(z+2)

3. Evaluation of Kloosterman sums. The main mgrcdlcnt in the proof of
Theorem 1 is the following

Lemma 1. Suppose 2k =1 (mod 4), n=1(mod 4), (c, n) =1, 28)|c. We
then have K, {n, n;c) =0 unless 4°||c in which case

i b
nf(Z_Z
( ”(b a))
Proof. The essential part of the arguments is already recorded in [2].

Letting ¢ = gr with 24g, ¥ = 2* we have
a b
I | =
e( . (b a))

by (3.9) of [2]. For the Kloosterman sum to modulus » we prove a general
statement.

Lemma 2. Suppose n = 1 (mod 2) and r = 2* with o
== 0 unless & =0 (mod 2) in which case we have

cnerer (2]
r

Proof Consider two cases:

g(1)g(m.

K, (n, n;0) =(1+i)c lﬂ(:) )

ah=¢
{a,h)=1

- n
B1 Kiln,n o= K2k+1—q(nqs ng; rle, qm (’“) Z
A by

= 8. Then K, (n, n; 1)

(3.2)

Case [ x =28+1, =4 Set d = u+2*1v with u(mod2f*"), 2fu and
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p(mod 29). Then d=a—a*v2"" (mod 2°) where @ is a solution to ui
=1 (mod 2%). This gives

Kutnr =36 (e (522 (M5 )

=24 )3 E“k( )e(n(thl-ﬁ))
ufmod 28 1) u z

v2 = 1(mod 28)
There are four solutions in u(mod 2f™'), namely
w=l, 291, 2641, 2*'_1 (mod 2#*Y)
with
=1, 28201, 2% 2Py, 2MTL_28YI_ | (mod 2%

2
respectively. Hence u-+i =2, —2+2%, 2+2%, —2(mod 27) and e, "(;)

=i, —i* 1, —i* respectively, giving

27FK.(n, m; 1")—3(2 )+z (%)_e (?)—-i"e(mrzn)=0.

Case II; ¢ =28 B=4. Set d=u-+2"v with u(mod 2%, 2/u and
v(mod 2f). Then d=a—i*v2® (mod 29 where @ is a solution to wuu
K.(n, n;r) =2 Y
ufmod 26)
There are four solutions in u (med 2#), namely
2011, 27141, 26

=1 (mod 2%). This gives
ike (n (u+a) )
H 2&- .
uZ = 1{mod Zﬂ)

u=1, 1 (mod 2%)
with
=1, -1, 2~ 1—22-14470 12 (mod 29

respectively. Hence u+ii =2, —2—4f"1 244871 —2 (mod 2% and ¢ *= 1,
i*, 1, —i* respectively, giving

—#
278K, (n,m;r) =e (%)bi"”"e<:~g—q)+i"e (&>—i"e (ﬂ)
r) r r r
=(1+i")[e (gf)mik*"e(—'zn)jl.
: r r

This completes the ptroof of Lemma 2.
For 2k =n=1(mod 4) and r =4, (3.2) gives

Kops1-g(nd, ng; vy =2 (1+i9 [e (21:%)4«9 (j- Zn%)}

T — Acta Arithmetica XLIX. 2
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But (1+i%e¢, = 141, so combining (3.1) with (3.2) one completes the proof of
Lemma 1.

Lemma 3. Let r=2%"% with B> 2. We then have
(3.4) K(1, m;r) =9.

Proof The arguments are standard and similar 1o those used in the
proof of the previous lemma,

4. A doplication formula for Bessel's
following

LEMMA 4. Let a b>0and v

fem et b g (hx =) x™ U2 dx = 247 v 112 \/gjzv (+/8ab)
o]

fanctions. We shall need the

1. We then have

and

j‘ei(ax-bx‘i)‘]v(bx—l)
b

Proof. For a, >0 and

TR gy = iy U2 \/— 2v(</8ab).

vz 1 we have (cf. [1], p. 725)

e T R (BxT ) X~ = 2 \Esz(\/Saﬁ)-

Move o and B to ia and ib respectively within the first quadrant getting

_[e“"“ﬁ"bx_l K, (ibx YYx™42dx = 2\/§sz(1' +/8ab)
0

by the continuity argument. Analogously we prove

[+ K, ibx™Y)x"12dx =2, | K, (/Bab).
! J

But for v and z real we have

Ot— g

K, (i) = m%e""“”zJV(z).

This completes the proof.

5. Proof of Theorem 1. Set B = {b; 4*|b with f > v}. By Lemma I

k -1 4nn- i b
G, W) =275 T mgl(ab) ”( b)fk 1( a’;”)cos(4nn(§_;))
24 (1+i) )Y b m( )V(b),

beB
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4nn a b
- ~y2 (7 e 2n(2-2).
Rc(a'g::la (a)']k'l(ab )e( n(b a))

From the ‘reciprocity’ formula

say, where

V(b)

by splitting into arithmetic progressions x (mod bn) we get

n 4nx 4nn 2n
V(b) =Re — e(— a . _ (—)e(——).
®) x(m%bn) (x) b )azx(%:odbn) ¥t _ab ab

By Poisson’s summation the innermost sum is equal to
o0
(bn)—uz Z

L. (%-;i)z(b, m)

_ o 4n 2 -12
I(b:m)““g']k*l(ybz)e( v ym) dy.

The sum over x (mod bn) factors into two sums; the Kloosterman sum
K (4 m; b) and the Gauss sum

Collecting the above results we get

where

Gi(n, n, n, N) = Y bTIK(4, m; b)I(b, m)

- ; n
k(l + l) mzaﬁo ("";) beB

(b,m=1

=4y (E m YN pTIK(4, m;b)Ju_'z(gn\/E
m=1 \M beR b

(b,m)=1

o : g
+2r Y (—E)m““' Y b'K@4, —m; b)KZk_z( ng/_n_e), _
m=1 beB

=1

i)y Lemma 4. We have K{4, —m; b) = 0 unless m = 4m, . Letting b = 4b;, we
find K4, +m; b)=2K (1, +my; b,) and K(l +my; b)) =0 if 2%%1 || b, by
Lemma 3. From this follows
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Gl 7,7, ) =2 Zl (;)m—llzb—mzm-ub K)o ( n;/”—")
- S =1

a1 =

- (—:;)m'm‘ Y bRl —m;b)KZk-z(M).
1

m= b =0(mod N/4) b
h.m=1

Here the last sum vanishes because by (2.3) and (2.4) it is the —mth
Fourier coefficient of a linear combination of the Poincaré series
P (z, 2k—1, I',(dN/4)) which are cusp forms This completes the proof
of Theorem 1.
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