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.an element of the sense set B. There is some u < x* such that otp(C,) = 7 and C,eD

and, for y e C; (4, Bly) = S,. Now, in the construction of .S, case 3.14 (1) always

hold. Hence any [x] for x e 4 is above a member of B and we have our orderer.
4.21. Cramm. T is ¢ Souslin tree.

Proof. Let B< T be dense. Let D = %™ be a closed unbounded set of ordinals
greater than % closed under Godel’s pairing function such that for @ <o’ € D any
small set 4 < 7 has an orderer 7,—7, as in the previous Lemma for u < «’. Observe
that if y = o'+ 1 then an orderer d: T,—T, can be found which sends 4 above B
and moreover satisfies 4.19 (ii) for [x, ] & [T,]*. To sec this pick first any orderer™
T,—T,41; look at the image of 4; apply an orderer as in Lemma 4.20 and then an
orderer*. (See Lemma 4.4 (4).)

_ Now we can find u< %" of cofinality ¢f(x) such that C,< D and for ye C,,
Sy = (Tly, Bny). It follows now that any [x]e T, extends some member of B.
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A note on the Mac Dowell-Specker theorem.
by

Peter G. Clote * (Boston)

Dedicated to G. Takeuti on his 60th birthday

Abstract. By using formalized recursion theoretic arguments, here reminiscent of a finite-
injury priority argument, one can remove the countability assumption in the Kirby—Paris refine-
ment of the Mac Dowell-Specker theorem on end extensions of models of arithmetic.

The Mac Dowell-Specker Theorem states that any model of Peano arithmetic
has a proper clementary end extension. In [KiPa], L. Kirby and J. Paris refined this
result obtaining a correlation between subsystems of Peano arithmetic and the
existence of proper end extensions which are elementary with respect to X, and I,
formulas. Their result is.

THEOREM 1. For any countable model M of IEy and nz2 Mk BZ, iff M admits
a proper n-elementary end extension K which satisfies IX,.

The Kirby-Paris construction used very strongly the countability of the model.
In view of the cardinality-free statement of the Mac Dowell-Specker Theorem, we

" might expect the conclusion of Theorem 1 to hold for models of any cardinality.

Such a possibility was first suggested by A. Wilkie. By using formalized recursion
theoretic arguments (in a manner reminiscent of a simple priority argument mixed
with G. Kreisel’s proof of Gédel's second independence theorem), we obtain the
desired result, thus answering Question 2 of [C1]. Since the early work of L. Kirby
and 1. Paris, many results in models of arithmetic have been obtained for countable
models (consider also the notion of recursive saturation in the case of countable
vs. uncountable models). G. Miiller has mentioned the desire to extend results in
models of arithmetic into the uncountablé, so as to make precise those concepts and
theorems which rely on cardinality considerations and those which do not. R. Kossak
has established several results in this direction and the present note should be seen
as a very minor contribution to this program.

“ Work done while the author was visiting the Department of Computer Sciem':e of the Uni~
versity of Toronto in spring 1984 and partially supported by the NSERC. I would like to express
‘my most hearty thanks to Professor S. A. Cook.
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§ 1. Notation and Definitions. Our notation is standard, as in [Pa] or [CI].
The language of arithmetic is {+,+,0,1, <}. A formula is X = II; = 4, if all
its quantifiers are bounded: Yx <y, 3x <y. A formula is X, if it contains a block
of unbounded existential quantifiers followed by a IT, matrix; a formula is IT,,,
if its negation is %, ,,; a formula is 4, in a model M if it is equivalent to M to both
a X, and II, formula. We write

M<K
me
to mean that K is a proper n-elementary end extension of M: that is, that Mg K,
MEO(m) il KE6(m)

for all £, formulas 0 and parameters 1 € M and that K adds no new element below .
Recall the notion of complete A,-ultrafilter, due to [Ka] and [Kr] independently.

DEFINITION. A collection % of 4, definable (with parameters) subsets of M
is a complete 4, ultrafilter on M if

) Meu, O¢u;

(2) if A,Be% then A n Beu;

(3) if Ae% and B is a 4,(M) superset of 4, then Be%;

4) if 4 is 4,(M) then either 4 or 4 = M—A belongs to %;

(5) if XS MxM is A, definable, ae M and Vi<a (X); €% then

N Xe%
i<a
where the i-th section (X), = {x: (,x)e X}

A collection % of X,(M) subsets of M is called a complete 2, ultrafilter on M
if % satisfies

@) if 4 is Z,(M), then either 4 € % or there exists a Be¥ with B 4

as well as (1), (2), (3') and (5") where (3) and (5') are obtained by replacing 4,by %,

in (3), (5). (Often one explicitly states 4, complete resp. X, complete rather than
complete.)

We consider subsystems of Peano arithmetic: P~ consists of the usual finite
axiomatization of some “minimal” arithmetic (sec[Pa]). £Z, is the subsystem of P~
plus Z,-induction with parameters and B, the subsystem of P~ with Z,~collection
with parameters (see [Pa]). We let 14, denote P~ plus the scheme

¥ (4 Cx, @) 1000, D) AYQ, #) AVx (i (x, D)= (x+1, )] —Vax yix, i)
where ¥, 0 are X, formulas.

§ 2. Principal Results.
THEOREM 2. For any model M of BE,, there exists complete X, -ultrafilter.

Proof. Le't <,. > be a recursive pairing function with recursive projections ( )o,
()1 sothat {(D)o, (1)1> = i Let y,(x) mean Sat((i),, x, (§)), where Sat(m, x, y) is the
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usual 2, definable satisfaction whose meaning is that “®(x, (i),) is true, where the
Gédel number of @ is (i),”. Let Seq designate the usual 4, predicate identifying
sequence numbers and for ¢ a sequence number, let 1h(c) be the length or domain
of ¢. Thus 1h(s) = {0, ..., 1h(e)—1}. Let 2°M abbreviate the set

{o: M ESeq(o) & Vi<1h(o) [o(i) = 0 or o(i) = 11}.
If ¥ (x) is (equivalent in M to) a Z; formula having only x as free variable, then let
VM = {aeM: MEY(a)}.

By {d;: i€ M), we mean (Y, (x): ie M), sothat {4;: ie M) is a Z; enumeration
of all ¥, definable (with parameters) subsets of M.

Before giving the proof, we give first an approximate but incorrect idea for the
construction of the complete Z;-ultrafilter %, secondly the correct intuitive idea
for the construction, and finally proceed by a series of claims to verify that the
construction works.

Approximate idea. Let {4;: ie M) be a X; enumeration of all %; definable
(with parameters) subsets of M. If 4 is a subset of M, then let A =4 and
A' = M—A. Consider the tree

T = {0 €2°™; there exist 1h(s) many x in () {4;": i <1h(9)}}.

Then the tree T'is 2, definable (without parameters). Clearly any unbounded branch f
in T yields a Z,-complete ultrafilter % defined by

AeWUef(i) =0 where i is a Z; index of the set 4 (hence A4 = 4.

However, by the technique of [C1], one would presumably need I4, to obtain a de-
finable unbounded branch and I4; to obtain a piecewise definable (but perhaps un-
definable) unbounded branch, Thus this argument would appear to require BZs,
which is too strong an assumption.

Idea. Again, let {4;: ie M) be a X, enumeration of all Z; definable (with
parameters) subsets of M. Consider the tree

T = {oe2M: there exist 1h(s) many x in () {4;: i<1h(s)and o(}) = 0}}.

In other words, T is forced to “witness” 1h (¢) many elements in the intersection of
those 4; which ¢ claims to be in %, yet says nothing about the complements M —4;.
There is no constraint about [} {47®: i < 1h(0)}. In particular, if ¢(f) = 1 forall /in
the domain of o, then o belongs to T. For a Z; definable (with parameters) subset 4
of M, let

A €% —rthereisa X, index i for 4, hence 4 = 4;, for which g,(i) = 0, except
for boundedly many #, where o, is the leftmost node of T at level n.
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It will be shown that B, is sufficient to show that there is always a leftmost node at
each level, although perhaps no unbounded branch passes through any o,. As well,
it will be shown that: o

(2) The definition of % is independent of the choice of the %, indices (sce Fact 3).

(b) Eventually the leftmost nodes o, agree on small initial segments, so that % is
well defined in the part of its definition requiring all but boundedly many of the o,
to “claim” that 4, belongs to % (see Claim 1).

() % satisfies the properties (1), (2), (3, @), and (5') and thus is a complete
5, -ultrafilter.

Details of the formal proof.

For o in 2M, let

T, = {ve2*¥: v=<o or (¢:3v & there exist 1h(v) many x
with Vi< 1h(@) [v() = 0=y} .

Clearly, for any o in 2™, T, is a Z; definable (without parameters) tree, hence 4,
definable. Furthermore, if o satisfies

*) 0 (¥ ()M i < 1h(e) and o() = 0} is unbounded in M,
then T, is unbounded in M, since ¢”1 ... 1 belongs to T" for all m in M.
v;l—?l;:s

Let T denote Tj;. Note as well that ‘
N {W@M: i< 1h(0) & o) = 0} = (Vi < Ih(0) [0 (i) = 01, (x)))¥

so the expression in (x) is equivalent to a X; formula.

Now for each n belonging to M, let ¢, denote the leftmost or lexicographic least
node in T of length n. This uses J4, which, by [C1] Lemma 12 (also independently
by H. Friedman), is implies by BZ,. The proof of the theorem follows from a series
of claims.

CLAM 1. “Things settle down”. MEYn Am>n VYkzm (o,tn = ox b n).

Proof. Suppose not: let n belong to M and

MEVm>n dk>m (g} n s o b n).

A trivial consequence of the fact that o, is the leftmost node in T having length m is
that: if i<n<m<k and o0,(i) # 6,(f) and o, } i = o, } i then

M) 0,() =0 and g (i) =1

) for all' r>k, if 0,} i = 0, } i then o,() = 1.
(This is reminiscent of G. Kreisel’s proof of G&del’s second independence theorem.)
Now let :

h: mleast k>m o, tn # oy b nl.
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Again by I4,, it follows that / is a total 4,(M) function. Using I4, (or 4, weak.
comprehension), there is a sequence
S = (M, ceos Manyy
belonging to M, where m; = h®(m) for i<2"+1. But then
Guan } 1 = Opppn,, } 1, @ contradiction. Q.E.D. Claim. B
Note that the correspondence

h: n—least m>n [Vk>m(o, b n # o} n)]

requires IZ,, too strong an assumption, so although “things settle down”, the model M

doesn’t necessarily know “where things settle down”.
Let

U ={Ad=M: 4 is (M) definable and there exists i
belonging to M such that 4 = (f,(x)) and
MEdn, Yrzn, o,(i) = 0}.

Thus % is simply the collection of Z,(M) subsets of M which are claimed to-
be in the ultrafilter by almost all of the leftmost nodes of the tree 7. Note that given
a X, (M) subset 4 of M, there may be no least index 1 for which 4 = ,(x)™, since M
is not necessarily a model of IZ,. We now verify that % is a complete X, -ultrafilter.
Condition (1) obviously holds.
CLamM 2. If Ae¥ and ne M then {ae A: a=n}ed.

Proof. If not, then let i, be an index of 4 such that

MEIAmVnzmo,(y) = 0

and let i; > 7, be any index of {aue A: a>n}. Let ny, n, be respectively stages where-
decisions concerning ;, i <iy resp. y;, i <i, have settled down. By definition of
the tree T, clearly

N W™ o) = 0}

i<iy

is unbounded in M. Let ¢ = g,,} iIO and consider T, as previously defined —
plainly T, = T, and T is unbounded in M. Again by I4,, let 1, denote the leftmost
node in T, of length ». Then t,, belongs to T and is to the left of ¢, , contradicting
the definition of o,,. Q.E.D. Claim. M

Using the techniques in the proof of the above claim, it is easy to obtain the:
following

Fact 3. If Ae% then for every index i of A,

ME3n, Vnzn, o (H)=0. B

CLAM 4. If ng is a stage where decisions concerning W, i < iy have settled down

then letting

4= {Yi(D)™: a,,() = 0}
iy
we have that Ae.
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Proof. Let i; be an index for [) ()M 0,(0) = 0}, and let 7, be a stage

i<io
where decisions concerning W, 1<i; have settled down. Supposing that 4 ¢% in

order to obtain a contradiction, let ¢ = oy, } i,"0 and let T, be as previously defi-
ned — then T, < T. By the definition of the tree T, it is clear that 4 is unbounded
and so T, is unbounded in M. Using /45, let 7, be the leftmost node in T, of length .
Then 1,, belongs to T and is to the left of o,,, a contradiction. B

Now suppose that X = Mx M is X,(M) definable, ¢ € M and that
. Vi<a (X),e%.
IfX = {(b,c): MEOD, ¢)} where 0 is Z, (M), then clearly there is a 4, function
I+ i—Gbdel number of 0(i, x) in the enumeration
{U: ne M} .
Since M satisfies BZ,, '{0, ..., a—1} is bounded in M. So by the previous Fact 3,
(Vi<a 1//,,(,)(x))ME”21
and by the previous claim, it follows that

N X)e%.

i<a

Thus condition (5') is satisfied, and thus condition (2) holds.

CLAM 5. If A is Z(M) definable and A ¢ % then there exists B< A with Be .

Proof. Let i, be some index of 4 and let 1o, 1y be respectively stages where
decisions concerning y;, i <io resp. ¥, i <io have settled down. By definition of
the tree T, clearly

C = () [P 0,() = 0}
df j<ig
is unbounded in M.

SuBcLAIM. A N C is bounded in M.

Proof. If not, then let o = o, } i,"0 and consider T, as previously defined —
plainly 7, =7 and 7, is unbounded in M since we are supposing that 4 n C is un-
bounded in M. Using I4,, let 7, denote the leftmost node in T, of length ». T hen 7,
belongs to T and is to the left of ¢, , a contradiction. H

Thus 4 N C is bounded above in M by some integer m. Letting

B=Cn {ae M: azm}
it follows that B A and B is of the form W (x)* where y is Z,(M).

By the Claims 4 and 2. Be%. Q.E.D. Claim. B

Thus condition (4') holds and thus condition (3') holds. This concludes the proof
of Theorem 2. W :

Clearly, a similar argument yields
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THEOREM 3. For any model M of BE,;, with nz 1, there exists a complete:
X -ultrefilter. R

Recall the following.

Facr ([C1] — in proof of Proposition 7). If there exists a complete Z,, ultra--
filter U on a countable model M of I1Z,, then M admits a proper n-elementary end
extension K which is a model of BX,.

Sketch. One first defines
K = {f: fis a X, partial function from M into M with dom(f) e %}|%

and verifies that K is a proper (n+ 1)-elementary extension of M satisfying “M —BZ,”,.
which is the scheme

Vx<a Ay $ix,y, m)—Ab Vx<a Ay <b y(x,y,m)

where ¥ is Z,, ae M, and me K. Now form a X,_, ultrafilter * with

(1) every element of %* is an unbounded Z,_;(K) definable subset of K

(2) if fis a Z,_;(K) partial function with dom(f) e #* and rg(f) {0, ..., m}
for some m € M, then there exists Be%* with B<dom(f) and f constant on B..
Now let

L ={f: fis a Z,_4(K) partial function from K into K

with dom.(f) € %*}ju*
Then one verifies that L E IZ,_, and that

M<K
n,e
where K is the cofinal closure of X in L. Details can be found in [Cl]. &
This yields
COROLLARY 4. For any countable model M of BE,.y, With n>1, there exists
a proper n-elementary end extension K of M which satisfies BE,. Thus there exist
K, ..., K, such that

and KF Bz,

M4 Klnff eKzn 4

= _m...ﬁK,,.

Remarks. (i) Using Proposition 3 of [C1] which states that if a model M
of IZ, admits a proper (n+1)-clementary end extension which satisfies IZ,, then M
satisfies BY,.,, it is easy to prove the converse of Corollary 4.

(2) This provides certain insight on the arithmetical version of a question due
to M. Kaufmann in [Ka] p. 102: whether for 1 <n any countable model M of
BZ,,, admits a proper (n-+1)-clementary end extension K which satisfies BZ,.

We now have the principal result

THEOREM 5. For any model M- of 1Z, and n 22,

M E BZ, iff M admits a proper n-elementary end extensicr:

K which satisfies 1Z, -
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Proof. (=) By the proof of Theorem 3, we obtain a complete 4, ultrafilter
on M. Now (following the technique of [Ka] and [Kr], independently), let

K= {f:fis a 4,.4(M) function from M into M} .

It is easy to check that X satisfies the conclusion on the right-hand side.

(«=) Due to [Ki-Pa). &

A final remark concerning collection schemes in arithmetic and tree properties.
In [Pa] a “mild refinement” of the arithmetized completeness theorem was given:
(a weak statement of this result is as follows) if M is a model of P+ BZ, and there
is a A4, definition of a theory T such that M F Con(T) then there is a 4, definition
of a Henkin model X for T. Using BX,, we can actually produce a 4, definition of
the /efinost unbounded branch in the associated Henkin tree Tr where

Tr = {c€2"M: Mk “there is no proof of 0 = 1 of Godel
number < 1h(s) admitting the y{®, i< 1h(o), as axioms}

and where {};: i<M} is a 4, enumeration of all sentences in the Henkinized
language {+,,0,1, <} U {c,: aeM}. Now Kreisel’s argument, as given in [Sm],
yields an easy model theoretic argument that

T = Con(T)

for any recursively axiomatizable theory T of arithmetic containing BY,. (The only
potentially non-obvious verification is Smorynski's Lemma 6.2.3 — here we use I4 20)
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