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Cylinder problem
by

K. Ciesielski (Warszawa) and F. Galvin * (Lawrence)

Abstract. S. Ulam in the Scottish Book (see {Ma2]) posed the so-called rectangle problem.
As a generalization F. Galvin (compare [Ga]) formulated the rn-dimensional cylinder problem
Pny() where  is a cardinal, n> 1. The 2-dimensional case is original Ulam’s problem. In this
paper we consider the question for which cardinals x the problem Py(%) has a positive solution.

We use standard set theoretic notation. The reference for forcing is Kunen
[Ku2]. For the o-algebra {F] generated by a family F of subsets of a set E, closed
under complements, we define the following hierarchy: [F], = F and for each
a<w; (x#0), [Fl, is the family of all countable unions (intersections) of sets
from U [Fl; if o is odd (even). Finally, [F]= U [F],.

B<ua

a<wy
Fu<m<owand iy<i;<..<i,_,<m, let Cto,.
of all sets of the form

{05 s X 1) €™X: (340, s x5, D ES)
where S <X, and let
CHX) = U{Cli, . tay(X): Iy < o <y <}
For I<n<m<w, let P;(X) denote the sentence
Z("X) = [ (X)]

and let P,(X) stand for P;**(X). The sentence P(X)is called the (n+1)-dimensional
cylinder problem for X.
Let us note the following simple facts:

5y (X) denote the family

veafn=

PROPOSITION 1. Let X be a set, let w < A< % be cardinals and let 1< n<m< o.
Then

1) P(X) if Py X)),

@ Pa(%),

(3) if Py(x) then P,(2),

@ Pr() iff P,(0),

* The second author received support from NSF grants MCS 77-02046 and MCS 81-02532
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(5) if Px) then P,(x),
(6) if P,(x) then there exists & <, s.t.

20 =[G,

Proof. (1), (2), and (3) are obvious.
(4) Let Py(x) and let 4eP("*'x). Then Ax{0}" " !eP(™) = [C"(%)]. So
Ae[Cht ()], and hence P,(x).
° For the reverse implication it is enough to show that for every m> n, Pl(x)
implies PI+1(x). By Pi(x) we have

[CRe)] = 2 (") = P(" uxx).
Thus, identifying » with %x » we obtain
[CrH )] = PO luxuxn) = P(H1),

However, by P(4), [Cyy (0] < [Ct200)] < [C* *(#)]. Hence CI'H () = 2 (1),
ie. Prti(x).

(5) follows immediately from (4).

(6) We may assume 3 > o.

If thete is no ¢ with the property asserted, then for each & < w, there exists
Az e [CrF 100+ (\ICh T (%)];. Thus, vsing the natural bijection between x and
(€+1)5\Ex, we may assume that for £ <w; we have 4,e TEHE+ 1) HNE ).
'I'henE U A4:¢[Cit (o %)), ie. 1P, (w, %), which contradicts P,(x).

<oy

From the above proposition it follows, in particular, that in order to check
whether P;(X) holds it is enough to verify a suitable cylinder problem P,(x) where
% = |X|.

Now we are going to study the interrelation between the (n+1)- and (n+2)-
dimensjonal cylinder problems. This will yield the positive solutions for P,().

THEOREM 1. Let 1 <n<w and let A be a cardinal s5.t. of A # wy. If P(o) holds
Jfor every a <2 then P, ().

Proof. By Proposition 1 (6) and our assumption on the cofinality of A there
exists an ordinal ¢ <, s.t.

(*) P("*a) = [Ch* (o)), for every a <.

Let Te #(**22). We show that Te [CIT3(0)].
For any i< n+2 write

Fy = {{xXgy wory ppip € 200 x<x; for j<n+2}.

Then "+2), = UzFi. So it is enough to show that, for any i< n-+2
i<n+t

T'=Tn FelGiiM)].

By symmetry. the proof can be reduced to the case of i = n+1.
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Let us define for each {<w; a set-theoretical operation ¢, describing the
inductive definition of the hierarchy [],: ¢, is the identity operation; for 0 < { < w,
let j;: {xwxw— o be a bijection and let

U u (p,{(Bj-;(a,,,,‘): i<n+l,x<wy}

i . - L<; I<wo i
0 ((Bi: i<n+l, k<w)) U U (P¢{<B};(a,z,k)1 i<ntl, k<o)

a<l I<co

if { is odd ,
if {is even .
Then, for every { <w; and every sequence (& ;: i<n+1) of families of subsets
of a set E, closed under complements, ¢, defines a function from [] “#; onto
i<n+1

[ U #Fi.

i<np+)

Let for n </ )
T,, _ Tn+1 ~ ("."IAX{T]} o n+¥1(n+1)x{17} .

Hence, by P,(n+1), for each i<n+1 there exists a sequence (A4} ;: k<w) of
elements of Cpii\ 5(1+1) st

T, = 0 ({4} ;: i<n+i,k< wy) % {n}.
Let

A= U @< {n}).
n<a
Hence 4, ;e Cpii\ (%) and
T = YTy = U@l i<n+l, k<w))x{n))
n<i n<i
U (@:({4ix {n}: i<n+1, k<))
n<i .

= U (@4, 0 O A% {m}): i<n+l k<w))
n<a

I

I

U 0:(({dy,iz i<n+l, k<w)) o (" *Ax{n})
n<i
Py dys: i<n+1l k<o) el uﬂc,i‘ii\m(z)]

G,
which finishes the proof.
COROLLARY 1. For any cardinal % and any n, 1 < n<w if P,(%) then P,yy(x™).
In particular, P (w,).
Proof. This follows from the fact that the rectangle problem holds for wj,
i.e. we have Py(w,) (see [Kul]). -
From the fact that MA implies P,(c) (see [Kul]) we obtain also -
COROLLARY 2. If MA then P,(c*). ; )
The upper bound for x such that P,(x) holds is given by the following =
THEOREM 2. Let 1<n<a. If P,(x) holds then ik <3,.

1% e

n
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Proof. We use two partition properties, 2, — (n+2)F and 2] + (n+2)" .
The first of them is a weak statement of the Erd8s-Radé theorem: (2, ()" —

— (™), for 1< n<x (see [Ku3, Theorem 6.4. p. 392]). The second one follows
from the theorem: 2,(x) + (n+2);"" for 1<n<w<x (see [Ku3; Theorem 6.5,
p. 393)).

Let us suppose that P,(x) holds for % = =7 and choose a partition f [
-2 witnessing % +» (n+2);* 1.
For each k<w let

n+1

A= {{xgs e, 3y "yt xg < xy < o< x, & f({ Xy 0%, ) (k) = 0}

P,(3) there exist sets S; <"« (i < w) s.t. 4’s belong to the o-algebra gencrated
by the family of cylinders:

. o . . . .
{{Cx0s wer 2> €Uz g, oy Koy, Njats Xpprs vees Nup € Si}t j<n+1, i<w}.

For xp<..<x,.; define g({xp, ..., Xy=1}) = {i<@: {Xg, ..., X,—1p €S} By
% — (n+2); there is a subset X <x, [ X| = n+2,s.t. g is constant on [X]". However,
S witnesses %+ (n+2)7"%, and so f is not constant on [X]**L. Let {xg, ..., x,},

{F0s s Yut € [X]"*! be such that xg < ... <X,, Vo < ... <¥, and

f({xﬂs L] 'Xn}) # f(LyO' ) yn}) .

Hence there exists an integer k s.t. exactly one of the points (xg, ..., x,» and
{Pos -+» Yuy is an element of 4. So, there exist i < @ and j < n+1 s.t. S; distinguishes
the points

(X wees Xjogs Xjags s G and (¥, o, Gots Yit1s oo Va) s

which contradicts the fact that g is constant on [X]".

The above theorem and Corollary 1 give

CoRrOLLARY 3. If GCH holds then for 1<n<w Px) iff K<

It seems natural to ask whether P,(z,) is 4 theorem of ZFC. The following
generalization of a theorem due to Kunen [Kul] provides a negative answer to
this question.

THEOREM 3. If M is a model of ZFC and f is a Cohen generic function over M
adding at least @, reals (0 <n< ) then M[f]F “P(@nsr) "

Proof. We show that for every model M of ZFC and every Cohen generic
function f: @;X@yX o X@,4y > 2, if 4, ={xe"w,,: f(x) =0} then
MIfIE “Ap ¢ 1Ch H(@ne )]

Let us asume that for some n the above statement is not true. Then there
exists a minimal m<w (m>0) s.t. for some model M of ZFC and a Cohen generic
function f: oy x ... X W,.; = 2 over M,

MUTF“A; € (O @) U @O 0 ) 0 MY
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Hence there exists (in M[f]) a sequence (S;: i<w) of subsets of @; X ... xw,
s.t. if

= {{<x0, o Xy €' eyt {Xgs e, XD € Si}: i<€0}
then

M{flE“d;e[Su U Ciﬁii\{i)(wmﬂ) v (*“f_’(mﬂwmﬂ) n M),
i<m

However, [S;]<o,, for each i<w, so there exists a set Bow,yq, |Bl<w, s.t.
SeM[f t(wy% ... xw,xB)]. Thus if yew,,\B, fi=/f} (wlx v X Wy X
X(Wpe N} and g0 @1% v X0y = 2 s St gy, s X)) = F(Xps s Xy 1),
then

MIfIE“As 1% .. xomxim) € [<U Cg:f %\{i}(fl)m+1)(-‘ﬁ’(m+lﬂ)m+1) nM [fl])]”
and M[f]= M[fi]lg]- Hence
MIfllglF <4 e [Ch- (o, v (2 ("w,) n MIAD]™

By the minimality of m and the fact that g is Cohen generic over M| f,], we have
= 1. So

g: o, — 2 and M[fillglF“4,e [P (@) o M[AI]".

Thus there exists a real number re M[f,]lg] s.t. for some countable Fe M[f;],
Fo @(0,) the pair {F, r) codes 4,. It follows that for some countable De M{f,],
Dcw;, we have re M[fi1lg } D). Hence 4, M[f][g } D] and so gtw,\D
e M[fi]lg + D], which is impossible, because g } w;\D is Cohen generic over
M[f:)lg + Dl

COROLLARY 4. If M is a model of ZFC and f is a Cohen generic function over
M adding at least w,, reals then for 1 <n<ow

MIfF1E “P) iff %<,

We do not know any model of set theory in which there exist # and » s.t.
P,.;(x") and T1P,(»). In particular, the following problem seems to be interesting.

PRrOBLEM. Is P, (¢™7) consistent?

Let us now introduce a generalization of the cylinder (see [Mal]). For n< w
let Q,(x) denote the statement: “for every S 2 (""'x) s.t. |S| < there exists
PP ) st 1P <o and S<[CETHE) U 2.

PROPOSITION 2. For any cardinal % and n< w we have

Py i(8) = 0,(0) = Q11(9).

Proof. The first implication is an immediate consequence of the definitions.
The proof of the other one is similar to that of Proposition 1 (4).

The above proposition gives us the positive solution: Q,(w,..;) for every n < w.
For the negative part we have only a partial solution.
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THEOREM 4. If 2°>2° then 710,((2%)*).
Proof. Let 2 = (2%)*. For each o < A choose a one-to-one function #,: & — 2 ()

and define
S, = {{&,ny: n<a&iehm)crxl.

Now suppose that there is a countable family 9 = {(D,: n < w) of subsets of 1 x 1
st {S,: a<A}<[Ci(D) U D]. Choose X < s.t. [X]= (2°)* and for each n<ow
D,n (xx X) = Dyx X for some D, <=z (X is a subset of a counter-image of the
point g: A — **°2 defined by g(n)(&,n) = 0 iff (£,#n) e D,). Thus

(8,0 (x X): a< i} e[CT].
Fix o<l s.t. Xco. Now, if g,9,€ X and 5, # , then
/71("11) # /71(’12), ie. {5 <‘fa 7]l> esa}' # {é <‘§7 "2) € Son}'

Since | X[ > 2%, it is easy to see that S, n (icx X) ¢ [C(A)], because otherwise each
set {&: (&, n) €S,} would be determined by some real number. This gives contra-
diction.

An easy corollary to this theorem is that 2° = w,, 2°* = w; and 2™ > w,
imply 71Q,((29*). Another consequence is that 71Q,((2)"). Let us also notice
that an easy modification of the proof of Theorem 4 (using the fact that —1P,(3;)
gives also that, for any n<w, Q,(x) implies ©<23%. So the following problem
might be mentioned in this context:

“does Q,(») imply ®x<2,,, for 2<n<w?

Let us finally note that in a model of ZFC obtained by adding at least w,,
Cohen reals, for every n < o we have Q,(x) iff €< @, ;-
The proof is similar to that of Theorem 3.
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Terminal continua and the homogeneity *
by

T. Maékowiak| (Wroctaw)

Abstract, In the paper we prove the following statements: (1) every hereditarily indecomposable
and continuously homogeneous continuum is one-dimensional; (2) every proper terminal sub-
continuum of a homogeneous curve is tree-like; (3) every homogeneous hereditary 6-continuum
is atriodic.

1. Terminal continna. Definitions which are not recalled here can be found
in [13]. All spaces in this paper are metric.

A compact space X has Kelley’s property at xe X if for every continuum
Y c X containing x and for every sequence X, of points of X converging to x, there
exists a sequence of continua ¥, < X converging to Y such that x,e ¥,. A space
X has Kelley’s property if it has Kelley’s property at each point (see [21]).

A space is said to be homogeneous with respect to the class M of mappings if
for every two points p and g of X, there exists a continuous surjection f from X
onto itself such that fe M and f(p) = ¢g. A continuum homogeneous with respect
to homeomorphisms (continuous maps) will be simply called homogeneous (continu-
ously homogeneous).

Charatonik has observed in [2] that

(1.1) Continua which are homogeneous with respect to open mappings have
Kelley’s property.

A subcontinum @ of X is called terminal if Ke C(X) and K~ Q % @ imply
either K< Q or Q = K, where C(X) denotes as usually the space of all subcontinua
of X with the Hausdorff distance. We will denote the collection of all terminal
subcontinua of X by T(X) and the collection of all indecomposable subcontinua
of X by IN(X). The following proposition is an immediate consequence of above
definitions.

(1.2) If a continuum X has Kelley’s property, then T(X) is closed in C(X).

We have (see [10])

(1.3) If f is a continuous mapping from a continuum X onto Y, Ke T(Y) and
C is a component of f~*(K), then f(C) = K.

* AMS 1980 Subject classification numbers: Primary 54F20, Secondary 54F45.
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