

Cylinder problem

by

K. Ciesielski (Warszawa) and F. Galvin * (Lawrence)

Abstract. S. Ulam in the Scottish Book (see [Ma2]) posed the so-called rectangle problem. As a generalization F. Galvin (compare [Ga]) formulated the n-dimensional cylinder problem $P_{n-1}(\varkappa)$ where \varkappa is a cardinal, $n \ge 1$. The 2-dimensional case is original Ulam's problem. In this paper we consider the question for which cardinals \varkappa the problem $P_n(\varkappa)$ has a positive solution.

We use standard set theoretic notation. The reference for forcing is Kunen [Ku2]. For the σ -algebra [F] generated by a family F of subsets of a set E, closed under complements, we define the following hierarchy: $[F]_0 = F$ and for each $\alpha < \omega_1$ ($\alpha \neq 0$), $[F]_{\alpha}$ is the family of all countable unions (intersections) of sets from $\bigcup_{B < \alpha} [F]_{\beta}$ if α is odd (even). Finally, $[F] = \bigcup_{\alpha < \omega_1} [F]_{\alpha}$.

If $n \le m < \omega$ and $i_0 < i_1 < \dots < i_{n-1} < m$, let $C^m_{\{i_0,\dots,i_{n-1}\}}(X)$ denote the family of all sets of the form

$$\{\langle x_0, ..., x_{m-1} \rangle \in {}^m X : \langle x_{i_0}, ..., x_{i_{m-1}} \rangle \in S\}$$

where $S \subset {}^{n}X$, and let

$$C_n^m(X) = \bigcup \{C_{\{i_0, \dots, i_{n-1}\}}^m(X): i_0 < \dots < i_{n-1} < m\}.$$

For $1 \le n \le m < \omega$, let $P_n^m(X)$ denote the sentence

$$\mathscr{P}(^{m}X) = [C_{n}^{m}(X)]$$

and let $P_n(X)$ stand for $P_n^{n+1}(X)$. The sentence $P_n(X)$ is called the (n+1)-dimensional cylinder problem for X.

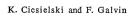
Let us note the following simple facts:

Proposition 1. Let X be a set, let $\omega \leq \lambda \leq \varkappa$ be cardinals and let $1 \leq n < m < \omega$. Then

- (1) $P_n^m(X)$ iff $P_n^m(|X|)$,
- (2) $P_n^n(\varkappa)$,
- (3) if $P_n(\varkappa)$ then $P_n(\lambda)$,
- (4) $P_n^m(\varkappa)$ iff $P_n(\varkappa)$,

^{*} The second author received support from NSF grants MCS 77-02046 and MCS 81-02532.

^{1 -} Fundamenta Mathematicae 127. 3



- (5) if $P_n(\varkappa)$ then $P_m(\varkappa)$,
- (6) if $P_n(x)$ then there exists $\xi < \omega_1$ s.t.

$$\mathcal{P}(^{n+1}\varkappa) = [C_n^{n+1}(\kappa)]_{\xi}.$$

Proof. (1), (2), and (3) are obvious.

(4) Let $P_n^m(\kappa)$ and let $A \in P(^{n+1}\kappa)$. Then $A \times \{0\}^{m-n-1} \in P(^m\kappa) = [C_n^m(\kappa)]$. So $A \in [C_n^{n+1}(\kappa)]$, and hence $P_n(\kappa)$.

• For the reverse implication it is enough to show that for every m>n, $P_n^m(\varkappa)$ implies $P_n^{m+1}(\varkappa)$. By $P_n^m(\varkappa)$ we have

$$[C_n^m(\varkappa)] = \mathscr{P}(^m\varkappa) = \mathscr{P}(^{m-1}\varkappa \times \varkappa).$$

Thus, identifying \varkappa with $\varkappa \times \varkappa$ we obtain

$$[C_{n+1}^{m+1}(\varkappa)] = \mathscr{P}(^{m-1}\varkappa \times \varkappa \times \varkappa) = \mathscr{P}(^{m+1}\varkappa).$$

However, by $P_n^m(\varkappa)$, $[C_{n+1}^{m+1}(\varkappa)] \subset [C_m^{m+1}(\varkappa)] \subset [C_n^{m+1}(\varkappa)]$. Hence $C_n^{m+1}(\varkappa) = \mathscr{D}(^{m+1}\varkappa)$, i.e. $P_n^{m+1}(\varkappa)$.

- (5) follows immediately from (4).
- (6) We may assume $\varkappa > \omega$.

If there is no ξ with the property asserted, then for each $\xi < \omega_1$ there exists $A_{\xi} \in [C_n^{n+1}(\varkappa)]_{\xi+1} \setminus [C_n^{n+1}(\varkappa)]_{\xi}$. Thus, using the natural bijection between \varkappa and $(\xi+1) \cdot \varkappa \cdot \xi \cdot \varkappa$, we may assume that for $\xi < \omega_1$ we have $A_{\xi} \in {}^{n+1}((\xi+1) \cdot \varkappa \cdot \xi \cdot \varkappa)$. Then $\bigcup_{\xi \leq \omega_1} A_{\xi} \notin [C_n^{n+1}(\omega_1 \cdot \varkappa)]$, i.e. $\neg P_n(\omega_1 \cdot \varkappa)$, which contradicts $P_n(\varkappa)$.

From the above proposition it follows, in particular, that in order to check whether $P_n^m(X)$ holds it is enough to verify a suitable cylinder problem $P_n(x)$ where x = |X|.

Now we are going to study the interrelation between the (n+1)- and (n+2)-dimensional cylinder problems. This will yield the positive solutions for $P_n(x)$.

THEOREM 1. Let $1 \le n < \omega$ and let λ be a cardinal s.t. of $\lambda \ne \omega_1$. If $P_n(\alpha)$ holds for every $\alpha < \lambda$ then $P_{n+1}(\lambda)$.

Proof. By Proposition 1 (6) and our assumption on the cofinality of λ there exists an ordinal $\xi < \omega_1$ s.t.

(*)
$$\mathscr{P}(^{n+1}\alpha) = [C_n^{n+1}(\alpha)]_x \text{ for every } \alpha < \lambda.$$

Let $T \in \mathcal{P}(^{n+2}\lambda)$. We show that $T \in [C_{n+1}^{n+2}(\lambda)]$.

For any i < n+2 write

$$F_i = \{ \langle x_0, ..., x_{n+1} \rangle \in {}^{n+2}\lambda \colon x_i \le x_i \text{ for } j < n+2 \}.$$

Then $^{n+2}\lambda = \bigcup_{i < n+2} F_i$. So it is enough to show that, for any i < n+2

$$T^{i} = T \cap F_{i} \in \left[C_{n+1}^{n+2}(\lambda)\right].$$

By symmetry the proof can be reduced to the case of i = n+1.

Let us define for each $\zeta < \omega_1$ a set-theoretical operation φ_{ζ} describing the inductive definition of the hierarchy $[\]_{\zeta} : \varphi_0$ is the identity operation; for $0 < \zeta < \omega_1$ let $j_r : \zeta \times \omega \times \omega \to \omega$ be a bijection and let

$$\varphi_{\zeta}(\langle B_k^i\colon i < n+1,\, k < \omega \rangle) = \begin{cases} \bigcup\limits_{\alpha < \zeta} \bigcup\limits_{l < \omega} \varphi_{\alpha}\{\langle B_{j_{\xi}(\alpha,\, l,\, k)}^i\colon i < n+1,\, \varkappa < \omega \rangle\} & \text{if } \zeta \text{ is odd ,} \\ \bigcup\limits_{\alpha < \zeta} \bigcup\limits_{l < \omega} \varphi_{\alpha}\{\langle B_{j_{\xi}(\alpha,\, l,\, k)}^i\colon i < n+1,\, \varkappa < \omega \rangle\} & \text{if } \zeta \text{ is even .} \end{cases}$$

Then, for every $\zeta < \omega_1$ and every sequence $\langle \mathscr{F}_i \colon i < n+1 \rangle$ of families of subsets of a set E, closed under complements, φ_{ζ} defines a function from $\prod_{i < n+1} {}^{\omega} \mathscr{F}_i$ onto $[\ \bigcup \ \mathscr{F}_i]_{\zeta}$.

Let for $\eta < \lambda$

$$T_{\eta} = T^{n+1} \cap (^{n+1}\lambda \times \{\eta\} \subset {}^{n+1}(\eta+1) \times \{\eta\}.$$

Hence, by $P_n(\eta+1)$, for each i < n+1 there exists a sequence $\langle A_{k,i}^n : k < \omega \rangle$ of elements of $C_{n+1}^{n+1} \setminus_{\{i\}} (\eta+1)$ s.t.

$$T_{\eta} = \varphi_{\xi}(\langle A_{k,i}^{\eta}: i < n+1, k < \omega \rangle) \times \{\eta\}.$$

Let

$$A_{k,i} = \bigcup_{\eta < \lambda} (A_{k,i}^{\eta} \times \{\eta\}).$$

Hence $A_{k,i} \in C_{n+2 \setminus \{i\}}^{n+2}(\lambda)$ and

$$\begin{split} T^{n+1} &= \bigcup_{\eta < \lambda} T_{\eta} = \bigcup_{\eta < \lambda} (\varphi_{\xi}(\langle A_{k,i}^{\eta} \colon i < n+1, \ k < \omega \rangle) \times \{\eta\}) \\ &= \bigcup_{\eta < \lambda} (\varphi_{\xi}(\langle A_{k,i}^{\eta} \times \{\eta\} \colon i < n+1, \ k < \omega \rangle) \\ &= \bigcup_{\eta < \lambda} (\varphi_{\xi}(\langle A_{k,i} \cap (^{n+1}\lambda \times \{\eta\}) \colon i < n+1 \ k < \omega \rangle) \\ &= \bigcup_{\eta < \lambda} (\varphi_{\xi}((\langle A_{k,i} \colon i < n+1, \ k < \omega \rangle) \cap (^{n+1}\lambda \times \{\eta\})) \\ &= \varphi_{\xi}((\langle A_{k,i} \colon i < n+1 \cdot \ k < \omega \rangle) \in [\bigcup_{i < n+1} C_{n+2 \setminus \{i\}}^{n+2}(\lambda)] \\ &\subset [C_{n+2}^{n+2}(\lambda)], \end{split}$$

which finishes the proof.

COROLLARY 1. For any cardinal \varkappa and any n, $1 \le n < \omega$ if $P_n(\varkappa)$ then $P_{n+1}(\varkappa^+)$. In particular, $P_n(\omega_n)$.

Proof. This follows from the fact that the rectangle problem holds for ω_1 , i.e. we have $P_1(\omega_1)$ (see [Ku1]).

From the fact that MA implies $P_1(c)$ (see [Ku1]) we obtain also COROLLARY 2. If MA then $P_2(c^+)$.

The upper bound for κ such that $P_n(\kappa)$ holds is given by the following Theorem 2. Let $1 \le n < \omega$. If $P_n(\kappa)$ holds then $\kappa \le \mathbb{Z}_n$.

Proof. We use two partition properties, $z_n^+ \to (n+2)_\varepsilon^n$ and $z_n^+ \to (n+2)_\varepsilon^{n+1}$. The first of them is a weak statement of the Erdös-Radó theorem: $(z_{n-1}(\varkappa))^+ \to (\varkappa^+)_\varkappa^n$ for $1 \le n \le \varkappa$ (see [Ku3, Theorem 6.4. p. 392]). The second one follows from the theorem: $z_n(\varkappa) \to (n+2)_\varkappa^{n+1}$ for $1 \le n < \omega \le \varkappa$ (see [Ku3; Theorem 6.5,

Let us suppose that $P_n(\varkappa)$ holds for $\varkappa = \Xi_n^+$ and choose a partition $f: [\varkappa]^{n+1} \to \infty$ witnessing $\varkappa \mapsto (n+2)_n^{n+1}$.

For each $k < \omega$ let

$$A_k = \{ \langle x_0, \dots, x_n \rangle \in {}^{n+1}\varkappa \colon x_0 < x_1 < \dots < x_n \& f(\{x_0, \dots, x_n\})(k) = 0 \}.$$

By $P_n(\varkappa)$ there exist sets $S_i \subset {}^n \varkappa$ $(i < \omega)$ s.t. A_k 's belong to the σ -algebra generated by the family of cylinders:

$$\left\{\left\{\left\langle x_{0},...,x_{n}\right\rangle \in {}^{n+1}\varkappa\colon \left\langle x_{0},...,x_{j-1},x_{j+1},x_{j+1},...,x_{n}\right\rangle \in S_{i}\right\}\colon j< n+1,\; i<\omega\right\}.$$

For $x_0 < \ldots < x_{n-1}$ define $g(\{x_0, \ldots, x_{n-1}\}) = \{i < \omega \colon \langle x_0, \ldots, x_{n-1} \rangle \in S_i\}$. By $\varkappa \to (n+2)^n_{\mathfrak{c}}$ there is a subset $X \subset \varkappa, |X| = n+2$, s.t. g is constant on $[X]^n$. However, f witnesses $\varkappa \mapsto (n+2)^{n+1}_{\mathfrak{c}}$, and so f is not constant on $[X]^{n+1}$. Let $\{x_0, \ldots, x_n\}$, $\{y_0, \ldots, y_n\} \in [X]^{n+1}$ be such that $x_0 < \ldots < x_n, y_0 < \ldots < y_n$ and

$$f({x_0, ..., x_n}) \neq f({y_0, ..., y_n}).$$

Hence there exists an integer k s.t. exactly one of the points $\langle x_0, ..., x_n \rangle$ and $\langle y_0, ..., y_n \rangle$ is an element of A_k . So, there exist $i < \omega$ and j < n+1 s.t. S_i distinguishes the points

$$\langle x_0, ..., x_{i-1}, x_{i+1}, ..., x_n \rangle$$
 and $\langle y_0, ..., x_{i-1}, y_{i+1}, ..., y_n \rangle$,

which contradicts the fact that g is constant on $[X]^n$.

The above theorem and Corollary 1 give

COROLLARY 3. If GCH holds then for $1 \le n < \omega$ $P_n(\kappa)$ iff $\kappa \le \omega_n$.

It seems natural to ask whether $P_n(z_n)$ is a theorem of ZFC. The following generalization of a theorem due to Kunen [Ku1] provides a negative answer to this question.

THEOREM 3. If M is a model of ZFC and f is a Cohen generic function over M adding at least ω_{n+1} reals $(0 < n < \omega)$ then $M[f] \models `` \neg P_n(\omega_{n+1})$.

Proof. We show that for every model M of ZFC and every Cohen generic function $f: \omega_1 \times \omega_2 \times ... \times \omega_{n+1} \to 2$, if $A_f = \{x \in {}^{n+1}\omega_{n+1}: f(x) = 0\}$ then $M[f] \models {}^{n}A_f \notin [C_n^{n+1}(\omega_{n+1})]^n$.

Let us assume that for some n the above statement is not true. Then there exists a minimal $m < \omega$ (m > 0) s.t. for some model M of ZFC and a Cohen generic function $f: \omega_1 \times ... \times \omega_{m+1} \to 2$ over M,

$$M[f] \models "A_f \in [C_m^{m+1}(\omega_{m+1}) \cup (\mathscr{P}(^{m+1}\omega_{m+1}) \cap M)".$$

Hence there exists (in M[f]) a sequence $\langle S_i : i < \omega \rangle$ of subsets of $\omega_1 \times ... \times \omega_m$ s.t. if

$$S = \{ \{ \langle x_0, ..., x_m \rangle \in {}^{m+1}\omega_{m+1} : \langle x_0, ..., x_{m-1} \rangle \in S_i \} : i < \omega \}$$

then

$$M[f] \models ``A_f \in \left[S \cup \bigcup_{i < m} C_{m+1 \setminus \{i\}}^{m+1}(\omega_{m+1}) \cup \left(\mathscr{P}(^{m+1}\omega_{m+1}) \cap M \right) \right] "$$

However, $|S_i| \leqslant \omega_m$ for each $i < \omega$, so there exists a set $B \subset \omega_{m+1}$, $|B| \leqslant \omega_m$ s.t. $S \in M[f \upharpoonright (\omega_1 \times ... \times \omega_m \times B)]$. Thus if $\eta \in \omega_{m+1} \setminus B$, $f_1 = f \upharpoonright (\omega_1 \times ... \times \omega_m \times (\omega_{m+1} \setminus \{\eta\}))$, and $g \colon \omega_1 \times ... \times \omega_m \to 2$ is st. $g(x_1, ..., x_m) = f(x_1, ..., x_m, \eta)$, then

$$M[f] \models ``A_{f \restriction (\omega_1 \times \ldots \times \omega_m \times \{\eta\})} \in \left[\bigcup_{i < m} C_{m+1 \searrow \{i\}}^{m+1} (\omega_{m+1}) \big(\mathcal{P}(^{m+1}\omega_{m+1}) \cap M[f_1] \big) \right]"$$

and $M[f] = M[f_1][g]$. Hence

$$M[f_1][g] \models "A_g \in [C_{m-1}^m(\omega_m) \cup (\mathscr{P}(^m\omega_m) \cap M[f_1])]".$$

By the minimality of m and the fact that g is Cohen generic over $M[f_1]$, we have m = 1. So

$$g: \omega_1 \to 2 \text{ and } M[f_1][g] \models "A_g \in [\mathscr{P}(\omega_1) \cap M[f_1]]".$$

Thus there exists a real number $r \in M[f_1][g]$ s.t. for some countable $F \in M[f_1]$, $F \subset \mathscr{P}(\omega_1)$ the pair $\langle F, r \rangle$ codes A_g . It follows that for some countable $D \in M[f_1]$, $D \subset \omega_1$, we have $r \in M[f_1][g \upharpoonright D]$. Hence $A_g \in M[f_1][g \upharpoonright D]$ and so $g \upharpoonright \omega_1 \backslash D$ $\in M[f_1][g \upharpoonright D]$, which is impossible, because $g \upharpoonright \omega_1 \backslash D$ is Cohen generic over $M[f_1][g \upharpoonright D]$.

COROLLARY 4. If M is a model of ZFC and f is a Cohen generic function over M adding at least ω_{ω} reals then for $1 \le n < \omega$

$$M[f] \models "P_n(\varkappa) \text{ iff } \varkappa \leq \omega_n".$$

We do not know any model of set theory in which there exist n and \varkappa s.t. $P_{n+1}(\varkappa^+)$ and $\neg P_n(\varkappa)$. In particular, the following problem seems to be interesting.

PROBLEM. Is P_2 (c⁺⁺) consistent?

Let us now introduce a generalization of the cylinder (see [Ma1]). For $n < \omega$ let $Q_n(x)$ denote the statement: "for every $S \subset \mathscr{P}(^{n+1}x)$ s.t. $|S| \leq x$ there exists $\mathscr{D} \subset \mathscr{P}(^{n+1}x)$ s.t. $|\mathscr{D}| < \omega$ and $S \subset [C_n^{n+1}(\kappa) \cup \mathscr{D}]$ ".

PROPOSITION 2. For any cardinal \varkappa and $n < \omega$ we have

$$P_{n+1}(\varkappa) \Rightarrow Q_n(\varkappa) \Rightarrow Q_{n+1}(\varkappa)$$
.

Proof. The first implication is an immediate consequence of the definitions. The proof of the other one is similar to that of Proposition 1 (4).

The above proposition gives us the positive solution: $Q_n(\omega_{n+1})$ for every $n < \omega$. For the negative part we have only a partial solution.

THEOREM 4. If $2^{\kappa} > 2^{\omega}$ then $\exists Q_1((2^{\kappa})^+)$.

Proof. Let $\lambda=(2^n)^+$. For each $\alpha<\lambda$ choose a one-to-one function $h_a\colon\alpha\to\mathcal{P}(\varkappa)$ and define

$$S_{\alpha} = \{ \langle \xi, \eta \rangle \colon \eta < \alpha \& \xi \in h_{\alpha}(\eta) \} \subset \varkappa \times \lambda .$$

Now suppose that there is a countable family $\mathscr{D}=\langle D_n\colon n<\omega\rangle$ of subsets of $\kappa\times\lambda$ s.t. $\{S_\alpha\colon \alpha<\lambda\}\subset [C_1^2(\lambda)\cup\mathscr{D}]$. Choose $X\subset\lambda$ s.t. $|X|=(2^\omega)^+$ and for each $n<\omega$ $D_n\cap(\kappa\times X)=D_n'\times X$ for some $D_n'\subset\kappa$ (X) is a subset of a counter-image of the point $g\colon\lambda\to{}^{\kappa\times\omega}2$ defined by $g(\eta)(\xi,n)=0$ iff $(\xi,\eta)\in D_n$. Thus

$${S_{\alpha} \cap (\varkappa \times X): \ \alpha < \lambda} \in [C_1^2(\lambda)].$$

Fix $\alpha < \lambda$ s.t. $X \subset \alpha$. Now, if $\eta_1 \eta_2 \in X$ and $\eta_1 \neq \eta_2$ then

$$h_{\alpha}(\eta_1) \neq h_{\alpha}(\eta_2), \text{ i.e. } \{\xi \colon \langle \xi, \eta_1 \rangle \in S_{\alpha}\} \neq \{\xi \colon \langle \xi, \eta_2 \rangle \in S_{\alpha}\}.$$

Since $|X|>2^{\omega}$, it is easy to see that $S_{\alpha}\cap(\kappa\times X)\notin[C_1^2(\lambda)]$, because otherwise each set $\{\xi\colon\langle\xi,\eta\rangle\in S_{\alpha}\}$ would be determined by some real number. This gives contradiction.

An easy corollary to this theorem is that $2^{\omega} = \omega_2$, $2^{\omega_1} = \omega_3$ and $2^{\omega_2} \ge \omega_4$ imply $\neg Q_1((2^c)^+)$. Another consequence is that $\neg Q_1((2^c)^+)$. Let us also notice that an easy modification of the proof of Theorem 4 (using the fact that $\neg P_n(\neg_n^+)$ gives also that, for any $n < \omega$, $Q_n(\kappa)$ implies $\kappa \le 2^{\neg_n^+}$. So the following problem might be mentioned in this context:

"does
$$Q_n(x)$$
 imply $x \leq z_{n+1}$ for $2 \leq n < \omega$?"

Let us finally note that in a model of ZFC obtained by adding at least ω_{ω} Cohen reals, for every $n < \omega$ we have $Q_n(\kappa)$ iff $\kappa \leqslant \omega_{n+1}$.

The proof is similar to that of Theorem 3.

References

- [Ga] F. Galvin, Abstract of The 9-th Winter School in Abstract Analysis, Srni, Czechoslovakia 1984.
- [Kul] K. Kunen, PhD Thesis, Stanford University 1963.
- [Ku2] -, Set theory, Amsterdam 1980.
- [Ku3] -, Combinatorics, in Handbook of Mathematical Logic, North Holland 1977.
- [Mal] R. D. Mauldin, Countably generated families, Proc. Amer. Math. Soc. 54 (1976), 291-297,
- [Ma2] -, The Scottish Book, Boston 1981.

DEPARTMENT OF MATHEMATICS BOWLING GREEN STATE UNIVERSITY Bowling Green, Ohio 43403

Received 24 October 1984

Terminal continua and the homogeneity *

bу

T. Maćkowiak (Wrocław)

Abstract. In the paper we prove the following statements: (1) every hereditarily indecomposable and continuously homogeneous continuum is one-dimensional; (2) every proper terminal subcontinuum of a homogeneous curve is tree-like; (3) every homogeneous hereditary θ -continuum is atriodic.

1. Terminal continua. Definitions which are not recalled here can be found in [13]. All spaces in this paper are metric.

A compact space X has Kelley's property at $x \in X$ if for every continuum $Y \subset X$ containing x and for every sequence x_n of points of X converging to x, there exists a sequence of continua $Y_n \subset X$ converging to Y such that $x_n \in Y_n$. A space X has Kelley's property if it has Kelley's property at each point (see [21]).

A space is said to be homogeneous with respect to the class M of mappings if for every two points p and q of X, there exists a continuous surjection f from X onto itself such that $f \in M$ and f(p) = q. A continuum homogeneous with respect to homeomorphisms (continuous maps) will be simply called homogeneous (continuously homogeneous).

Charatonik has observed in [2] that

(1.1) Continua which are homogeneous with respect to open mappings have Kelley's property.

A subcontinum Q of X is called *terminal* if $K \in C(X)$ and $K \cap Q \neq \emptyset$ imply either $K \subset Q$ or $Q \subset K$, where C(X) denotes as usually the space of all subcontinua of X with the Hausdorff distance. We will denote the collection of all terminal subcontinua of X by T(X) and the collection of all indecomposable subcontinua of X by IN(X). The following proposition is an immediate consequence of above definitions.

- (1.2) If a continuum X has Kelley's property, then T(X) is closed in C(X). We have (see [10])
- (1.3) If f is a continuous mapping from a continuum X onto Y, $K \in T(Y)$ and C is a component of $f^{-1}(K)$, then f(C) = K.

^{*} AMS 1980 Subject classification numbers: Primary 54F20, Secondary 54F45.